Hyperactivation of human acidic chitinase (Chia) for potential medical use

. 2025 Jan ; 301 (1) : 108100. [epub] 20241218

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39706263
Odkazy

PubMed 39706263
PubMed Central PMC11773036
DOI 10.1016/j.jbc.2024.108100
PII: S0021-9258(24)02602-4
Knihovny.cz E-zdroje

Accumulation of environmental chitin in the lungs can lead to pulmonary fibrosis, characterized by inflammatory infiltration and fibrosis in acidic chitinase (Chia)-deficient mice. Transgenic expression of Chia in these mice ameliorated the symptoms, indicating the potential of enzyme supplementation as a promising therapeutic strategy for related lung diseases. This study focuses on utilizing hyperactivated human Chia, which exhibits low activity. We achieved significant activation of human Chia by incorporating nine amino acids derived from the crab-eating monkey (Macaca fascicularis) Chia, known for its robust chitin-degrading activity. The modified human Chia retained high activity across a broad pH spectrum and exhibited enhanced thermal stability. The amino acid substitutions associated with hyperactivation of human Chia activity occurred species specifically in monkey Chia. This discovery highlights the potential of hyperactivated Chia in treating pulmonary diseases resulting from chitin accumulation in human lungs.

Zobrazit více v PubMed

Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9 PubMed PMC

Van Dyken S.J., Locksley R.M. Chitins and chitinase activity in airway diseases. J. Allergy Clin. Immunol. 2018;142:364–369. PubMed PMC

Lee C.G., Da Silva C.A., Dela Cruz C.S., Ahangari F., Ma B., Kang M.J., et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 2011;73:479–501. PubMed PMC

Boot R.G., Blommaart E.F., Swart E., Ghauharali-van der Vlugt K., Bijl N., Moe C., et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001;276:6770–6778. PubMed

Van Dyken S.J., Mohapatra A., Nussbaum J.C., Molofsky A.B., Thornton E.E., Ziegler S.F., et al. Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and gammadelta. T Cell Immun. 2014;40:414–424. PubMed PMC

Kim L.K., Morita R., Kobayashi Y., Eisenbarth S.C., Lee C.G., Elias J., et al. AMCase is a crucial regulator of type 2 immune responses to inhaled house dust mites. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E2891–E2899. PubMed PMC

Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92–96. PubMed PMC

Zhu Z., Zheng T., Homer R.J., Kim Y.K., Chen N.Y., Cohn L., et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–1682. PubMed

Seibold M.A., Reese T.A., Choudhry S., Salam M.T., Beckman K., Eng C., et al. Differential enzymatic activity of common haplotypic versions of the human acidic mammalian chitinase protein. J. Biol. Chem. 2009;284:19650–19658. PubMed PMC

Fitz L.J., DeClercq C., Brooks J., Kuang W., Bates B., Demers D., et al. Acidic mammalian chitinase is not a critical target for allergic airway disease. Am. J. Respir. Cell Mol. Biol. 2012;46:71–79. PubMed

Van Dyken S.J., Liang H.E., Naikawadi R.P., Woodruff P.G., Wolters P.J., Erle D.J., et al. Spontaneous chitin accumulation in airways and age-related fibrotic lung disease. Cell. 2017;169:497–509.e413. PubMed PMC

Barad B.A., Liu L., Diaz R.E., Basilio R., Van Dyken S.J., Locksley R.M., et al. Differences in the chitinolytic activity of mammalian chitinases on soluble and insoluble substrates. Protein Sci. 2020;29:966–977. PubMed PMC

O'Leary M.A., Bloch J.I., Flynn J.J., Gaudin T.J., Giallombardo A., Giannini N.P., et al. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science. 2013;339:662–667. PubMed

Emerling C.A., Delsuc F., Nachman M.W. Chitinase genes (CHIAs) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals. Sci. Adv. 2018;4 PubMed PMC

Ohno M., Kimura M., Miyazaki H., Okawa K., Onuki R., Nemoto C., et al. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci. Rep. 2016;6 PubMed PMC

Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., et al. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 2017;7:6662. PubMed PMC

Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., et al. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci. Rep. 2017;7 PubMed PMC

Tabata E., Kashimura A., Uehara M., Wakita S., Sakaguchi M., Sugahara Y., et al. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci. Rep. 2019;9:159. PubMed PMC

Uehara M., Tabata E., Okuda M., Maruyama Y., Matoska V., Bauer P.O., et al. Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci. Rep. 2021;11 PubMed PMC

Tabata E., Itoigawa A., Koinuma T., Tayama H., Kashimura A., Sakaguchi M., et al. Noninsect-based diet leads to structural and functional changes of acidic chitinase in Carnivora. Mol. Biol. Evol. 2022;39 PubMed PMC

Tabata E., Kobayashi I., Morikawa T., Kashimura A., Bauer P.O., Oyama F. Evolutionary activation of acidic chitinase in herbivores through the H128R mutation in ruminant livestock. iScience. 2023;26 PubMed PMC

Tabata E., Kashimura A., Kikuchi A., Masuda H., Miyahara R., Hiruma Y., et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep. 2018;8:1461. PubMed PMC

Chou Y.T., Yao S., Czerwinski R., Fleming M., Krykbaev R., Xuan D., et al. Kinetic characterization of recombinant human acidic mammalian chitinase. Biochemistry. 2006;45:4444–4454. PubMed

Goedken E.R., O'Brien R.F., Xiang T., Banach D.L., Marchie S.C., Barlow E.H., et al. Functional comparison of recombinant acidic mammalian chitinase with enzyme from murine bronchoalveolar lavage Protein. Expr. Purif. 2011;75:55–62. PubMed

Okawa K., Ohno M., Kashimura A., Kimura M., Kobayashi Y., Sakaguchi M., et al. Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol. Biol. Evol. 2016;33:3183–3193. PubMed PMC

Huh J.W., Kim Y.H., Park S.J., Kim D.S., Lee S.R., Kim K.M., et al. Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research. BMC Genomics. 2012;13:163. PubMed PMC

Ilham K., Rizaldi, Nurdin J., Tsuji Y. Status of urban populations of the long-tailed macaque (Macaca fascicularis) in West Sumatra, Indonesia. Primates. 2017;58:295–305. PubMed

Janiak M.C., Chaney M.E., Tosi A.J. Evolution of acidic mammalian chitinase genes (CHIA) is related to body mass and insectivory in primates. Mol. Biol. Evol. 2018;35:607–622. PubMed

Krykbaev R., Fitz L.J., Reddy P.S., Winkler A., Xuan D., Yang X., et al. Evolutionary and biochemical differences between human and monkey acidic mammalian chitinases. Gene. 2010;452:63–71. PubMed

Uehara M., Tabata E., Ishii K., Sawa A., Ohno M., Sakaguchi M., et al. Chitinase mRNA levels determined by qPCR in crab-eating monkey (Macaca fascicularis) tissues: species-specific expression of acidic mammalian chitinase and chitotriosidase. Genes (Basel) 2018;9:224. PubMed PMC

Uehara M., Takasaki C., Wakita S., Sugahara Y., Tabata E., Matoska V., et al. Crab-eating monkey acidic chitinase (CHIA) efficiently degrades chitin and chitosan under acidic and high-temperature conditions. Molecules. 2022;27:409. PubMed PMC

Renkema G.H., Boot R.G., Muijsers A.O., Donker-Koopman W.E., Aerts J.M. Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins. J. Biol. Chem. 1995;270:2198–2202. PubMed

Boot R.G., Renkema G.H., Strijland A., van Zonneveld A.J., Aerts J.M. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J. Biol. Chem. 1995;270:26252–26256. PubMed

Kimura M., Watanabe T., Sekine K., Ishizuka H., Ikejiri A., Sakaguchi M., et al. Comparative functional analysis between human and mouse chitotriosidase: substitution at amino acid 218 modulates the chitinolytic and transglycosylation activity. Int. J. Biol. Macromol. 2020;164:2895–2902. PubMed

Van Dyken S.J., Garcia D., Porter P., Huang X., Quinlan P.J., Blanc P.D., et al. Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration. J. Immunol. 2011;187:2261–2267. PubMed PMC

Wakita S., Kimura M., Kato N., Kashimura A., Kobayashi S., Kanayama N., et al. Improved fluorescent labeling of chitin oligomers: chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydr. Polym. 2017;164:145–153. PubMed

Diaz R.E., Ecker A.K., Correy G.J., Asthana P., Young I.D., Faust B., et al. Structural characterization of ligand binding and pH-specific enzymatic activity of mouse Acidic Mammalian Chitinase. Elife. 2024;12 PubMed PMC

Olland A.M., Strand J., Presman E., Czerwinski R., Joseph-McCarthy D., Krykbaev R., et al. Triad of polar residues implicated in pH specificity of acidic mammalian chitinase. Protein Sci. 2009;18:569–578. PubMed PMC

Bussink A.P., Vreede J., Aerts J.M., Boot R.G. A single histidine residue modulates enzymatic activity in acidic mammalian chitinase. FEBS Lett. 2008;582:931–935. PubMed

Kim D.H., Wang Y., Jung H., Field R.L., Zhang X., Liu T.C., et al. A type 2 immune circuit in the stomach controls mammalian adaptation to dietary chitin. Science. 2023;381:1092–1098. PubMed PMC

Mohapatra A., Van Dyken S.J., Schneider C., Nussbaum J.C., Liang H.E., Locksley R.M. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol. 2016;9:275–286. PubMed PMC

Louis P., Mercer B., Cirone A.M., Johnston C., Lee Z.J., Esiobu N., et al. Dietary chitin particles called mimetic fungi ameliorate colitis in toll-like receptor 2/CD14- and sex-dependent manners. Infect Immun. 2019;87 PubMed PMC

Okawa K., Tabata E., Kida Y., Uno K., Suzuki H., Kamaya M., et al. Irreversible evolutionary loss of chitin-degrading ability in the chitinase-like protein Ym1 under positive selection in rodents. Protein Sci. 2023;32 PubMed PMC

Kimura M., Umeyama T., Wakita S., Okawa K., Sakaguchi M., Matoska V., et al. Quantification of chitooligosaccharides by FACE method: determination of combinatory effects of mouse chitinases. MethodsX. 2020;7 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...