Hyperactivation of human acidic chitinase (Chia) for potential medical use
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39706263
PubMed Central
PMC11773036
DOI
10.1016/j.jbc.2024.108100
PII: S0021-9258(24)02602-4
Knihovny.cz E-zdroje
- Klíčová slova
- acidic chitinase (Chia), amino acid substitutions, chitin, enzyme engineering, evolution, exon swapping, hyperactivation, primate lineage, treating pulmonary diseases,
- MeSH
- aktivace enzymů účinky léků MeSH
- chitin metabolismus chemie MeSH
- chitinasy * metabolismus genetika chemie MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- Macaca fascicularis MeSH
- myši MeSH
- plíce metabolismus patologie enzymologie MeSH
- stabilita enzymů MeSH
- substituce aminokyselin MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CHIA protein, human MeSH Prohlížeč
- chitin MeSH
- chitinasy * MeSH
Accumulation of environmental chitin in the lungs can lead to pulmonary fibrosis, characterized by inflammatory infiltration and fibrosis in acidic chitinase (Chia)-deficient mice. Transgenic expression of Chia in these mice ameliorated the symptoms, indicating the potential of enzyme supplementation as a promising therapeutic strategy for related lung diseases. This study focuses on utilizing hyperactivated human Chia, which exhibits low activity. We achieved significant activation of human Chia by incorporating nine amino acids derived from the crab-eating monkey (Macaca fascicularis) Chia, known for its robust chitin-degrading activity. The modified human Chia retained high activity across a broad pH spectrum and exhibited enhanced thermal stability. The amino acid substitutions associated with hyperactivation of human Chia activity occurred species specifically in monkey Chia. This discovery highlights the potential of hyperactivated Chia in treating pulmonary diseases resulting from chitin accumulation in human lungs.
Bioinova a s Prague Czech Republic
Department of Chemistry and Life Science Kogakuin University Hachioji Tokyo Japan
Zobrazit více v PubMed
Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9 PubMed PMC
Van Dyken S.J., Locksley R.M. Chitins and chitinase activity in airway diseases. J. Allergy Clin. Immunol. 2018;142:364–369. PubMed PMC
Lee C.G., Da Silva C.A., Dela Cruz C.S., Ahangari F., Ma B., Kang M.J., et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 2011;73:479–501. PubMed PMC
Boot R.G., Blommaart E.F., Swart E., Ghauharali-van der Vlugt K., Bijl N., Moe C., et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001;276:6770–6778. PubMed
Van Dyken S.J., Mohapatra A., Nussbaum J.C., Molofsky A.B., Thornton E.E., Ziegler S.F., et al. Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and gammadelta. T Cell Immun. 2014;40:414–424. PubMed PMC
Kim L.K., Morita R., Kobayashi Y., Eisenbarth S.C., Lee C.G., Elias J., et al. AMCase is a crucial regulator of type 2 immune responses to inhaled house dust mites. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E2891–E2899. PubMed PMC
Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92–96. PubMed PMC
Zhu Z., Zheng T., Homer R.J., Kim Y.K., Chen N.Y., Cohn L., et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–1682. PubMed
Seibold M.A., Reese T.A., Choudhry S., Salam M.T., Beckman K., Eng C., et al. Differential enzymatic activity of common haplotypic versions of the human acidic mammalian chitinase protein. J. Biol. Chem. 2009;284:19650–19658. PubMed PMC
Fitz L.J., DeClercq C., Brooks J., Kuang W., Bates B., Demers D., et al. Acidic mammalian chitinase is not a critical target for allergic airway disease. Am. J. Respir. Cell Mol. Biol. 2012;46:71–79. PubMed
Van Dyken S.J., Liang H.E., Naikawadi R.P., Woodruff P.G., Wolters P.J., Erle D.J., et al. Spontaneous chitin accumulation in airways and age-related fibrotic lung disease. Cell. 2017;169:497–509.e413. PubMed PMC
Barad B.A., Liu L., Diaz R.E., Basilio R., Van Dyken S.J., Locksley R.M., et al. Differences in the chitinolytic activity of mammalian chitinases on soluble and insoluble substrates. Protein Sci. 2020;29:966–977. PubMed PMC
O'Leary M.A., Bloch J.I., Flynn J.J., Gaudin T.J., Giallombardo A., Giannini N.P., et al. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science. 2013;339:662–667. PubMed
Emerling C.A., Delsuc F., Nachman M.W. Chitinase genes (CHIAs) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals. Sci. Adv. 2018;4 PubMed PMC
Ohno M., Kimura M., Miyazaki H., Okawa K., Onuki R., Nemoto C., et al. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci. Rep. 2016;6 PubMed PMC
Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., et al. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 2017;7:6662. PubMed PMC
Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., et al. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci. Rep. 2017;7 PubMed PMC
Tabata E., Kashimura A., Uehara M., Wakita S., Sakaguchi M., Sugahara Y., et al. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci. Rep. 2019;9:159. PubMed PMC
Uehara M., Tabata E., Okuda M., Maruyama Y., Matoska V., Bauer P.O., et al. Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci. Rep. 2021;11 PubMed PMC
Tabata E., Itoigawa A., Koinuma T., Tayama H., Kashimura A., Sakaguchi M., et al. Noninsect-based diet leads to structural and functional changes of acidic chitinase in Carnivora. Mol. Biol. Evol. 2022;39 PubMed PMC
Tabata E., Kobayashi I., Morikawa T., Kashimura A., Bauer P.O., Oyama F. Evolutionary activation of acidic chitinase in herbivores through the H128R mutation in ruminant livestock. iScience. 2023;26 PubMed PMC
Tabata E., Kashimura A., Kikuchi A., Masuda H., Miyahara R., Hiruma Y., et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep. 2018;8:1461. PubMed PMC
Chou Y.T., Yao S., Czerwinski R., Fleming M., Krykbaev R., Xuan D., et al. Kinetic characterization of recombinant human acidic mammalian chitinase. Biochemistry. 2006;45:4444–4454. PubMed
Goedken E.R., O'Brien R.F., Xiang T., Banach D.L., Marchie S.C., Barlow E.H., et al. Functional comparison of recombinant acidic mammalian chitinase with enzyme from murine bronchoalveolar lavage Protein. Expr. Purif. 2011;75:55–62. PubMed
Okawa K., Ohno M., Kashimura A., Kimura M., Kobayashi Y., Sakaguchi M., et al. Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol. Biol. Evol. 2016;33:3183–3193. PubMed PMC
Huh J.W., Kim Y.H., Park S.J., Kim D.S., Lee S.R., Kim K.M., et al. Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research. BMC Genomics. 2012;13:163. PubMed PMC
Ilham K., Rizaldi, Nurdin J., Tsuji Y. Status of urban populations of the long-tailed macaque (Macaca fascicularis) in West Sumatra, Indonesia. Primates. 2017;58:295–305. PubMed
Janiak M.C., Chaney M.E., Tosi A.J. Evolution of acidic mammalian chitinase genes (CHIA) is related to body mass and insectivory in primates. Mol. Biol. Evol. 2018;35:607–622. PubMed
Krykbaev R., Fitz L.J., Reddy P.S., Winkler A., Xuan D., Yang X., et al. Evolutionary and biochemical differences between human and monkey acidic mammalian chitinases. Gene. 2010;452:63–71. PubMed
Uehara M., Tabata E., Ishii K., Sawa A., Ohno M., Sakaguchi M., et al. Chitinase mRNA levels determined by qPCR in crab-eating monkey (Macaca fascicularis) tissues: species-specific expression of acidic mammalian chitinase and chitotriosidase. Genes (Basel) 2018;9:224. PubMed PMC
Uehara M., Takasaki C., Wakita S., Sugahara Y., Tabata E., Matoska V., et al. Crab-eating monkey acidic chitinase (CHIA) efficiently degrades chitin and chitosan under acidic and high-temperature conditions. Molecules. 2022;27:409. PubMed PMC
Renkema G.H., Boot R.G., Muijsers A.O., Donker-Koopman W.E., Aerts J.M. Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins. J. Biol. Chem. 1995;270:2198–2202. PubMed
Boot R.G., Renkema G.H., Strijland A., van Zonneveld A.J., Aerts J.M. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J. Biol. Chem. 1995;270:26252–26256. PubMed
Kimura M., Watanabe T., Sekine K., Ishizuka H., Ikejiri A., Sakaguchi M., et al. Comparative functional analysis between human and mouse chitotriosidase: substitution at amino acid 218 modulates the chitinolytic and transglycosylation activity. Int. J. Biol. Macromol. 2020;164:2895–2902. PubMed
Van Dyken S.J., Garcia D., Porter P., Huang X., Quinlan P.J., Blanc P.D., et al. Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration. J. Immunol. 2011;187:2261–2267. PubMed PMC
Wakita S., Kimura M., Kato N., Kashimura A., Kobayashi S., Kanayama N., et al. Improved fluorescent labeling of chitin oligomers: chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydr. Polym. 2017;164:145–153. PubMed
Diaz R.E., Ecker A.K., Correy G.J., Asthana P., Young I.D., Faust B., et al. Structural characterization of ligand binding and pH-specific enzymatic activity of mouse Acidic Mammalian Chitinase. Elife. 2024;12 PubMed PMC
Olland A.M., Strand J., Presman E., Czerwinski R., Joseph-McCarthy D., Krykbaev R., et al. Triad of polar residues implicated in pH specificity of acidic mammalian chitinase. Protein Sci. 2009;18:569–578. PubMed PMC
Bussink A.P., Vreede J., Aerts J.M., Boot R.G. A single histidine residue modulates enzymatic activity in acidic mammalian chitinase. FEBS Lett. 2008;582:931–935. PubMed
Kim D.H., Wang Y., Jung H., Field R.L., Zhang X., Liu T.C., et al. A type 2 immune circuit in the stomach controls mammalian adaptation to dietary chitin. Science. 2023;381:1092–1098. PubMed PMC
Mohapatra A., Van Dyken S.J., Schneider C., Nussbaum J.C., Liang H.E., Locksley R.M. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol. 2016;9:275–286. PubMed PMC
Louis P., Mercer B., Cirone A.M., Johnston C., Lee Z.J., Esiobu N., et al. Dietary chitin particles called mimetic fungi ameliorate colitis in toll-like receptor 2/CD14- and sex-dependent manners. Infect Immun. 2019;87 PubMed PMC
Okawa K., Tabata E., Kida Y., Uno K., Suzuki H., Kamaya M., et al. Irreversible evolutionary loss of chitin-degrading ability in the chitinase-like protein Ym1 under positive selection in rodents. Protein Sci. 2023;32 PubMed PMC
Kimura M., Umeyama T., Wakita S., Okawa K., Sakaguchi M., Matoska V., et al. Quantification of chitooligosaccharides by FACE method: determination of combinatory effects of mouse chitinases. MethodsX. 2020;7 PubMed PMC