primate lineage Dotaz Zobrazit nápovědu
Nematodes belonging to the Trichuris genus are prevalent soil-transmitted helminths with a worldwide distribution in mammals, while humans are mainly affected in areas with insufficient sanitation such as in Africa, Asia and South America. Traditionally, whipworms infecting primates are referred to Trichuris trichiura, but recent molecular and morphological evidence suggests that more than one species may be able to infect humans and non-human primates. Here, we analyzed the genetic diversity and phylogeny of Trichuris infecting five different non-human primate species kept in captivity using sequencing of three mitochondrial genes (cox1, rrnL and cob). Phylogenetic analyses of both single and concatenated datasets suggested the presence of two main evolutionary lineages and several highly supported clades likely existing as separate taxa. The first lineage included Trichuris infecting the mantled guereza (Colobus guereza kikuyensis), the chacma baboon (Papio ursinus) and the green monkeys (Chlorocebus spp.), clustering together with Trichuris suis; the second lineage included Trichuris infecting the Japanese macaque (Macaca fuscata) and the hamadryas baboon (Papio hamadryas), clustering together with Trichuris spp. infecting humans. These results were supported by the genetic distance between samples, which suggested that at least two taxa are able to infect macaques, baboons and humans. The present study improves our understanding of the taxonomy and evolutionary relationships among Trichuris spp. infecting primates. It moreover suggests that multiple Trichuris spp. may circulate among host species and that Trichuris in non human primates (NHPs) may be zoonotic. Further studies are important to better understand the epidemiology of Trichuris in primates and for implementing appropriate control and/or conservation measures.
Tsetse and tabanid flies transmit several Trypanosoma species, some of which are human and livestock pathogens of major medical and socioeconomic impact in Africa. Recent advances in molecular techniques and phylogenetic analyses have revealed a growing diversity of previously unidentified tsetse-transmitted trypanosomes potentially pathogenic to livestock and/or other domestic animals as well as wildlife, including African great apes. To map the distribution, prevalence and co-occurrence of known and novel trypanosome species, we analyzed tsetse and tabanid flies collected in the primary forested part of the Dzanga-Sangha Protected Areas, Central African Republic, which hosts a broad spectrum of wildlife including primates and is virtually devoid of domestic animals. Altogether, 564 tsetse flies and 81 tabanid flies were individually screened for the presence of trypanosomes using 18S rRNA-specific nested PCR. Herein, we demonstrate that wildlife animals are parasitized by a surprisingly wide range of trypanosome species that in some cases may circulate via these insect vectors. While one-third of the examined tsetse flies harbored trypanosomes either from the Trypanosoma theileri, Trypanosoma congolense or Trypanosoma simiae complex, or one of the three new members of the genus Trypanosoma (strains 'Bai', 'Ngbanda' and 'Didon'), more than half of the tabanid flies exclusively carried T. theileri. To establish the putative vertebrate hosts of the novel trypanosome species, we further analyzed the provenance of blood meals of tsetse flies. DNA individually isolated from 1033 specimens of Glossina spp. and subjected to high-throughput library-based screening proved that most of the examined tsetse flies engorged on wild ruminants (buffalo, sitatunga, bongo), humans and suids. Moreover, they also fed (albeit more rarely) on other vertebrates, thus providing indirect but convincing evidence that trypanosomes can be transmitted via these vectors among a wide range of warm- and cold-blooded hosts.
- MeSH
- Diptera klasifikace růst a vývoj parazitologie MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- hmyz - vektory * MeSH
- Hominidae růst a vývoj MeSH
- molekulární sekvence - údaje MeSH
- moucha tse-tse růst a vývoj parazitologie MeSH
- polymerázová řetězová reakce MeSH
- protozoální DNA chemie genetika MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- Trypanosoma klasifikace genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středoafrická republika MeSH
- MeSH
- feces parazitologie MeSH
- fylogeneze * MeSH
- lidé MeSH
- polymerázová řetězová reakce MeSH
- primáti parazitologie MeSH
- sekvenční analýza DNA MeSH
- Trichuris * genetika parazitologie MeSH
- vejce MeSH
- zoonózy etiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nucleotide substitutions in protein-coding genes can be divided into synonymous (S) and non-synonymous (N) ones that alter amino acids (including nonsense mutations causing stop codons). The S substitutions are expected to have little effect on function. The N substitutions almost always are affected by strong purifying selection that eliminates them from evolving populations. However, additional mutations of nearby bases can modulate the deleterious effect of single N substitutions and, thus, could be subjected to the positive selection. This effect has been demonstrated for mutations in the serine codons, stop codons and double N substitutions in prokaryotes. In all abovementioned cases, a novel technique was applied that allows elucidating the effects of selection on double substitutions considering mutational biases. Here, we applied the same technique to study double N substitutions in eukaryotic lineages of primates and yeast. We identified markedly fewer cases of purifying selection relative to prokaryotes and no evidence of codon double substitutions under positive selection. This is consistent with previous studies of serine codons in primates and yeast. In general, the obtained results strongly suggest that there are major differences between studied pro- and eukaryotes; double substitutions in primates and yeasts largely reflect mutational biases and are not hallmarks of selection. This is especially important in the context of detection of positive selection in codons because it has been suggested that multiple mutations in codons cause false inferences of lineage-specific site positive selection. It is likely that this concern is applicable to previously studied prokaryotes but not to primates and yeasts where markedly fewer double substitutions are affected by positive selection.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: A significant fraction of mammalian genomes is composed of endogenous retroviral (ERV) sequences that are formed by germline infiltration of various retroviruses. In contrast to other retroviral genera, lentiviruses only rarely form ERV copies. We performed a computational search aimed at identification of novel endogenous lentiviruses in vertebrate genomes. FINDINGS: Using the in silico strategy, we have screened 104 publicly available vertebrate genomes for the presence of endogenous lentivirus sequences. In addition to the previously described cases, the search revealed the presence of endogenous lentivirus in the genome of Malayan colugo (Galeopterus variegatus). At least three complete copies of this virus, denoted ELVgv, were detected in the colugo genome, and approximately one hundred solo LTR sequences. The assembled consensus sequence of ELVgv had typical lentivirus genome organization including three predicted accessory genes. Phylogenetic analysis placed this virus as a distinct subgroup within the lentivirus genus. The time of insertion into the dermopteran lineage was estimated to be more than thirteen million years ago. CONCLUSIONS: We report the discovery of the first endogenous lentivirus in the mammalian order Dermoptera, which is a taxon close to the Primates. Lentiviruses have infiltrated the mammalian germline several times across millions of years. The colugo virus described here represents possibly the oldest documented endogenization event and its discovery can lead to new insights into lentivirus evolution. This is also the first report of an endogenous lentivirus in an Asian mammal, indicating a long-term presence of this retrovirus family in Asian continent.
- MeSH
- endogenní retroviry klasifikace genetika MeSH
- fylogeneze MeSH
- Lentivirus klasifikace genetika MeSH
- molekulární evoluce MeSH
- pořadí genů MeSH
- savci virologie MeSH
- virové geny MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Malajsie MeSH
Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.
- MeSH
- Bacteroidetes klasifikace genetika virologie MeSH
- bakteriofágy klasifikace genetika MeSH
- DNA virů genetika MeSH
- feces virologie MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genetická variace MeSH
- koevoluce * MeSH
- lidé MeSH
- primáti virologie MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Herpesviruses are thought to have evolved in very close association with their hosts. This is notably the case for cytomegaloviruses (CMVs; genus Cytomegalovirus) infecting primates, which exhibit a strong signal of co-divergence with their hosts. Some herpesviruses are however known to have crossed species barriers. Based on a limited sampling of CMV diversity in the hominine (African great ape and human) lineage, we hypothesized that chimpanzees and gorillas might have mutually exchanged CMVs in the past. Here, we performed a comprehensive molecular screening of all 9 African great ape species/subspecies, using 675 fecal samples collected from wild animals. We identified CMVs in eight species/subspecies, notably generating the first CMV sequences from bonobos. We used this extended dataset to test competing hypotheses with various degrees of co-divergence/number of host switches while simultaneously estimating the dates of these events in a Bayesian framework. The model best supported by the data involved the transmission of a gorilla CMV to the panine (chimpanzee and bonobo) lineage and the transmission of a panine CMV to the gorilla lineage prior to the divergence of chimpanzees and bonobos, more than 800,000 years ago. Panine CMVs then co-diverged with their hosts. These results add to a growing body of evidence suggesting that viruses with a double-stranded DNA genome (including other herpesviruses, adenoviruses, and papillomaviruses) often jumped between hominine lineages over the last few million years.
- Publikační typ
- časopisecké články MeSH
Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.
- MeSH
- CCCTC-vazebný faktor genetika MeSH
- chromozomy genetika MeSH
- dlouhé rozptýlené jaderné elementy genetika MeSH
- druhová specificita MeSH
- fylogeneze * MeSH
- genom genetika MeSH
- karyotypizace metody MeSH
- molekulární evoluce * MeSH
- Muridae genetika MeSH
- myši MeSH
- retroelementy genetika MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Over the last two decades my colleagues and I have assembled the literature on a good percentage of most of the coccidians (Conoidasida) known, to date, to parasitise: Amphibia, four major lineages of Reptilia (Amphisbaenia, Chelonia, Crocodylia, Serpentes), and seven major orders in the Mammalia (Carnivora, Chiroptera, Lagomorpha, Insectivora, Marsupialia, Primates, Scandentia). These vertebrates, combined, comprise about 15,225 species; only about 899 (5.8%) of them have been surveyed for coccidia and 1,946 apicomplexan valid species names or other forms are recorded in the literature. Based on these compilations and other factors, I extrapolated that there yet may be an additional 31,381 new apicomplexans still to be discovered in just these 12 vertebrate groups. Extending the concept to all of the other extant vertebrates on Earth; i.e. lizards (6,300 spp.), rodents plus 12 minor orders of mammals (3,180 spp.), birds (10,000 spp.), and fishes (33,000 spp.) and, conservatively assuming only two unique apicomplexan species per each vertebrate host species, I extrapolate and extend my prediction that we may eventually find 135,000 new apicomplexans that still need discovery and to be described in and from those vertebrates that have not yet been examined for them! Even doubling that number is a significant underestimation in my opinion.
- MeSH
- Apicomplexa izolace a purifikace MeSH
- biodiverzita MeSH
- klasifikace MeSH
- obojživelníci parazitologie MeSH
- obratlovci parazitologie MeSH
- plazi parazitologie MeSH
- ptáci parazitologie MeSH
- ryby parazitologie MeSH
- savci parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mutations in WNK1 and WNK4 cause familial hypertension, the Gordon syndrome. WNK1 and WNK4 conserved noncoding regions were targeted to polymorphism screening using DHPLC and DGGE. The scan identified an undescribed polymorphic AluYb8 insertion in WNK1 intron 10. Screening in primates revealed that this Alu-insertion has probably occurred in human lineage. Genotyping in 18 populations from Europe, Asia, and Africa (n = 854) indicated an expansion of the WNK1 AluYb8 bearing chromosomes out of Africa. The allele frequency in Sub-Saharan Africa was ~3.3 times lower than in other populations (4.8 vs. 15.8%; P = 9.7 × 10(-9) ). Meta-analysis across three European sample sets (n = 3,494; HYPEST, Estonians; BRIGHT, the British; CADCZ, Czech) detected significant association of the WNK1 AluYb8 insertion with blood pressure (BP; systolic BP, P = 4.03 × 10(-3) , effect 1.12; diastolic BP, P = 1.21 × 10(-2) , effect 0.67). Gender-stratified analysis revealed that this effect might be female-specific (n = 2,088; SBP, P = 1.99 × 10(-3) , effect 1.59; DBP P = 3.64 × 10(-4) , effect 1.23; resistant to Bonferroni correction), whereas no statistical support was identified for the association with male BP (n = 1,406). In leucocytes, the expressional proportions of the full-length WNK1 transcript and the splice-form skipping exon 11 were significantly shifted in AluYb8 carriers compared to noncarriers. The WNK1 AluYb8 insertion might affect human BP via altering the profile of alternatively spliced transcripts.
- MeSH
- alternativní sestřih genetika MeSH
- artrogrypóza genetika MeSH
- běloši genetika MeSH
- dospělí MeSH
- elementy Alu genetika MeSH
- exony MeSH
- genetická variace MeSH
- hypertenze genetika MeSH
- intracelulární signální peptidy a proteiny MeSH
- introny MeSH
- inzerční mutageneze MeSH
- krevní tlak genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- pes equinovarus genetika MeSH
- polymorfismus genetický MeSH
- protein-serin-threoninkinasy genetika MeSH
- rozštěp patra genetika MeSH
- senioři MeSH
- vrozené deformity ruky genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
- Asie MeSH
- Evropa MeSH