Biochemical and Structural Aspects of Cytokinin Biosynthesis and Degradation in Bacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund
PubMed
34208724
PubMed Central
PMC8234997
DOI
10.3390/microorganisms9061314
PII: microorganisms9061314
Knihovny.cz E-zdroje
- Klíčová slova
- CKX, LOG, cytochrome P450 monooxygenase, cytokinin, isopentenyl transferase, tRNA modification,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
It has been known for quite some time that cytokinins, hormones typical of plants, are also produced and metabolized in bacteria. Most bacteria can only form the tRNA-bound cytokinins, but there are examples of plant-associated bacteria, both pathogenic and beneficial, that actively synthesize cytokinins to interact with their host. Similar to plants, bacteria produce diverse cytokinin metabolites, employing corresponding metabolic pathways. The identification of genes encoding the enzymes involved in cytokinin biosynthesis and metabolism facilitated their detailed characterization based on both classical enzyme assays and structural approaches. This review summarizes the present knowledge on key enzymes involved in cytokinin biosynthesis, modifications, and degradation in bacteria, and discusses their catalytic properties in relation to the presence of specific amino acid residues and protein structure.
Zobrazit více v PubMed
Mok M.C. Cytokinins and plant development—An overview. In: Mok D.W.S., Mok M.C., editors. Cytokinins—Chemistry, Activity, and Function. 1st ed. CRC Press; Boca Raton, FL, USA: 1994. pp. 155–166. DOI
Spíchal L. Cytokinins–recent news and views of evolutionally old molecules. Funct. Plant Biol. 2012;39:267–284. doi: 10.1071/FP11276. PubMed DOI
Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006;57:431–439. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI
Radhika V., Ueda N., Tsuboi Y., Kojima M., Kikuchi J., Kudo T., Sakakibara H. Methylated cytokinins from the phytopathogen Rhodococcus fascians mimic plant hormone activity. Plant Physiol. 2015;169:1118–1126. doi: 10.1104/pp.15.00787. PubMed DOI PMC
Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 2011;62:2431–2452. doi: 10.1093/jxb/err004. PubMed DOI
Takei K., Sakakibara H., Sugiyama T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem. 2001;276:26405–26410. doi: 10.1074/jbc.M102130200. PubMed DOI
Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 2001;42:677–685. doi: 10.1093/pcp/pce112. PubMed DOI
Persson B.C., Esberg B., Olafsson O., Bjork G.R. Synthesis and function of isopentenyl adenosine derivatives in transfer-RNA. Biochimie. 1994;76:1152–1160. doi: 10.1016/0300-9084(94)90044-2. PubMed DOI
Esberg B., Leung H.-C.E., Tsui H.-C.T., Björk G.R., Winkler M.E. Identification of the miaB gene, involved in methylthiolation ofisopentenylated A37 derivatives in the tRNA of Salmonella typhimurium and Escherichia coli. J. Bacteriol. 1999;181:7256–7265. doi: 10.1128/JB.181.23.7256-7265.1999. PubMed DOI PMC
Persson B.C., Björk G.R. Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio-cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. J. Bacteriol. 1993;175:7776–7785. doi: 10.1128/jb.175.24.7776-7785.1993. PubMed DOI PMC
Kurakawa T., Ueda N., Maekawa M., Kobayashi K., Kojima M., Nagato Y., Sakakibara H., Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007;445:652–655. doi: 10.1038/nature05504. PubMed DOI
Martin R.C., Mok M.C., Shaw G., Mok D.W.S. An enzyme mediating the conversion of zeatin to dihydrozeatin in Phaseolus embryos. Plant Physiol. 1989;90:1630–1635. doi: 10.1104/pp.90.4.1630. PubMed DOI PMC
Entsch B., Parker C.W., Letham D.S., Summons R.E. Preparation and characterization, using high-performance liquid chromatography, of an enzyme forming glucosides of cytokinins. Biochim. Biophys. Acta. 1979;570:124–139. doi: 10.1016/0005-2744(79)90207-9. PubMed DOI
Martin R.C., Mok M.C., Habben J.E., Mok D.W.S. A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc. Natl. Acad. Sci. USA. 2001;98:5922–5926. doi: 10.1073/pnas.101128798. PubMed DOI PMC
Dixon S.C., Martin R.C., Mok M.C., Shaw G., Mok D.W.S. Zeatin glycosylation enzymes in Phaseolus: Isolation of O-glucosyltransferase from P. lunatus and comparison to O-xylosyltransferase from P. vulgaris. Plant Physiol. 1989;90:1316–1321. doi: 10.1104/pp.90.4.1316. PubMed DOI PMC
Brzobohatý B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J., Palme K. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science. 1993;262:1051–1054. doi: 10.1126/science.8235622. PubMed DOI
Hošek P., Hoyerová K., Kiran N.S., Dobrev P.I., Zahajská L., Filepová R., Motyka V., Müller K., Kamínek M. Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol. 2020;225:2423–2438. doi: 10.1111/nph.16310. PubMed DOI
Galuszka P., Frébort I., Šebela M., Sauer P., Jacobsen S., Peč P. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals. Eur. J. Biochem. 2001;268:450–461. doi: 10.1046/j.1432-1033.2001.01910.x. PubMed DOI
Žižková E., Kubeš M., Dobrev P.I., Přibyl P., Šimura J., Zahajská L., Záveská Drábková L., Novák O., Motyka V. Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann. Bot. 2017;119:151–166. doi: 10.1093/aob/mcw194. PubMed DOI PMC
Frébortová J., Plíhal O., Florová V., Kokáš F., Kubiasová K., Greplová M., Šimura J., Novák O., Frébort I. Light influences cytokinin biosynthesis and sensing in Nostoc (Cyanobacteria) J. Phycol. 2017;53:703–714. doi: 10.1111/jpy.12538. PubMed DOI
Stirk W.A., van Staden J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotech. Adv. 2021;44:107612. doi: 10.1016/j.biotechadv.2020.107612. PubMed DOI
Pertry I., Václavíková K., Gemrotová M., Spíchal L., Galuszka P., Depuydt S., Temmerman W., Stes E., De Keyser A., Riefler M., et al. Rhodococcus fascians impacts plant development through the dynamic Fas-mediated production of a cytokinin mix. Mol. Plant Microbe Interact. 2010;23:1164–1174. doi: 10.1094/MPMI-23-9-1164. PubMed DOI
Samanovic M.I., Tu S., Novák O., Iyer L.M., McAllister F.E., Aravind L., Gygi S.P., Hubbard S.R., Strnad M., Darwin K.H. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. Mol. Cell. 2015;19:984–994. doi: 10.1016/j.molcel.2015.01.024. PubMed DOI PMC
Upadhyaya N.M., Letham D.S., Parker C.W., Hocart C.H., Dart P.J. Do rhizobia produce cytokinins? Biochem. Int. 1991;24:123–130. PubMed
Koenig R.L., Morris R.O., Polacco J.C. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. Bacteriol. 2002;184:1832–1842. doi: 10.1128/JB.184.7.1832-1842.2002. PubMed DOI PMC
Podlešáková K., Fardoux J., Patrel D., Bonaldi K., Novák O., Strnad M., Giraud E., Spíchal L., Nouwen N. Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes. Mol. Plant. Microbe Interact. 2013;26:1232–1238. doi: 10.1094/MPMI-03-13-0076-R. PubMed DOI
Jorge G.L., Kisiala A., Morrison E., Aokia M., Nogueirab A.P.O., Emery R.J.N. Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris Medik.) by increasing plant cytokinin levels. Environ. Exp. Bot. 2019;162:525–540. doi: 10.1016/j.envexpbot.2019.03.028. DOI
Frébortová J., Greplová M., Seidl M.F., Heyl A., Frébort I. Biochemical characterization of putative adenylate dimethylallyltransferase and cytokinin dehydrogenase from Nostoc sp. PCC 7120. PLoS ONE. 2015;10:e0138468. doi: 10.1371/journal.pone.0138468. PubMed DOI PMC
Wang X., Ding J., Lin S., Liu D., Gu T., Wu H., Trigiano R.N., McAvoy R., Huang J., Li Y. Evolution and roles of cytokinin genes in angiosperms 2: Do ancient CKXs play housekeeping roles while non-ancient CKXs play regulatory roles? Hortic. Res. 2020;7:29. doi: 10.1038/s41438-020-0246-z. PubMed DOI PMC
Lisitskaya T.B., Trosheva T.D. Microorganisms stimulating plant growth for sustainable agriculture. Russ. J. Gen. Chem. 2013;83:2765–2774. doi: 10.1134/S1070363213130252. DOI
Akiyoshi D.E., Klee H., Amasino R.M., Nester E.W., Gordon M.P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA. 1984;81:5994–5998. doi: 10.1073/pnas.81.19.5994. PubMed DOI PMC
Barry G.F., Rogers S.G., Fraley R.T., Brand L. Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci. USA. 1984;81:4776–4780. doi: 10.1073/pnas.81.15.4776. PubMed DOI PMC
Powell G.K., Morris R.O. Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: Homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res. 1986;14:2555–2565. doi: 10.1093/nar/14.6.2555. PubMed DOI PMC
Crespi M., Messens E., Caplan A.B., van Montagu M., Desomer J. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. 1992;11:795–804. doi: 10.1002/j.1460-2075.1992.tb05116.x. PubMed DOI PMC
Akiyoshi D.E., Regier D.A., Gordon M.P. Nucleotide sequence of the tzs gene from Pseudomonas solanacearum strain K60. Nucleic Acids Res. 1989;17:8886. doi: 10.1093/nar/17.21.8886. PubMed DOI PMC
Lichter A., Barash I., Valinsky L., Manulis S. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: Characterization and role in gall formation. J. Bacteriol. 1995;177:4457–4465. doi: 10.1128/jb.177.15.4457-4465.1995. PubMed DOI PMC
Joshi M., Loria R. Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. Mol. Plant. Microbe Interact. 2007;20:751–758. doi: 10.1094/MPMI-20-7-0751. PubMed DOI
Serdyuk O.P., Shirshikova G.N., Smolygina L.D., Butanaev A.M., Kreslavsky V.D., Yartseva N.V., Chekunova E.M. Agrobacterial ipt gene for cytokinin biosynthesis is found in phototrophic non-sulfur purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris. Russ. J. Genet. 2017;53:1113–1118. doi: 10.1134/S102279541710009X. DOI
Nishii K., Wright F., Chen Y.-Y., Möller M. Tangled history of a multigene family: The evolution of isopentenyltransferase genes. PLoS ONE. 2018;13:e0201198. doi: 10.1371/journal.pone.0201198. PubMed DOI PMC
Wang X., Lin S., Liu D., Gan L., McAvoy R., Ding J., Li Y. Evolution and roles of cytokinin genes in angiosperms 1: Do ancient IPTs play housekeeping while non-ancient IPTs play regulatory roles? Hortic. Res. 2020;7:28. doi: 10.1038/s41438-019-0211-x. PubMed DOI PMC
Sakakibara H., Kasahara H., Ueda N., Kojima M., Takei K., Hishiyama S., Asami T., Okada K., Kamiya Y., Yamaya T., et al. Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc. Natl. Acad. Sci. USA. 2005;102:9972–9977. doi: 10.1073/pnas.0500793102. PubMed DOI PMC
Akiyoshi D.E., Regier D.A., Jenl G., Gordon M.P. Cloning and nucleotide sequence of the tzs gene from Agrobacterium tumefaciens strain T37. Nucleic Acids Res. 1985;13:2773–2788. doi: 10.1093/nar/13.8.2773. PubMed DOI PMC
Blackwell J.R., Horgan R. Cloned Agrobacterium tumefaciens ipt1 gene product, DMAPP:AMP isopentenyl transferase. Phytochemistry. 1993;34:1477–1481. doi: 10.1016/S0031-9422(00)90831-8. DOI
Krall L., Raschke M., Zenk M.H., Baron C. The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5′-phosphate from 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP. FEBS Lett. 2002;527:315–318. doi: 10.1016/S0014-5793(02)03258-1. PubMed DOI
Sugawara H., Ueda N., Kojima M., Makita N., Yamaya T., Sakakibara H. Structural insight into reaction mechanism and evolution of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA. 2008;105:2734–2739. doi: 10.1073/pnas.0707374105. PubMed DOI PMC
Crespi M., Vereecke D., Temmerman W., van Montagu M., Desomer J. The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. J. Bacteriol. 1994;176:2492–2501. doi: 10.1128/jb.176.9.2492-2501.1994. PubMed DOI PMC
Jameson P.E., Dhandapani P., Song J., Zatloukal M., Strnad M., Remus-Emsermann M.N.P., Schlechter R.O., Novák O. The cytokinin complex associated with Rhodococcus fascians: Which compounds are critical for virulence? Front. Plant. Sci. 2019;10:674. doi: 10.3389/fpls.2019.00674. PubMed DOI PMC
Kakimoto T. Biosynthesis of cytokinins. J. Plant. Res. 2003;116:233–239. doi: 10.1007/s10265-003-0095-5. PubMed DOI
Chu H.-M., Ko T.-P., Wang A.H.-J. Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: Distinctive binding affinity for purine and pyrimidine nucleotides. Nucleic Acid Res. 2010;38:1738–1748. doi: 10.1093/nar/gkp1093. PubMed DOI PMC
Wang J., Youkharibache P., Zhang D., Lanczycki C.J., Geer R.C., Madej T., Phan L., Ward M., Lu S., Marchler G.H., et al. iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics. 2020;36:131–135. doi: 10.1093/bioinformatics/btz502. PubMed DOI PMC
Gibb M., Kisiala A., Morrison E., Emery R.J.N. The origins and roles of methylthiolated cytokinins: Evidence from among life kingdoms. Front. Cell Dev. Biol. 2020;8:605672. doi: 10.3389/fcell.2020.605672. PubMed DOI PMC
Soederberg T., Poulter C.D. Escherichia coli dimethylallyl diphosphate: tRNA dimethylallyltransferase: Essential elements for recognition of tRNA substrates within the anticodon stem-loop. Biochemistry. 2000;39:6546–6553. doi: 10.1021/bi992775u. PubMed DOI
Soderberg T., Poulter C.D. Escherichia coli dimethylallyl diphosphate: tRNA dimethylallyltransferase: Site directed mutagenesis of highly conserved residues. Biochemistry. 2001;40:1734–1740. doi: 10.1021/bi002149t. PubMed DOI
Xie W., Zhou C., Huang R.H. Structure of tRNA dimethylallyltransferase: RNA modification through a channel. J. Mol. Biol. 2007;367:872–881. doi: 10.1016/j.jmb.2007.01.048. PubMed DOI PMC
Zhou C., Huang R.H. Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: Insight into tRNA recognition and reaction mechanism. Proc. Natl. Acad. Sci. USA. 2008;105:16142–16147. doi: 10.1073/pnas.0805680105. PubMed DOI PMC
Seif E., Hallberg B.M. RNA-protein mutually induced fit: Structure of Escherichia coli isopentenyl-tRNA transferase in complex with tRNA(Phe) J. Biol. Chem. 2009;284:6600–6604. doi: 10.1074/jbc.C800235200. PubMed DOI PMC
Moore J.A., Poulter C.D. Escherichia coli dimethylallyl diphosphate: tRNA dimethylallyltransferase: A binding mechanism for recombinant enzyme. Biochemistry. 1997;36:604–614. doi: 10.1021/bi962225l. PubMed DOI
Yong J.W.H., Letham D.S., Wong S.C., Farquhar G.D. Rhizobium-induced elevation in xylem cytokinin delivery in pigeonpea induces changes in shoot development and leaf physiology. Funct. Plant. Biol. 2014;41:1323–1335. doi: 10.1071/FP14066. PubMed DOI
Takei K., Yamaya T., Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J. Biol. Chem. 2004;279:41866–41872. doi: 10.1074/jbc.M406337200. PubMed DOI
Ajitkumar P., Cherayil J.D. Presence of 2-methylthioribosyl-trans-zeatin in Azotobacter vinelandii tRNA. J. Bacteriol. 1985;162:752–755. doi: 10.1128/jb.162.2.752-755.1985. PubMed DOI PMC
Buck M., McCloskey J.A., Basile B., Ames B.N. cis 2-Methylthio-ribosylzeatin (ms2io6A) is present in the transfer RNA of Salmonela typhimurium, but not Escherichia coli. Nucleic Acids Res. 1982;10:5649–5662. doi: 10.1093/nar/10.18.5649. PubMed DOI PMC
Corder A.L., Subedi B.P., Zhang S., Dark A.M., Foss F.W., Jr., Pierce B.S. Peroxide-shunt substrate-specificity for the Salmonella typhimurium O2-dependent tRNA modifying monooxygenase (MiaE) Biochemistry. 2013;52:6182–6196. doi: 10.1021/bi4000832. PubMed DOI
Subedi B.P., Corder A.L., Siai Zhang S., Foss F.W., Jr., Pierce B.S. Steady-state kinetics and spectroscopic characterization of enzyme-tRNA interactions for the non-heme diiron tRNA-monooxygenase, MiaE. Biochemistry. 2015;54:363–376. doi: 10.1021/bi5012207. PubMed DOI
Kaminska K.H., Baraniak U., Boniecki M., Nowaczyk K., Czerwoniec A., Bujnicki J.M. Structural bioinformatics analysis of enzymes involved in the biosynthesis pathway of the hypermodified nucleoside ms(2)io(6)A37 in tRNA. Proteins. 2008;70:1–18. doi: 10.1002/prot.21640. PubMed DOI
Carpentier P., Lepretre C., Basset C., Douki T., Torelli S., Duarte V., Hamdane D., Fontecave M., Atta M. Structural, biochemical and functional analyses of tRNA-monooxygenase enzyme MiaE from Pseudomonas putida provide insights into tRNA/MiaE interaction. Nucleic Acids Res. 2020;48:9918–9930. doi: 10.1093/nar/gkaa667. PubMed DOI PMC
Kuroha T., Tokunaga H., Kojima M., Ueda N., Ishida T., Nagawa S., Fukuda H., Sugimoto K., Sakakibara H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant. Cell. 2009;21:3152–3169. doi: 10.1105/tpc.109.068676. PubMed DOI PMC
Hinsch J., Vrabka J., Oeser B., Novák O., Galuszka P., Tudzynski P. De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environ. Microbiol. 2015;17:2935–2951. doi: 10.1111/1462-2920.12838. PubMed DOI
Seo H., Kim K.-J. Structural basis for a novel type of cytokinin-activating protein. Sci. Rep. 2017;7:45985. doi: 10.1038/srep45985. PubMed DOI PMC
Dzurová L., Forneris F., Savino S., Galuszka P., Vrabka J., Frébort I. The tree-dimensional structure of “Lonely Guy” from Claviceps purpurea provides insights into the phosphoribohydrolase function of Rossmann fold-containing lysine decarboxylase-like protein. Proteins. 2015;83:1539–1546. doi: 10.1002/prot.24835. PubMed DOI
Francis I.M., Stes E., Zhang Y., Rangel D., Audenaert K., Vereecke D. Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. New Biotechnol. 2016;33:706–717. doi: 10.1016/j.nbt.2016.01.009. PubMed DOI
Creason A.L., Vandeputte O.M., Savory E.A., Davis E.W., Putnam M.L., Hu E., Swader-Hines D., Mol A., Baucher M., Prinsen E., et al. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLoS ONE. 2014;9:e101996. doi: 10.1371/journal.pone.0101996. PubMed DOI PMC
Seo H., Kim S., Sagong H.-Y., Son H.F., Jin K.S., Kim I.-K., Kim K.-J. Structural basis for cytokinin production by LOG from Corynebacterium glutamicum. Sci. Rep. 2016;6:31390. doi: 10.1038/srep31390. PubMed DOI PMC
Seo H., Kim K.-J. Structural insight into molecular mechanism of cytokinin activating protein from Pseudomonas aeruginosa PAO1. Environ. Microbiol. 2018;20:3214–3223. doi: 10.1111/1462-2920.14287. PubMed DOI
Seo H., Kim K.-J. Structural and biochemical characterization of the type-II LOG protein from Streptomyces coelicolor A3. Biochem. Biophys. Res. Commun. 2018;499:577–583. doi: 10.1016/j.bbrc.2018.03.193. PubMed DOI
Moramarco F., Pezzicoli A., Salvini L., Leuzzi R., Pansegrau W., Balducci E. A Lonely Guy protein of Bordetella pertussis with unique features is related to oxidative stress. Sci. Rep. 2019;9:17016. doi: 10.1038/s41598-019-53171-9. PubMed DOI PMC
Mayaka J.B., Huang Q., Xiao Y., Zhong Q., Ni J., Shen Y. The lonely guy (LOG) homologue SiRe_0427 from the thermophilic archaeon Sulfolobus islandicus REY15A is a phosphoribohydrolase representing a novel group. Appl. Environ. Microbiol. 2019;85:e02739-19. doi: 10.1128/AEM.01739-19. PubMed DOI PMC
Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Whitty C.D., Hall R.H. A cytokinin oxidase in Zea mays. Can. J. Biochem. 1974;52:787–799. doi: 10.1139/o74-112. PubMed DOI
Bilyeu K.D., Cole J.L., Laskey J.G., Riekhof W.R., Esparza T.J., Kramer M.D., Morris R.O. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant. Phys. 2001;125:378–386. doi: 10.1104/pp.125.1.378. PubMed DOI PMC
Malito E., Coda A., Bilyeu K.D., Fraaije M.W., Mattevi A. Structures of Michaelis and product complexes of plant cytokinin dehydrogenase: Implications for flavoenzyme catalysis. J. Mol. Biol. 2004;341:1237–1249. doi: 10.1016/j.jmb.2004.06.083. PubMed DOI
Hluska T., Hlusková L., Emery R.J.N. The Hulks and the Deadpools of the cytokinin universe: A dual strategy for cytokinin production, translocation, and signal transduction. Biomolecules. 2021;11:209. doi: 10.3390/biom11020209. PubMed DOI PMC
Morris R.O., Bilyeu K.D., Laskey J.G., Cheikh N.N. Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem. Biophys. Res. Commun. 1999;255:328–333. doi: 10.1006/bbrc.1999.0199. PubMed DOI
Houba-Herin N., Pethe C., d’Alayer J., Laloue M. Cytokinin oxidase from Zea mays: Purification, cDNA cloning and expression in moss protoplasts. Plant J. 1999;17:615–626. doi: 10.1046/j.1365-313X.1999.00408.x. PubMed DOI
Schmülling T., Werner T., Riefler M., Krupková E., Bartrina y Manns I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 2003;116:241–252. doi: 10.1007/s10265-003-0096-4. PubMed DOI
Kopečný D., Končitíková R., Popelka H., Briozzo P., Vigouroux A., Kopečná M., Zalabák D., Šebela M., Skopalová J., Frébort I., et al. Kinetic and structural investigation of the cytokinin oxidase/dehydrogenase active site. FEBS J. 2016;283:361–377. doi: 10.1111/febs.13581. PubMed DOI
Heuts D.P.H.M., Scrutton N.S., McIntire W.S., Fraaije M.W. What’s in a covalent bond? On the role and formation of covalently bound flavin cofactors. FEBS J. 2009;276:3405–3427. doi: 10.1111/j.1742-4658.2009.07053.x. PubMed DOI
Popelková H., Galuzska P., Frébortová J., Bilyeu K.D., Frébort I. Cytokinin dehydrogenase: Characterization and structure homology modeling of the flavoprotein catabolizing plant hormones cytokinins. In: Pandalai S.G., editor. Recent Research Developments in Proteins. Volume 2. Transworld Research Network; Kerala, India: 2004. pp. 63–81.
Bae E., Bingman C.A., Bitto E., Aceti D.J., Phillips G.N., Jr. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase. Proteins. 2008;70:303–306. doi: 10.1002/prot.21678. PubMed DOI
Frébortová J., Fraaije M.W., Galuszka P., Šebela M., Peč P., Hrbáč J., Novák O., Bilyeu K.D., English J.T., Frébort I. Catalytic reaction of cytokinin dehydrogenase: Preference for quinones as electron acceptors. Biochem. J. 2004;380:121–130. doi: 10.1042/bj20031813. PubMed DOI PMC
Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., Köllmer I., Schmülling T., Frébort I. Biochemical characterization and histochemical localization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabaccum L. J. Plant Growth Regul. 2007;26:255–267. doi: 10.1007/s00344-007-9008-5. DOI
Stirk W.A., van Staden J. Flow of cytokinins through the environment. Plant Growth Regul. 2010;62:101–116. doi: 10.1007/s10725-010-9481-x. DOI
Akhtar S.S., Mekureyaw M.F., Pandey C., Roitsch T. Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front. Plant Sci. 2020;10:1777. doi: 10.3389/fpls.2019.01777. PubMed DOI PMC
Jameson P.E. Cytokinins and auxins in plant–pathogen interactions—An overview. Plant. Growth Regul. 2000;32:369–380. doi: 10.1023/A:1010733617543. DOI
Ma K.-W., Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol. Biol. 2016;91:713–725. doi: 10.1007/s11103-016-0452-0. PubMed DOI PMC
Pertry I., Václavíková K., Depuydt S., Galuszka P., Spíchal L., Temmerman W., Stes E., Schmülling T., Kakimoto T., van Montagu M.C.E., et al. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc. Natl. Acad. Sci. USA. 2009;106:929–934. doi: 10.1073/pnas.0811683106. PubMed DOI PMC
Jameson P.E. Virulent Rhodococcus fascians produce unique methylated cytokinins. Plants. 2019;8:582. doi: 10.3390/plants8120582. PubMed DOI PMC
Akiyoshi D.E., Morris R.O., Hinz R., Mischke B.S., Kosuge T., Garfinkel D.J., Gordon M.P., Nester E.W. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl. Acad. Sci. USA. 1983;80:407–411. doi: 10.1073/pnas.80.2.407. PubMed DOI PMC
Hwang H.-H., Yang F.-J., Cheng T.-F., Chen Y.-C., Lee Y.-L., Tsai Y.-L., Lai E.-M. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens. Phytopathology. 2013;103:888–899. doi: 10.1094/PHYTO-01-13-0020-R. PubMed DOI
Tsavkelova E.A., Klimova S.Y., Cherdyntseva T.A., Netrusov A.I. Microbial producers of plant growth stimulators and their practical use: A review. Appl. Biochem. Microbiol. 2006;42:117–126. doi: 10.1134/S0003683806020013. PubMed DOI
Großkinsky D.K., Tafner R., Moreno M.V., Sebastian A., Stenglein S.A., García de Salamone I.E., Nelson L.M., Novák O., Strnad M., van der Graaff E., et al. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci. Rep. 2016;6:23310. doi: 10.1038/srep23310. PubMed DOI PMC
Numan M., Bashira S., Khan Y., Mumtaz R., Shinwaric Z.K., Khan A.L., Khan A., AL-Harrasib A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol. Res. 2018;209:21–32. doi: 10.1016/j.micres.2018.02.003. PubMed DOI
Hussain A., Krischke M., Roitsch T., Hasnain S. Rapid determination of cytokinins and auxin in cyanobacteria. Curr. Microbiol. 2010;61:361–369. doi: 10.1007/s00284-010-9620-7. PubMed DOI
Samanovic M.I., Hsu H.-C., Jones M.B., Jones V., McNeil M.R., Becker S.H., Jordan A.T., Strnad M., Xu C., Jackson M., et al. Cytokinin signaling in Mycobacterium tuberculosis. mBio. 2018;9 doi: 10.1128/mBio.00989-18. PubMed DOI PMC
Guzzo M.B., Li Q., Nguyen H.V., Boom W.H., Nguyen L. The Pup-proteasome system protects mycobacteria from antimicrobial antifolates. Antimicrob. Agents Chemother. 2021;65:e01967-20. doi: 10.1128/AAC.01967-20. PubMed DOI PMC