Biochemical and Structural Aspects of Cytokinin Biosynthesis and Degradation in Bacteria

. 2021 Jun 16 ; 9 (6) : . [epub] 20210616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34208724

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund

Odkazy

PubMed 34208724
PubMed Central PMC8234997
DOI 10.3390/microorganisms9061314
PII: microorganisms9061314
Knihovny.cz E-zdroje

It has been known for quite some time that cytokinins, hormones typical of plants, are also produced and metabolized in bacteria. Most bacteria can only form the tRNA-bound cytokinins, but there are examples of plant-associated bacteria, both pathogenic and beneficial, that actively synthesize cytokinins to interact with their host. Similar to plants, bacteria produce diverse cytokinin metabolites, employing corresponding metabolic pathways. The identification of genes encoding the enzymes involved in cytokinin biosynthesis and metabolism facilitated their detailed characterization based on both classical enzyme assays and structural approaches. This review summarizes the present knowledge on key enzymes involved in cytokinin biosynthesis, modifications, and degradation in bacteria, and discusses their catalytic properties in relation to the presence of specific amino acid residues and protein structure.

Zobrazit více v PubMed

Mok M.C. Cytokinins and plant development—An overview. In: Mok D.W.S., Mok M.C., editors. Cytokinins—Chemistry, Activity, and Function. 1st ed. CRC Press; Boca Raton, FL, USA: 1994. pp. 155–166. DOI

Spíchal L. Cytokinins–recent news and views of evolutionally old molecules. Funct. Plant Biol. 2012;39:267–284. doi: 10.1071/FP11276. PubMed DOI

Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006;57:431–439. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI

Radhika V., Ueda N., Tsuboi Y., Kojima M., Kikuchi J., Kudo T., Sakakibara H. Methylated cytokinins from the phytopathogen Rhodococcus fascians mimic plant hormone activity. Plant Physiol. 2015;169:1118–1126. doi: 10.1104/pp.15.00787. PubMed DOI PMC

Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 2011;62:2431–2452. doi: 10.1093/jxb/err004. PubMed DOI

Takei K., Sakakibara H., Sugiyama T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem. 2001;276:26405–26410. doi: 10.1074/jbc.M102130200. PubMed DOI

Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 2001;42:677–685. doi: 10.1093/pcp/pce112. PubMed DOI

Persson B.C., Esberg B., Olafsson O., Bjork G.R. Synthesis and function of isopentenyl adenosine derivatives in transfer-RNA. Biochimie. 1994;76:1152–1160. doi: 10.1016/0300-9084(94)90044-2. PubMed DOI

Esberg B., Leung H.-C.E., Tsui H.-C.T., Björk G.R., Winkler M.E. Identification of the miaB gene, involved in methylthiolation ofisopentenylated A37 derivatives in the tRNA of Salmonella typhimurium and Escherichia coli. J. Bacteriol. 1999;181:7256–7265. doi: 10.1128/JB.181.23.7256-7265.1999. PubMed DOI PMC

Persson B.C., Björk G.R. Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio-cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. J. Bacteriol. 1993;175:7776–7785. doi: 10.1128/jb.175.24.7776-7785.1993. PubMed DOI PMC

Kurakawa T., Ueda N., Maekawa M., Kobayashi K., Kojima M., Nagato Y., Sakakibara H., Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007;445:652–655. doi: 10.1038/nature05504. PubMed DOI

Martin R.C., Mok M.C., Shaw G., Mok D.W.S. An enzyme mediating the conversion of zeatin to dihydrozeatin in Phaseolus embryos. Plant Physiol. 1989;90:1630–1635. doi: 10.1104/pp.90.4.1630. PubMed DOI PMC

Entsch B., Parker C.W., Letham D.S., Summons R.E. Preparation and characterization, using high-performance liquid chromatography, of an enzyme forming glucosides of cytokinins. Biochim. Biophys. Acta. 1979;570:124–139. doi: 10.1016/0005-2744(79)90207-9. PubMed DOI

Martin R.C., Mok M.C., Habben J.E., Mok D.W.S. A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc. Natl. Acad. Sci. USA. 2001;98:5922–5926. doi: 10.1073/pnas.101128798. PubMed DOI PMC

Dixon S.C., Martin R.C., Mok M.C., Shaw G., Mok D.W.S. Zeatin glycosylation enzymes in Phaseolus: Isolation of O-glucosyltransferase from P. lunatus and comparison to O-xylosyltransferase from P. vulgaris. Plant Physiol. 1989;90:1316–1321. doi: 10.1104/pp.90.4.1316. PubMed DOI PMC

Brzobohatý B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J., Palme K. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science. 1993;262:1051–1054. doi: 10.1126/science.8235622. PubMed DOI

Hošek P., Hoyerová K., Kiran N.S., Dobrev P.I., Zahajská L., Filepová R., Motyka V., Müller K., Kamínek M. Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol. 2020;225:2423–2438. doi: 10.1111/nph.16310. PubMed DOI

Galuszka P., Frébort I., Šebela M., Sauer P., Jacobsen S., Peč P. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals. Eur. J. Biochem. 2001;268:450–461. doi: 10.1046/j.1432-1033.2001.01910.x. PubMed DOI

Žižková E., Kubeš M., Dobrev P.I., Přibyl P., Šimura J., Zahajská L., Záveská Drábková L., Novák O., Motyka V. Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann. Bot. 2017;119:151–166. doi: 10.1093/aob/mcw194. PubMed DOI PMC

Frébortová J., Plíhal O., Florová V., Kokáš F., Kubiasová K., Greplová M., Šimura J., Novák O., Frébort I. Light influences cytokinin biosynthesis and sensing in Nostoc (Cyanobacteria) J. Phycol. 2017;53:703–714. doi: 10.1111/jpy.12538. PubMed DOI

Stirk W.A., van Staden J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotech. Adv. 2021;44:107612. doi: 10.1016/j.biotechadv.2020.107612. PubMed DOI

Pertry I., Václavíková K., Gemrotová M., Spíchal L., Galuszka P., Depuydt S., Temmerman W., Stes E., De Keyser A., Riefler M., et al. Rhodococcus fascians impacts plant development through the dynamic Fas-mediated production of a cytokinin mix. Mol. Plant Microbe Interact. 2010;23:1164–1174. doi: 10.1094/MPMI-23-9-1164. PubMed DOI

Samanovic M.I., Tu S., Novák O., Iyer L.M., McAllister F.E., Aravind L., Gygi S.P., Hubbard S.R., Strnad M., Darwin K.H. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. Mol. Cell. 2015;19:984–994. doi: 10.1016/j.molcel.2015.01.024. PubMed DOI PMC

Upadhyaya N.M., Letham D.S., Parker C.W., Hocart C.H., Dart P.J. Do rhizobia produce cytokinins? Biochem. Int. 1991;24:123–130. PubMed

Koenig R.L., Morris R.O., Polacco J.C. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. Bacteriol. 2002;184:1832–1842. doi: 10.1128/JB.184.7.1832-1842.2002. PubMed DOI PMC

Podlešáková K., Fardoux J., Patrel D., Bonaldi K., Novák O., Strnad M., Giraud E., Spíchal L., Nouwen N. Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes. Mol. Plant. Microbe Interact. 2013;26:1232–1238. doi: 10.1094/MPMI-03-13-0076-R. PubMed DOI

Jorge G.L., Kisiala A., Morrison E., Aokia M., Nogueirab A.P.O., Emery R.J.N. Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris Medik.) by increasing plant cytokinin levels. Environ. Exp. Bot. 2019;162:525–540. doi: 10.1016/j.envexpbot.2019.03.028. DOI

Frébortová J., Greplová M., Seidl M.F., Heyl A., Frébort I. Biochemical characterization of putative adenylate dimethylallyltransferase and cytokinin dehydrogenase from Nostoc sp. PCC 7120. PLoS ONE. 2015;10:e0138468. doi: 10.1371/journal.pone.0138468. PubMed DOI PMC

Wang X., Ding J., Lin S., Liu D., Gu T., Wu H., Trigiano R.N., McAvoy R., Huang J., Li Y. Evolution and roles of cytokinin genes in angiosperms 2: Do ancient CKXs play housekeeping roles while non-ancient CKXs play regulatory roles? Hortic. Res. 2020;7:29. doi: 10.1038/s41438-020-0246-z. PubMed DOI PMC

Lisitskaya T.B., Trosheva T.D. Microorganisms stimulating plant growth for sustainable agriculture. Russ. J. Gen. Chem. 2013;83:2765–2774. doi: 10.1134/S1070363213130252. DOI

Akiyoshi D.E., Klee H., Amasino R.M., Nester E.W., Gordon M.P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA. 1984;81:5994–5998. doi: 10.1073/pnas.81.19.5994. PubMed DOI PMC

Barry G.F., Rogers S.G., Fraley R.T., Brand L. Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci. USA. 1984;81:4776–4780. doi: 10.1073/pnas.81.15.4776. PubMed DOI PMC

Powell G.K., Morris R.O. Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: Homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res. 1986;14:2555–2565. doi: 10.1093/nar/14.6.2555. PubMed DOI PMC

Crespi M., Messens E., Caplan A.B., van Montagu M., Desomer J. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. 1992;11:795–804. doi: 10.1002/j.1460-2075.1992.tb05116.x. PubMed DOI PMC

Akiyoshi D.E., Regier D.A., Gordon M.P. Nucleotide sequence of the tzs gene from Pseudomonas solanacearum strain K60. Nucleic Acids Res. 1989;17:8886. doi: 10.1093/nar/17.21.8886. PubMed DOI PMC

Lichter A., Barash I., Valinsky L., Manulis S. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: Characterization and role in gall formation. J. Bacteriol. 1995;177:4457–4465. doi: 10.1128/jb.177.15.4457-4465.1995. PubMed DOI PMC

Joshi M., Loria R. Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. Mol. Plant. Microbe Interact. 2007;20:751–758. doi: 10.1094/MPMI-20-7-0751. PubMed DOI

Serdyuk O.P., Shirshikova G.N., Smolygina L.D., Butanaev A.M., Kreslavsky V.D., Yartseva N.V., Chekunova E.M. Agrobacterial ipt gene for cytokinin biosynthesis is found in phototrophic non-sulfur purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris. Russ. J. Genet. 2017;53:1113–1118. doi: 10.1134/S102279541710009X. DOI

Nishii K., Wright F., Chen Y.-Y., Möller M. Tangled history of a multigene family: The evolution of isopentenyltransferase genes. PLoS ONE. 2018;13:e0201198. doi: 10.1371/journal.pone.0201198. PubMed DOI PMC

Wang X., Lin S., Liu D., Gan L., McAvoy R., Ding J., Li Y. Evolution and roles of cytokinin genes in angiosperms 1: Do ancient IPTs play housekeeping while non-ancient IPTs play regulatory roles? Hortic. Res. 2020;7:28. doi: 10.1038/s41438-019-0211-x. PubMed DOI PMC

Sakakibara H., Kasahara H., Ueda N., Kojima M., Takei K., Hishiyama S., Asami T., Okada K., Kamiya Y., Yamaya T., et al. Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc. Natl. Acad. Sci. USA. 2005;102:9972–9977. doi: 10.1073/pnas.0500793102. PubMed DOI PMC

Akiyoshi D.E., Regier D.A., Jenl G., Gordon M.P. Cloning and nucleotide sequence of the tzs gene from Agrobacterium tumefaciens strain T37. Nucleic Acids Res. 1985;13:2773–2788. doi: 10.1093/nar/13.8.2773. PubMed DOI PMC

Blackwell J.R., Horgan R. Cloned Agrobacterium tumefaciens ipt1 gene product, DMAPP:AMP isopentenyl transferase. Phytochemistry. 1993;34:1477–1481. doi: 10.1016/S0031-9422(00)90831-8. DOI

Krall L., Raschke M., Zenk M.H., Baron C. The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5′-phosphate from 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP. FEBS Lett. 2002;527:315–318. doi: 10.1016/S0014-5793(02)03258-1. PubMed DOI

Sugawara H., Ueda N., Kojima M., Makita N., Yamaya T., Sakakibara H. Structural insight into reaction mechanism and evolution of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA. 2008;105:2734–2739. doi: 10.1073/pnas.0707374105. PubMed DOI PMC

Crespi M., Vereecke D., Temmerman W., van Montagu M., Desomer J. The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. J. Bacteriol. 1994;176:2492–2501. doi: 10.1128/jb.176.9.2492-2501.1994. PubMed DOI PMC

Jameson P.E., Dhandapani P., Song J., Zatloukal M., Strnad M., Remus-Emsermann M.N.P., Schlechter R.O., Novák O. The cytokinin complex associated with Rhodococcus fascians: Which compounds are critical for virulence? Front. Plant. Sci. 2019;10:674. doi: 10.3389/fpls.2019.00674. PubMed DOI PMC

Kakimoto T. Biosynthesis of cytokinins. J. Plant. Res. 2003;116:233–239. doi: 10.1007/s10265-003-0095-5. PubMed DOI

Chu H.-M., Ko T.-P., Wang A.H.-J. Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: Distinctive binding affinity for purine and pyrimidine nucleotides. Nucleic Acid Res. 2010;38:1738–1748. doi: 10.1093/nar/gkp1093. PubMed DOI PMC

Wang J., Youkharibache P., Zhang D., Lanczycki C.J., Geer R.C., Madej T., Phan L., Ward M., Lu S., Marchler G.H., et al. iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics. 2020;36:131–135. doi: 10.1093/bioinformatics/btz502. PubMed DOI PMC

Gibb M., Kisiala A., Morrison E., Emery R.J.N. The origins and roles of methylthiolated cytokinins: Evidence from among life kingdoms. Front. Cell Dev. Biol. 2020;8:605672. doi: 10.3389/fcell.2020.605672. PubMed DOI PMC

Soederberg T., Poulter C.D. Escherichia coli dimethylallyl diphosphate: tRNA dimethylallyltransferase: Essential elements for recognition of tRNA substrates within the anticodon stem-loop. Biochemistry. 2000;39:6546–6553. doi: 10.1021/bi992775u. PubMed DOI

Soderberg T., Poulter C.D. Escherichia coli dimethylallyl diphosphate: tRNA dimethylallyltransferase: Site directed mutagenesis of highly conserved residues. Biochemistry. 2001;40:1734–1740. doi: 10.1021/bi002149t. PubMed DOI

Xie W., Zhou C., Huang R.H. Structure of tRNA dimethylallyltransferase: RNA modification through a channel. J. Mol. Biol. 2007;367:872–881. doi: 10.1016/j.jmb.2007.01.048. PubMed DOI PMC

Zhou C., Huang R.H. Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: Insight into tRNA recognition and reaction mechanism. Proc. Natl. Acad. Sci. USA. 2008;105:16142–16147. doi: 10.1073/pnas.0805680105. PubMed DOI PMC

Seif E., Hallberg B.M. RNA-protein mutually induced fit: Structure of Escherichia coli isopentenyl-tRNA transferase in complex with tRNA(Phe) J. Biol. Chem. 2009;284:6600–6604. doi: 10.1074/jbc.C800235200. PubMed DOI PMC

Moore J.A., Poulter C.D. Escherichia coli dimethylallyl diphosphate: tRNA dimethylallyltransferase: A binding mechanism for recombinant enzyme. Biochemistry. 1997;36:604–614. doi: 10.1021/bi962225l. PubMed DOI

Yong J.W.H., Letham D.S., Wong S.C., Farquhar G.D. Rhizobium-induced elevation in xylem cytokinin delivery in pigeonpea induces changes in shoot development and leaf physiology. Funct. Plant. Biol. 2014;41:1323–1335. doi: 10.1071/FP14066. PubMed DOI

Takei K., Yamaya T., Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J. Biol. Chem. 2004;279:41866–41872. doi: 10.1074/jbc.M406337200. PubMed DOI

Ajitkumar P., Cherayil J.D. Presence of 2-methylthioribosyl-trans-zeatin in Azotobacter vinelandii tRNA. J. Bacteriol. 1985;162:752–755. doi: 10.1128/jb.162.2.752-755.1985. PubMed DOI PMC

Buck M., McCloskey J.A., Basile B., Ames B.N. cis 2-Methylthio-ribosylzeatin (ms2io6A) is present in the transfer RNA of Salmonela typhimurium, but not Escherichia coli. Nucleic Acids Res. 1982;10:5649–5662. doi: 10.1093/nar/10.18.5649. PubMed DOI PMC

Corder A.L., Subedi B.P., Zhang S., Dark A.M., Foss F.W., Jr., Pierce B.S. Peroxide-shunt substrate-specificity for the Salmonella typhimurium O2-dependent tRNA modifying monooxygenase (MiaE) Biochemistry. 2013;52:6182–6196. doi: 10.1021/bi4000832. PubMed DOI

Subedi B.P., Corder A.L., Siai Zhang S., Foss F.W., Jr., Pierce B.S. Steady-state kinetics and spectroscopic characterization of enzyme-tRNA interactions for the non-heme diiron tRNA-monooxygenase, MiaE. Biochemistry. 2015;54:363–376. doi: 10.1021/bi5012207. PubMed DOI

Kaminska K.H., Baraniak U., Boniecki M., Nowaczyk K., Czerwoniec A., Bujnicki J.M. Structural bioinformatics analysis of enzymes involved in the biosynthesis pathway of the hypermodified nucleoside ms(2)io(6)A37 in tRNA. Proteins. 2008;70:1–18. doi: 10.1002/prot.21640. PubMed DOI

Carpentier P., Lepretre C., Basset C., Douki T., Torelli S., Duarte V., Hamdane D., Fontecave M., Atta M. Structural, biochemical and functional analyses of tRNA-monooxygenase enzyme MiaE from Pseudomonas putida provide insights into tRNA/MiaE interaction. Nucleic Acids Res. 2020;48:9918–9930. doi: 10.1093/nar/gkaa667. PubMed DOI PMC

Kuroha T., Tokunaga H., Kojima M., Ueda N., Ishida T., Nagawa S., Fukuda H., Sugimoto K., Sakakibara H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant. Cell. 2009;21:3152–3169. doi: 10.1105/tpc.109.068676. PubMed DOI PMC

Hinsch J., Vrabka J., Oeser B., Novák O., Galuszka P., Tudzynski P. De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environ. Microbiol. 2015;17:2935–2951. doi: 10.1111/1462-2920.12838. PubMed DOI

Seo H., Kim K.-J. Structural basis for a novel type of cytokinin-activating protein. Sci. Rep. 2017;7:45985. doi: 10.1038/srep45985. PubMed DOI PMC

Dzurová L., Forneris F., Savino S., Galuszka P., Vrabka J., Frébort I. The tree-dimensional structure of “Lonely Guy” from Claviceps purpurea provides insights into the phosphoribohydrolase function of Rossmann fold-containing lysine decarboxylase-like protein. Proteins. 2015;83:1539–1546. doi: 10.1002/prot.24835. PubMed DOI

Francis I.M., Stes E., Zhang Y., Rangel D., Audenaert K., Vereecke D. Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. New Biotechnol. 2016;33:706–717. doi: 10.1016/j.nbt.2016.01.009. PubMed DOI

Creason A.L., Vandeputte O.M., Savory E.A., Davis E.W., Putnam M.L., Hu E., Swader-Hines D., Mol A., Baucher M., Prinsen E., et al. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLoS ONE. 2014;9:e101996. doi: 10.1371/journal.pone.0101996. PubMed DOI PMC

Seo H., Kim S., Sagong H.-Y., Son H.F., Jin K.S., Kim I.-K., Kim K.-J. Structural basis for cytokinin production by LOG from Corynebacterium glutamicum. Sci. Rep. 2016;6:31390. doi: 10.1038/srep31390. PubMed DOI PMC

Seo H., Kim K.-J. Structural insight into molecular mechanism of cytokinin activating protein from Pseudomonas aeruginosa PAO1. Environ. Microbiol. 2018;20:3214–3223. doi: 10.1111/1462-2920.14287. PubMed DOI

Seo H., Kim K.-J. Structural and biochemical characterization of the type-II LOG protein from Streptomyces coelicolor A3. Biochem. Biophys. Res. Commun. 2018;499:577–583. doi: 10.1016/j.bbrc.2018.03.193. PubMed DOI

Moramarco F., Pezzicoli A., Salvini L., Leuzzi R., Pansegrau W., Balducci E. A Lonely Guy protein of Bordetella pertussis with unique features is related to oxidative stress. Sci. Rep. 2019;9:17016. doi: 10.1038/s41598-019-53171-9. PubMed DOI PMC

Mayaka J.B., Huang Q., Xiao Y., Zhong Q., Ni J., Shen Y. The lonely guy (LOG) homologue SiRe_0427 from the thermophilic archaeon Sulfolobus islandicus REY15A is a phosphoribohydrolase representing a novel group. Appl. Environ. Microbiol. 2019;85:e02739-19. doi: 10.1128/AEM.01739-19. PubMed DOI PMC

Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.

Whitty C.D., Hall R.H. A cytokinin oxidase in Zea mays. Can. J. Biochem. 1974;52:787–799. doi: 10.1139/o74-112. PubMed DOI

Bilyeu K.D., Cole J.L., Laskey J.G., Riekhof W.R., Esparza T.J., Kramer M.D., Morris R.O. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant. Phys. 2001;125:378–386. doi: 10.1104/pp.125.1.378. PubMed DOI PMC

Malito E., Coda A., Bilyeu K.D., Fraaije M.W., Mattevi A. Structures of Michaelis and product complexes of plant cytokinin dehydrogenase: Implications for flavoenzyme catalysis. J. Mol. Biol. 2004;341:1237–1249. doi: 10.1016/j.jmb.2004.06.083. PubMed DOI

Hluska T., Hlusková L., Emery R.J.N. The Hulks and the Deadpools of the cytokinin universe: A dual strategy for cytokinin production, translocation, and signal transduction. Biomolecules. 2021;11:209. doi: 10.3390/biom11020209. PubMed DOI PMC

Morris R.O., Bilyeu K.D., Laskey J.G., Cheikh N.N. Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem. Biophys. Res. Commun. 1999;255:328–333. doi: 10.1006/bbrc.1999.0199. PubMed DOI

Houba-Herin N., Pethe C., d’Alayer J., Laloue M. Cytokinin oxidase from Zea mays: Purification, cDNA cloning and expression in moss protoplasts. Plant J. 1999;17:615–626. doi: 10.1046/j.1365-313X.1999.00408.x. PubMed DOI

Schmülling T., Werner T., Riefler M., Krupková E., Bartrina y Manns I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 2003;116:241–252. doi: 10.1007/s10265-003-0096-4. PubMed DOI

Kopečný D., Končitíková R., Popelka H., Briozzo P., Vigouroux A., Kopečná M., Zalabák D., Šebela M., Skopalová J., Frébort I., et al. Kinetic and structural investigation of the cytokinin oxidase/dehydrogenase active site. FEBS J. 2016;283:361–377. doi: 10.1111/febs.13581. PubMed DOI

Heuts D.P.H.M., Scrutton N.S., McIntire W.S., Fraaije M.W. What’s in a covalent bond? On the role and formation of covalently bound flavin cofactors. FEBS J. 2009;276:3405–3427. doi: 10.1111/j.1742-4658.2009.07053.x. PubMed DOI

Popelková H., Galuzska P., Frébortová J., Bilyeu K.D., Frébort I. Cytokinin dehydrogenase: Characterization and structure homology modeling of the flavoprotein catabolizing plant hormones cytokinins. In: Pandalai S.G., editor. Recent Research Developments in Proteins. Volume 2. Transworld Research Network; Kerala, India: 2004. pp. 63–81.

Bae E., Bingman C.A., Bitto E., Aceti D.J., Phillips G.N., Jr. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase. Proteins. 2008;70:303–306. doi: 10.1002/prot.21678. PubMed DOI

Frébortová J., Fraaije M.W., Galuszka P., Šebela M., Peč P., Hrbáč J., Novák O., Bilyeu K.D., English J.T., Frébort I. Catalytic reaction of cytokinin dehydrogenase: Preference for quinones as electron acceptors. Biochem. J. 2004;380:121–130. doi: 10.1042/bj20031813. PubMed DOI PMC

Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., Köllmer I., Schmülling T., Frébort I. Biochemical characterization and histochemical localization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabaccum L. J. Plant Growth Regul. 2007;26:255–267. doi: 10.1007/s00344-007-9008-5. DOI

Stirk W.A., van Staden J. Flow of cytokinins through the environment. Plant Growth Regul. 2010;62:101–116. doi: 10.1007/s10725-010-9481-x. DOI

Akhtar S.S., Mekureyaw M.F., Pandey C., Roitsch T. Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front. Plant Sci. 2020;10:1777. doi: 10.3389/fpls.2019.01777. PubMed DOI PMC

Jameson P.E. Cytokinins and auxins in plant–pathogen interactions—An overview. Plant. Growth Regul. 2000;32:369–380. doi: 10.1023/A:1010733617543. DOI

Ma K.-W., Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol. Biol. 2016;91:713–725. doi: 10.1007/s11103-016-0452-0. PubMed DOI PMC

Pertry I., Václavíková K., Depuydt S., Galuszka P., Spíchal L., Temmerman W., Stes E., Schmülling T., Kakimoto T., van Montagu M.C.E., et al. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc. Natl. Acad. Sci. USA. 2009;106:929–934. doi: 10.1073/pnas.0811683106. PubMed DOI PMC

Jameson P.E. Virulent Rhodococcus fascians produce unique methylated cytokinins. Plants. 2019;8:582. doi: 10.3390/plants8120582. PubMed DOI PMC

Akiyoshi D.E., Morris R.O., Hinz R., Mischke B.S., Kosuge T., Garfinkel D.J., Gordon M.P., Nester E.W. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl. Acad. Sci. USA. 1983;80:407–411. doi: 10.1073/pnas.80.2.407. PubMed DOI PMC

Hwang H.-H., Yang F.-J., Cheng T.-F., Chen Y.-C., Lee Y.-L., Tsai Y.-L., Lai E.-M. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens. Phytopathology. 2013;103:888–899. doi: 10.1094/PHYTO-01-13-0020-R. PubMed DOI

Tsavkelova E.A., Klimova S.Y., Cherdyntseva T.A., Netrusov A.I. Microbial producers of plant growth stimulators and their practical use: A review. Appl. Biochem. Microbiol. 2006;42:117–126. doi: 10.1134/S0003683806020013. PubMed DOI

Großkinsky D.K., Tafner R., Moreno M.V., Sebastian A., Stenglein S.A., García de Salamone I.E., Nelson L.M., Novák O., Strnad M., van der Graaff E., et al. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci. Rep. 2016;6:23310. doi: 10.1038/srep23310. PubMed DOI PMC

Numan M., Bashira S., Khan Y., Mumtaz R., Shinwaric Z.K., Khan A.L., Khan A., AL-Harrasib A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol. Res. 2018;209:21–32. doi: 10.1016/j.micres.2018.02.003. PubMed DOI

Hussain A., Krischke M., Roitsch T., Hasnain S. Rapid determination of cytokinins and auxin in cyanobacteria. Curr. Microbiol. 2010;61:361–369. doi: 10.1007/s00284-010-9620-7. PubMed DOI

Samanovic M.I., Hsu H.-C., Jones M.B., Jones V., McNeil M.R., Becker S.H., Jordan A.T., Strnad M., Xu C., Jackson M., et al. Cytokinin signaling in Mycobacterium tuberculosis. mBio. 2018;9 doi: 10.1128/mBio.00989-18. PubMed DOI PMC

Guzzo M.B., Li Q., Nguyen H.V., Boom W.H., Nguyen L. The Pup-proteasome system protects mycobacteria from antimicrobial antifolates. Antimicrob. Agents Chemother. 2021;65:e01967-20. doi: 10.1128/AAC.01967-20. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phytohormone profiling in an evolutionary framework

. 2024 May 08 ; 15 (1) : 3875. [epub] 20240508

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...