Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
14965342
PubMed Central
PMC1224151
DOI
10.1042/bj20031813
PII: BJ20031813
Knihovny.cz E-zdroje
- MeSH
- aldehydy metabolismus MeSH
- chinony metabolismus MeSH
- cytokininy metabolismus MeSH
- elektrochemie MeSH
- flavinadenindinukleotid metabolismus MeSH
- katalýza MeSH
- kinetika MeSH
- kukuřice setá enzymologie MeSH
- oxidace-redukce MeSH
- oxidoreduktasy chemie metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- rostlinné proteiny chemie metabolismus MeSH
- substrátová specifita MeSH
- terciární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- aldehydy MeSH
- chinony MeSH
- cytokinin oxidase MeSH Prohlížeč
- cytokininy MeSH
- flavinadenindinukleotid MeSH
- oxidoreduktasy MeSH
- rekombinantní proteiny MeSH
- rostlinné proteiny MeSH
The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors.
Zobrazit více v PubMed
Anal Biochem. 2002 Jul 1;306(1):1-7 PubMed
Anal Biochem. 1997 Jul 15;250(1):10-7 PubMed
J Biol Chem. 1997 Jul 18;272(29):18111-6 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:89-118 PubMed
Biochemistry. 2001 Nov 20;40(46):13779-87 PubMed
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10487-92 PubMed
J Biol Chem. 2001 Aug 10;276(32):30435-41 PubMed
Biochemistry. 2001 Feb 20;40(7):1964-75 PubMed
Plant Mol Biol. 2003 Jan;51(2):237-48 PubMed
J Plant Growth Regul. 2002 Mar;21(1):40-49 PubMed
Nucleic Acids Res. 2002 Jan 1;30(1):281-3 PubMed
FEBS Lett. 1975 Jul 15;55(1):272-4 PubMed
Plant Physiol. 2001 Jan;125(1):378-86 PubMed
Biochim Biophys Acta. 1987 Feb 25;911(3):267-76 PubMed
J Exp Bot. 2002 Sep;53(376):1899-907 PubMed
Trends Biochem Sci. 1998 Jun;23(6):206-7 PubMed
Biochemistry. 1999 Jul 27;38(30):9735-45 PubMed
Trends Biochem Sci. 2000 Mar;25(3):126-32 PubMed
Eur J Biochem. 2001 Jan;268(2):450-61 PubMed
Plant J. 1999 Mar;17(6):615-26 PubMed
Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9413-8 PubMed
Plant Cell. 2003 Jan;15(1):1-3 PubMed
J Mol Biol. 1999 Feb 26;286(3):883-98 PubMed
Nat Struct Biol. 1995 Aug;2(8):644-53 PubMed
Biochemistry. 1966 Oct;5(10):3181-9 PubMed
J Biol Chem. 2002 Jul 5;277(27):23973-6 PubMed
J Biol Chem. 1999 Dec 10;274(50):35514-20 PubMed
Biochem Biophys Res Commun. 1999 Feb 16;255(2):328-33 PubMed
Plant Physiol. 1996 Nov;112(3):1035-1043 PubMed