Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors

. 2004 May 15 ; 380 (Pt 1) : 121-30.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid14965342

The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors.

Zobrazit více v PubMed

Anal Biochem. 2002 Jul 1;306(1):1-7 PubMed

Anal Biochem. 1997 Jul 15;250(1):10-7 PubMed

J Biol Chem. 1997 Jul 18;272(29):18111-6 PubMed

Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:89-118 PubMed

Biochemistry. 2001 Nov 20;40(46):13779-87 PubMed

Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10487-92 PubMed

J Biol Chem. 2001 Aug 10;276(32):30435-41 PubMed

Biochemistry. 2001 Feb 20;40(7):1964-75 PubMed

Plant Mol Biol. 2003 Jan;51(2):237-48 PubMed

J Plant Growth Regul. 2002 Mar;21(1):40-49 PubMed

Nucleic Acids Res. 2002 Jan 1;30(1):281-3 PubMed

FEBS Lett. 1975 Jul 15;55(1):272-4 PubMed

Plant Physiol. 2001 Jan;125(1):378-86 PubMed

Biochim Biophys Acta. 1987 Feb 25;911(3):267-76 PubMed

J Exp Bot. 2002 Sep;53(376):1899-907 PubMed

Trends Biochem Sci. 1998 Jun;23(6):206-7 PubMed

Biochemistry. 1999 Jul 27;38(30):9735-45 PubMed

Trends Biochem Sci. 2000 Mar;25(3):126-32 PubMed

Eur J Biochem. 2001 Jan;268(2):450-61 PubMed

Plant J. 1999 Mar;17(6):615-26 PubMed

Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9413-8 PubMed

Plant Cell. 2003 Jan;15(1):1-3 PubMed

J Mol Biol. 1999 Feb 26;286(3):883-98 PubMed

Nat Struct Biol. 1995 Aug;2(8):644-53 PubMed

Biochemistry. 1966 Oct;5(10):3181-9 PubMed

J Biol Chem. 2002 Jul 5;277(27):23973-6 PubMed

J Biol Chem. 1999 Dec 10;274(50):35514-20 PubMed

Biochem Biophys Res Commun. 1999 Feb 16;255(2):328-33 PubMed

Plant Physiol. 1996 Nov;112(3):1035-1043 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...