Kinetic and chemical analyses of the cytokinin dehydrogenase-catalysed reaction: correlations with the crystal structure
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16686601
PubMed Central
PMC1525011
DOI
10.1042/bj20060280
PII: BJ20060280
Knihovny.cz E-zdroje
- MeSH
- anaerobióza MeSH
- cytokininy chemie MeSH
- hmotnostní spektrometrie MeSH
- iminy chemie MeSH
- katalýza MeSH
- kinetika MeSH
- krystalografie rentgenová MeSH
- kukuřice setá enzymologie MeSH
- oxidace-redukce MeSH
- oxidoreduktasy chemie metabolismus MeSH
- substrátová specifita MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokinin oxidase MeSH Prohlížeč
- cytokininy MeSH
- iminy MeSH
- oxidoreduktasy MeSH
CKX (cytokinin dehydrogenase) is a flavoprotein that cleaves cytokinins to adenine and the corresponding side-chain aldehyde using a quinone-type electron acceptor. In the present study, reactions of maize (Zea mays) CKX with five different substrates (N6-isopentenyladenine, trans-zeatin, kinetin, p-topolin and N-methyl-isopentenyladenine) were studied. By using stopped-flow analysis of the reductive half-reaction, spectral intermediates were observed indicative of the transient formation of a binary enzyme-product complex between the cytokinin imine and the reduced enzyme. The reduction rate was high for isoprenoid cytokinins that showed formation of a charge-transfer complex of reduced enzyme with bound cytokinin imine. For the other cytokinins, flavin reduction was slow and no charge-transfer intermediates were observed. The binary complex of reduced enzyme and imine product intermediate decays relatively slowly to form an unbound product, cytokinin imine, which accumulates in the reaction mixture. The imine product only very slowly hydrolyses to adenine and an aldehyde derived from the cytokinin N6 side-chain. Mixing of the substrate-reduced enzyme with Cu2+/imidazole as an electron acceptor to monitor the oxidative half-reaction revealed a high rate of electron transfer for this type of electron acceptor when using N6-isopentenyladenine. The stability of the cytokinin imine products allowed their fragmentation analysis and structure assessment by Q-TOF (quadrupole-time-of-flight) MS/MS. Correlations of the kinetic data with the known crystal structure are discussed for reactions with different cytokinins.
Zobrazit více v PubMed
van Berkel W. J. H., Benen J. A. E., Eppink M. H. M., Fraaije M. W. Flavoprotein kinetics. In: Chapman S. K., Reid G. A., editors. Methods in Molecular Biology, vol. 131, Flavoprotein Protocols. Totowa, NJ: Humana Press; 1999. pp. 61–86. PubMed
Hare P. D., van Staden J. Cytokinin oxidase: biochemical features and physiological significance. Physiol. Plant. 1994;91:128–136.
Galuszka P., Frébort I., Šebela M., Peč P. Degradation of cytokinins by cytokinin oxidases in plants. Plant Growth Regul. 2000;32:315–327.
Galuszka P., Frébort I., Šebela M., Sauer P., Jacobsen S., Peč P. Cytokinin oxidase or dehydrogenase?. Mechanism of cytokinin degradation in cereals. Eur. J. Biochem. 2001;268:450–461. PubMed
Frébortová J., Fraaije M. W., Galuszka P., Šebela M., Peč P., Hrbáč J., Novák O., Bilyeu K. D., English J. T., Frébort I. Catalytic reactions of cytokinin dehydrogenase: preferences for quinones as electron acceptors. Biochem. J. 2004;380:121–130. PubMed PMC
Fraaije M. W., Van den Heuvel R. H. H., Van Berkel W. J. H., Mattevi A. Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase. J. Biol. Chem. 1999;274:35514–35520. PubMed
Laskey J. G., Patterson P., Bilyeu K. D., Morris R. O. Rate enhancement of cytokinin oxidase/dehydrogenase using 2,6-dichloroindophenol as an electron acceptor. Plant Growth Regul. 2003;40:189–196.
Kopečný D., Pethe C., Šebela M., Houba-Herin N., Madzak C., Majira A., Laloue M. High-level expression and characterization of Zea mays cytokinin oxidase/dehydrogenase in Yarrowia lipolytica. Biochimie. 2005;87:1011–1022. PubMed
Malito E., Coda A., Bilyeu K. D., Fraaije M. W., Mattevi A. Structures of Michaelis and product complexes of plant cytokinin dehydrogenase: implications for flavoenzyme catalysis. J. Mol. Biol. 2004;341:1237–1249. PubMed
Laloue M., Fox J. E. Abstracts of 12th International Conference on Plant Growth Substances. In: Bopp M., editor. Berlin, Germany: Springer-Verlag; 1985. p. 23.
de Jong E., van Berkel W. J. H., van der Zwan R. P., de Bont J. A. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. Eur. J. Biochem. 1992;208:651–657. PubMed
Wang J., Letham D. S. Cytokinin oxidase – purification by affinity chromatography and activation by caffeic acid. Plant Sci. 1995;112:161–166.
Frébort I., Šebela M., Galuszka P., Werner T., Schmülling T., Peč P. Cytokinin oxidase/dehydrogenase assay: optimized procedures and applications. Anal. Biochem. 2002;306:1–7. PubMed
Hopfgartner G., Varesio E., Tschappat V., Grivet C., Bourgogne E., Leuthold L. A. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J. Mass Spectrom. 2004;39:845–855. PubMed
Popelková H., Galuszka P., Frébortová J., Bilyeu K. D., Frébort I. Cytokinin dehydrogenase: Characterization and structure homology modeling of the flavoprotein catabolizing plant hormones cytokinins. Recent Research Developments in Proteins, vol. 2. In: Pandalai S. G., editor. Kerala: Transworld Research Network; 2003. pp. 63–81.
Fraaije M. W., van Berkel W. J. H., Benen J. A., Visser J., Mattevi A. A novel oxidoreductase family sharing a conserved FAD-binding domain. Trends Biochem. Sci. 1998;23:206–207. PubMed
Mok D. W., Mok M. C. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001;52:89–118. PubMed
Fraaije M. W., van Berkel W. J. H. Catalytic mechanism of the oxidative demethylation of 4-(methoxymethyl)phenol by vanillyl-alcohol oxidase. Evidence for formation of a p-quinone methide intermediate. J. Biol. Chem. 1997;272:18111–18116. PubMed
Baker J., Arey J., Atkinson R. Formation and reaction of hydroxycarbonyls from the reaction of OH radicals with 1,3-butadiene and isoprene. Environ. Sci. Technol. 2005;39:4091–4099. PubMed
Perez Locas C., Yaylayan V. A. Origin and mechanistic pathways of formation of the parent furan: a food toxicant. J. Agric. Food Chem. 2004;52:6830–6836. PubMed
Bilyeu K. D., Cole J. L., Laskey J. G., Riekhof W. R., Esparza T. J., Kramer M. D., Morris R. O. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol. 2001;125:378–386. PubMed PMC
Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide
A highly selective biosensor with nanomolar sensitivity based on cytokinin dehydrogenase
Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux