Investigation of the Effect of the Auxin Antagonist PEO-IAA on Cannabinoid Gene Expression and Content in Cannabis sativa L. Plants under In Vitro Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016713
European Union - Ministry of Education, Youth, and Sports CZ, ESIF, OP RDE
PubMed
37111886
PubMed Central
PMC10142887
DOI
10.3390/plants12081664
PII: plants12081664
Knihovny.cz E-zdroje
- Klíčová slova
- CBC, CBD, Cannabis sativa, PEO-IAA, THC, auxin antagonist, cannabinoids, in vitro, qRT-PCR, shoot propagation,
- Publikační typ
- časopisecké články MeSH
The in vitro shoot propagation of Cannabis sativa L. is an emerging research area for large-scale plant material production. However, how in vitro conditions influence the genetic stability of maintained material, as well as whether changes in the concentration and composition of secondary metabolites can be expected are aspects that need to be better understood. These features are essential for the standardised production of medicinal cannabis. This work aimed to find out whether the presence of the auxin antagonist α-(2-oxo-2-phenylethyl)-1H-indole-3-acetic acid (PEO-IAA) in the culture media influenced the relative gene expression (RGE) of the genes of interest (OAC, CBCA, CBDA, THCA) and the concentrations of studied cannabinoids (CBCA, CBDA, CBC, ∆9-THCA, and ∆9-THC). Two C. sativa cultivars, 'USO-31' and 'Tatanka Pure CBD', were cultivated by in vitro conditions with PEO-IAA presence and then analysed. The RT-qPCR results indicated that even though some changes in the RGE profiles could be observed, no differences were statistically significant compared with the control variant. The results of the phytochemical analyses demonstrate that although there were some differences from the control variant, only the cultivar 'Tatanka Pure CBD' showed a statistically significant increase (at a statistical significance level α = 0.05) in the concentration of the cannabinoid CBDA. In conclusion, it would appear that using PEO-IAA in the culture medium is a suitable approach to improve in vitro cannabis multiplication.
Department of Biochemistry Faculty of Science Palacký University 78371 Olomouc Czech Republic
Department of Botany Faculty of Science Palacký University Olomouc 78371 Olomouc Czech Republic
Zobrazit více v PubMed
McPartland J.M., Hegman W., Long T. Cannabis in Asia: Its Center of Origin and Early Cultivation, Based on a Synthesis of Subfossil Pollen and Archaeobotanical Studies. Veg. Hist. Archaeobot. 2019;28:691–702. doi: 10.1007/s00334-019-00731-8. DOI
Karche T., Singh M.R. The Application of Hemp (Cannabis sativa L.) for a Green Economy: A Review. Turk. J. Bot. 2019;43:710–723. doi: 10.3906/bot-1907-15. DOI
Krüger M., van Eeden T., Beswa D. Cannabis sativa Cannabinoids as Functional Ingredients in Snack Foods—Historical and Developmental Aspects. Plants. 2022;11:3330. doi: 10.3390/plants11233330. PubMed DOI PMC
Hesami M., Pepe M., Baiton A., Jones A.M.P. Current Status and Future Prospects in Cannabinoid Production through in Vitro Culture and Synthetic Biology. Biotechnol. Adv. 2023;62:108074. doi: 10.1016/j.biotechadv.2022.108074. PubMed DOI
Kovalchuk I., Pellino M., Rigault P., van Velzen R., Ebersbach J., Ashnest J.R., Mau M., Schranz M.E., Alcorn J., Laprairie R.B., et al. The Genomics of Cannabis and Its Close Relatives. Annu. Rev. Plant Biol. 2020;71:713–739. doi: 10.1146/annurev-arplant-081519-040203. PubMed DOI
Hesami M., Pepe M., Alizadeh M., Rakei A., Baiton A., Phineas Jones A.M. Recent Advances in Cannabis Biotechnology. Ind. Crops Prod. 2020;158:113026. doi: 10.1016/j.indcrop.2020.113026. DOI
Small E. Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. Bot. Rev. 2015;81:189–294. doi: 10.1007/s12229-015-9157-3. DOI
Hammond C.T., Mahlberg P.G. Morphogenesis of capitate glandular hairs of cannabis sativa (cannabaceae) Am. J. Bot. 1977;64:1023–1031. doi: 10.1002/j.1537-2197.1977.tb11948.x. DOI
Pagano C., Navarra G., Coppola L., Avilia G., Bifulco M., Laezza C. Cannabinoids: Therapeutic Use in Clinical Practice. Int. J. Mol. Sci. 2022;23:3344. doi: 10.3390/ijms23063344. PubMed DOI PMC
Monthony A.S., Page S.R., Hesami M., Jones A.M.P. The Past, Present and Future of Cannabis sativa Tissue Culture. Plants. 2021;10:185. doi: 10.3390/plants10010185. PubMed DOI PMC
Jin D., Dai K., Xie Z., Chen J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci. Rep. 2020;10:3309. doi: 10.1038/s41598-020-60172-6. PubMed DOI PMC
Tahir M.N., Shahbazi F., Rondeau-Gagné S., Trant J.F. The Biosynthesis of the Cannabinoids. J. Cannabis Res. 2021;3:7. doi: 10.1186/s42238-021-00062-4. PubMed DOI PMC
De Backer B., Maebe K., Verstraete A.G., Charlier C. Evolution of the Content of THC and Other Major Cannabinoids in Drug-Type Cannabis Cuttings and Seedlings During Growth of Plants*: Evolution of major cannabinoids content during growth of plants. J. Forensic Sci. 2012;57:918–922. doi: 10.1111/j.1556-4029.2012.02068.x. PubMed DOI
Andre C.M., Hausman J.-F., Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016;7:19. doi: 10.3389/fpls.2016.00019. PubMed DOI PMC
De Meijer E.P.M., Bagatta M., Carboni A., Crucitti P., Moliterni V.M.C., Ranalli P., Mandolino G. The Inheritance of Chemical Phenotype in Cannabis sativa L. Genetics. 2003;163:335–346. doi: 10.1093/genetics/163.1.335. PubMed DOI PMC
Hurgobin B., Tamiru-Oli M., Welling M.T., Doblin M.S., Bacic A., Whelan J., Lewsey M.G. Recent Advances in Cannabis sativa Genomics Research. New Phytol. 2021;230:73–89. doi: 10.1111/nph.17140. PubMed DOI PMC
Lata H., Chandra S., Khan I., ElSohly M.A. Thidiazuron-Induced High-Frequency Direct Shoot Organogenesis of Cannabis sativa L. In Vitr. Cell. Dev. Biol. Plant. 2009;45:12–19. doi: 10.1007/s11627-008-9167-5. DOI
Lata H., Chandra S., Techen N., Khan I.A., ElSohly M.A. In Vitro Mass Propagation of Cannabis sativa L.: A Protocol Refinement Using Novel Aromatic Cytokinin Meta-Topolin and the Assessment of Eco-Physiological, Biochemical and Genetic Fidelity of Micropropagated Plants. J. Appl. Res. Med. Aromat. Plants. 2016;3:18–26. doi: 10.1016/j.jarmap.2015.12.001. DOI
Cheng C., Zang G., Zhao L., Gao C., Tang Q., Chen J., Guo X., Peng D., Su J. A Rapid Shoot Regeneration Protocol from the Cotyledons of Hemp (Cannabis sativa L.) Ind. Crops Prod. 2016;83:61–65. doi: 10.1016/j.indcrop.2015.12.035. DOI
Zarei A., Behdarvandi B., Tavakouli Dinani E., Maccarone J. Cannabis sativa L. Photoautotrophic Micropropagation: A Powerful Tool for Industrial Scale in Vitro Propagation. In Vitr. Cell. Dev. Biol. Plant. 2021;57:932–941. doi: 10.1007/s11627-021-10167-3. DOI
Ioannidis K., Tomprou I., Mitsis V. An Alternative In Vitro Propagation Protocol of Cannabis sativa L. (Cannabaceae) Presenting Efficient Rooting, for Commercial Production. Plants. 2022;11:1333. doi: 10.3390/plants11101333. PubMed DOI PMC
Delporte F., Pretova A., du Jardin P., Watillon B. Morpho-Histology and Genotype Dependence of in Vitro Morphogenesis in Mature Embryo Cultures of Wheat. Protoplasma. 2014;251:1455–1470. doi: 10.1007/s00709-014-0647-7. PubMed DOI PMC
Pepe M., Leonardos E.D., Marie T.R.J.G., Kyne S.T., Hesami M., Jones A.M.P., Grodzinski B. A Noninvasive Gas Exchange Method to Test and Model Photosynthetic Proficiency and Growth Rates of In Vitro Plant Cultures: Preliminary Implication for Cannabis sativa L. Biology. 2022;11:729. doi: 10.3390/biology11050729. PubMed DOI PMC
Pepe M., Hesami M., Small F., Jones A.M.P. Comparative Analysis of Machine Learning and Evolutionary Optimization Algorithms for Precision Micropropagation of Cannabis sativa: Prediction and Validation of in Vitro Shoot Growth and Development Based on the Optimization of Light and Carbohydrate Sources. Front. Plant Sci. 2021;12:757869. doi: 10.3389/fpls.2021.757869. PubMed DOI PMC
Lata H., Chandra S., Khan I., ElSohly M. High Frequency Plant Regeneration from Leaf Derived Callus of High Δ9-Tetrahydrocannabinol Yielding Cannabis sativa L. Planta Med. 2010;76:1629–1633. doi: 10.1055/s-0030-1249773. PubMed DOI
Wielgus K., Luwanska A., Lassocinski W., Kaczmarek Z. Estimation of Cannabis sativa L. Tissue Culture Conditions Essential for Callus Induction and Plant Regeneration. J. Nat. Fibers. 2008;5:199–207. doi: 10.1080/15440470801976045. DOI
Smýkalová I., Vrbová M., Cvečková M., Plačková L., Žukauskaitė A., Zatloukal M., Hrdlička J., Plíhalová L., Doležal K., Griga M. The Effects of Novel Synthetic Cytokinin Derivatives and Endogenous Cytokinins on the in Vitro Growth Responses of Hemp (Cannabis sativa L.) Explants. Plant Cell Tiss. Organ. Cult. 2019;139:381–394. doi: 10.1007/s11240-019-01693-5. DOI
Hesami M., Baiton A., Alizadeh M., Pepe M., Torkamaneh D., Jones A.M.P. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int. J. Mol. Sci. 2021;22:5671. doi: 10.3390/ijms22115671. PubMed DOI PMC
Shiels D., Prestwich B.D., Koo O., Kanchiswamy C.N., O’Halloran R., Badmi R. Hemp Genome Editing—Challenges and Opportunities. Front. Genome Ed. 2022;4:823486. doi: 10.3389/fgeed.2022.823486. PubMed DOI PMC
Simiyu D.C., Jang J.H., Lee O.R. Understanding Cannabis sativa L.: Current Status of Propagation, Use, Legalization, and Haploid-Inducer-Mediated Genetic Engineering. Plants. 2022;11:1236. doi: 10.3390/plants11091236. PubMed DOI PMC
Leyser O. Auxin Signaling. Plant Physiol. 2018;176:465–479. doi: 10.1104/pp.17.00765. PubMed DOI PMC
Ishida T., Adachi S., Yoshimura M., Shimizu K., Umeda M., Sugimoto K. Auxin Modulates the Transition from the Mitotic Cycle to the Endocycle in Arabidopsis. Development. 2010;137:63–71. doi: 10.1242/dev.035840. PubMed DOI
Král D., Šenkyřík J.B., Ondřej V. Expression of Genes Involved in ABA and Auxin Metabolism and LEA Gene during Embryogenesis in Hemp. Plants. 2022;11:2995. doi: 10.3390/plants11212995. PubMed DOI PMC
Chapman E.J., Estelle M. Mechanism of Auxin-Regulated Gene Expression in Plants. Annu. Rev. Genet. 2009;43:265–285. doi: 10.1146/annurev-genet-102108-134148. PubMed DOI
Mockaitis K., Estelle M. Auxin Receptors and Plant Development: A New Signaling Paradigm. Annu. Rev. Cell Dev. Biol. 2008;24:55–80. doi: 10.1146/annurev.cellbio.23.090506.123214. PubMed DOI
Hasegawa J., Sakamoto T., Fujimoto S., Yamashita T., Suzuki T., Matsunaga S. Auxin Decreases Chromatin Accessibility through the TIR1/AFBs Auxin Signaling Pathway in Proliferative Cells. Sci. Rep. 2018;8:7773. doi: 10.1038/s41598-018-25963-y. PubMed DOI PMC
Takato S., Kakei Y., Mitsui M., Ishida Y., Suzuki M., Yamazaki C., Hayashi K., Ishii T., Nakamura A., Soeno K., et al. Auxin Signaling through SCFTIR1/AFBs Mediates Feedback Regulation of IAA Biosynthesis. Biosci. Biotechnol. Biochem. 2017;81:1320–1326. doi: 10.1080/09168451.2017.1313694. PubMed DOI
Murphy R., Adelberg J. Physical Factors Increased Quantity and Quality of Micropropagated Shoots of Cannabis sativa L. in a Repeated Harvest System with Ex Vitro Rooting. In Vitr. Cell. Dev. Biol. Plant. 2021;57:923–931. doi: 10.1007/s11627-021-10166-4. DOI
Cabrera J., Díaz-Manzano F.E., Sanchez M., Rosso M., Melillo T., Goh T., Fukaki H., Cabello S., Hofmann J., Fenoll C., et al. A Role for LATERAL ORGAN BOUNDARIES-DOMAIN 16 during the Interaction Arabidopsis–Meloidogyne spp. Provides a Molecular Link between Lateral Root and Root-knot Nematode Feeding Site Development. New Phytol. 2014;203:632–645. doi: 10.1111/nph.12826. PubMed DOI
Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Fulvio F., Paris R., Montanari M., Citti C., Cilento V., Bassolino L., Moschella A., Alberti I., Pecchioni N., Cannazza G., et al. Analysis of Sequence Variability and Transcriptional Profile of Cannabinoid Synthase Genes in Cannabis sativa L. Chemotypes with a Focus on Cannabichromenic Acid Synthase. Plants. 2021;10:1857. doi: 10.3390/plants10091857. PubMed DOI PMC
Van Bakel H., Stout J.M., Cote A.G., Tallon C.M., Sharpe A.G., Hughes T.R., Page J.E. The Draft Genome and Transcriptome of Cannabis sativa. Genome Biol. 2011;12:R102. doi: 10.1186/gb-2011-12-10-r102. PubMed DOI PMC
Pfaffl M.W. A New Mathematical Model for Relative Quantification in Real-Time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Béres T., Černochová L., Ćavar Zeljković S., Benická S., Gucký T., Berčák M., Tarkowski P. Intralaboratory Comparison of Analytical Methods for Quantification of Major Phytocannabinoids. Anal. Bioanal. Chem. 2019;411:3069–3079. doi: 10.1007/s00216-019-01760-y. PubMed DOI