Investigation of the Effect of the Auxin Antagonist PEO-IAA on Cannabinoid Gene Expression and Content in Cannabis sativa L. Plants under In Vitro Conditions

. 2023 Apr 15 ; 12 (8) : . [epub] 20230415

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37111886

Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016713 European Union - Ministry of Education, Youth, and Sports CZ, ESIF, OP RDE

The in vitro shoot propagation of Cannabis sativa L. is an emerging research area for large-scale plant material production. However, how in vitro conditions influence the genetic stability of maintained material, as well as whether changes in the concentration and composition of secondary metabolites can be expected are aspects that need to be better understood. These features are essential for the standardised production of medicinal cannabis. This work aimed to find out whether the presence of the auxin antagonist α-(2-oxo-2-phenylethyl)-1H-indole-3-acetic acid (PEO-IAA) in the culture media influenced the relative gene expression (RGE) of the genes of interest (OAC, CBCA, CBDA, THCA) and the concentrations of studied cannabinoids (CBCA, CBDA, CBC, ∆9-THCA, and ∆9-THC). Two C. sativa cultivars, 'USO-31' and 'Tatanka Pure CBD', were cultivated by in vitro conditions with PEO-IAA presence and then analysed. The RT-qPCR results indicated that even though some changes in the RGE profiles could be observed, no differences were statistically significant compared with the control variant. The results of the phytochemical analyses demonstrate that although there were some differences from the control variant, only the cultivar 'Tatanka Pure CBD' showed a statistically significant increase (at a statistical significance level α = 0.05) in the concentration of the cannabinoid CBDA. In conclusion, it would appear that using PEO-IAA in the culture medium is a suitable approach to improve in vitro cannabis multiplication.

Zobrazit více v PubMed

McPartland J.M., Hegman W., Long T. Cannabis in Asia: Its Center of Origin and Early Cultivation, Based on a Synthesis of Subfossil Pollen and Archaeobotanical Studies. Veg. Hist. Archaeobot. 2019;28:691–702. doi: 10.1007/s00334-019-00731-8. DOI

Karche T., Singh M.R. The Application of Hemp (Cannabis sativa L.) for a Green Economy: A Review. Turk. J. Bot. 2019;43:710–723. doi: 10.3906/bot-1907-15. DOI

Krüger M., van Eeden T., Beswa D. Cannabis sativa Cannabinoids as Functional Ingredients in Snack Foods—Historical and Developmental Aspects. Plants. 2022;11:3330. doi: 10.3390/plants11233330. PubMed DOI PMC

Hesami M., Pepe M., Baiton A., Jones A.M.P. Current Status and Future Prospects in Cannabinoid Production through in Vitro Culture and Synthetic Biology. Biotechnol. Adv. 2023;62:108074. doi: 10.1016/j.biotechadv.2022.108074. PubMed DOI

Kovalchuk I., Pellino M., Rigault P., van Velzen R., Ebersbach J., Ashnest J.R., Mau M., Schranz M.E., Alcorn J., Laprairie R.B., et al. The Genomics of Cannabis and Its Close Relatives. Annu. Rev. Plant Biol. 2020;71:713–739. doi: 10.1146/annurev-arplant-081519-040203. PubMed DOI

Hesami M., Pepe M., Alizadeh M., Rakei A., Baiton A., Phineas Jones A.M. Recent Advances in Cannabis Biotechnology. Ind. Crops Prod. 2020;158:113026. doi: 10.1016/j.indcrop.2020.113026. DOI

Small E. Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. Bot. Rev. 2015;81:189–294. doi: 10.1007/s12229-015-9157-3. DOI

Hammond C.T., Mahlberg P.G. Morphogenesis of capitate glandular hairs of cannabis sativa (cannabaceae) Am. J. Bot. 1977;64:1023–1031. doi: 10.1002/j.1537-2197.1977.tb11948.x. DOI

Pagano C., Navarra G., Coppola L., Avilia G., Bifulco M., Laezza C. Cannabinoids: Therapeutic Use in Clinical Practice. Int. J. Mol. Sci. 2022;23:3344. doi: 10.3390/ijms23063344. PubMed DOI PMC

Monthony A.S., Page S.R., Hesami M., Jones A.M.P. The Past, Present and Future of Cannabis sativa Tissue Culture. Plants. 2021;10:185. doi: 10.3390/plants10010185. PubMed DOI PMC

Jin D., Dai K., Xie Z., Chen J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci. Rep. 2020;10:3309. doi: 10.1038/s41598-020-60172-6. PubMed DOI PMC

Tahir M.N., Shahbazi F., Rondeau-Gagné S., Trant J.F. The Biosynthesis of the Cannabinoids. J. Cannabis Res. 2021;3:7. doi: 10.1186/s42238-021-00062-4. PubMed DOI PMC

De Backer B., Maebe K., Verstraete A.G., Charlier C. Evolution of the Content of THC and Other Major Cannabinoids in Drug-Type Cannabis Cuttings and Seedlings During Growth of Plants*: Evolution of major cannabinoids content during growth of plants. J. Forensic Sci. 2012;57:918–922. doi: 10.1111/j.1556-4029.2012.02068.x. PubMed DOI

Andre C.M., Hausman J.-F., Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016;7:19. doi: 10.3389/fpls.2016.00019. PubMed DOI PMC

De Meijer E.P.M., Bagatta M., Carboni A., Crucitti P., Moliterni V.M.C., Ranalli P., Mandolino G. The Inheritance of Chemical Phenotype in Cannabis sativa L. Genetics. 2003;163:335–346. doi: 10.1093/genetics/163.1.335. PubMed DOI PMC

Hurgobin B., Tamiru-Oli M., Welling M.T., Doblin M.S., Bacic A., Whelan J., Lewsey M.G. Recent Advances in Cannabis sativa Genomics Research. New Phytol. 2021;230:73–89. doi: 10.1111/nph.17140. PubMed DOI PMC

Lata H., Chandra S., Khan I., ElSohly M.A. Thidiazuron-Induced High-Frequency Direct Shoot Organogenesis of Cannabis sativa L. In Vitr. Cell. Dev. Biol. Plant. 2009;45:12–19. doi: 10.1007/s11627-008-9167-5. DOI

Lata H., Chandra S., Techen N., Khan I.A., ElSohly M.A. In Vitro Mass Propagation of Cannabis sativa L.: A Protocol Refinement Using Novel Aromatic Cytokinin Meta-Topolin and the Assessment of Eco-Physiological, Biochemical and Genetic Fidelity of Micropropagated Plants. J. Appl. Res. Med. Aromat. Plants. 2016;3:18–26. doi: 10.1016/j.jarmap.2015.12.001. DOI

Cheng C., Zang G., Zhao L., Gao C., Tang Q., Chen J., Guo X., Peng D., Su J. A Rapid Shoot Regeneration Protocol from the Cotyledons of Hemp (Cannabis sativa L.) Ind. Crops Prod. 2016;83:61–65. doi: 10.1016/j.indcrop.2015.12.035. DOI

Zarei A., Behdarvandi B., Tavakouli Dinani E., Maccarone J. Cannabis sativa L. Photoautotrophic Micropropagation: A Powerful Tool for Industrial Scale in Vitro Propagation. In Vitr. Cell. Dev. Biol. Plant. 2021;57:932–941. doi: 10.1007/s11627-021-10167-3. DOI

Ioannidis K., Tomprou I., Mitsis V. An Alternative In Vitro Propagation Protocol of Cannabis sativa L. (Cannabaceae) Presenting Efficient Rooting, for Commercial Production. Plants. 2022;11:1333. doi: 10.3390/plants11101333. PubMed DOI PMC

Delporte F., Pretova A., du Jardin P., Watillon B. Morpho-Histology and Genotype Dependence of in Vitro Morphogenesis in Mature Embryo Cultures of Wheat. Protoplasma. 2014;251:1455–1470. doi: 10.1007/s00709-014-0647-7. PubMed DOI PMC

Pepe M., Leonardos E.D., Marie T.R.J.G., Kyne S.T., Hesami M., Jones A.M.P., Grodzinski B. A Noninvasive Gas Exchange Method to Test and Model Photosynthetic Proficiency and Growth Rates of In Vitro Plant Cultures: Preliminary Implication for Cannabis sativa L. Biology. 2022;11:729. doi: 10.3390/biology11050729. PubMed DOI PMC

Pepe M., Hesami M., Small F., Jones A.M.P. Comparative Analysis of Machine Learning and Evolutionary Optimization Algorithms for Precision Micropropagation of Cannabis sativa: Prediction and Validation of in Vitro Shoot Growth and Development Based on the Optimization of Light and Carbohydrate Sources. Front. Plant Sci. 2021;12:757869. doi: 10.3389/fpls.2021.757869. PubMed DOI PMC

Lata H., Chandra S., Khan I., ElSohly M. High Frequency Plant Regeneration from Leaf Derived Callus of High Δ9-Tetrahydrocannabinol Yielding Cannabis sativa L. Planta Med. 2010;76:1629–1633. doi: 10.1055/s-0030-1249773. PubMed DOI

Wielgus K., Luwanska A., Lassocinski W., Kaczmarek Z. Estimation of Cannabis sativa L. Tissue Culture Conditions Essential for Callus Induction and Plant Regeneration. J. Nat. Fibers. 2008;5:199–207. doi: 10.1080/15440470801976045. DOI

Smýkalová I., Vrbová M., Cvečková M., Plačková L., Žukauskaitė A., Zatloukal M., Hrdlička J., Plíhalová L., Doležal K., Griga M. The Effects of Novel Synthetic Cytokinin Derivatives and Endogenous Cytokinins on the in Vitro Growth Responses of Hemp (Cannabis sativa L.) Explants. Plant Cell Tiss. Organ. Cult. 2019;139:381–394. doi: 10.1007/s11240-019-01693-5. DOI

Hesami M., Baiton A., Alizadeh M., Pepe M., Torkamaneh D., Jones A.M.P. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int. J. Mol. Sci. 2021;22:5671. doi: 10.3390/ijms22115671. PubMed DOI PMC

Shiels D., Prestwich B.D., Koo O., Kanchiswamy C.N., O’Halloran R., Badmi R. Hemp Genome Editing—Challenges and Opportunities. Front. Genome Ed. 2022;4:823486. doi: 10.3389/fgeed.2022.823486. PubMed DOI PMC

Simiyu D.C., Jang J.H., Lee O.R. Understanding Cannabis sativa L.: Current Status of Propagation, Use, Legalization, and Haploid-Inducer-Mediated Genetic Engineering. Plants. 2022;11:1236. doi: 10.3390/plants11091236. PubMed DOI PMC

Leyser O. Auxin Signaling. Plant Physiol. 2018;176:465–479. doi: 10.1104/pp.17.00765. PubMed DOI PMC

Ishida T., Adachi S., Yoshimura M., Shimizu K., Umeda M., Sugimoto K. Auxin Modulates the Transition from the Mitotic Cycle to the Endocycle in Arabidopsis. Development. 2010;137:63–71. doi: 10.1242/dev.035840. PubMed DOI

Král D., Šenkyřík J.B., Ondřej V. Expression of Genes Involved in ABA and Auxin Metabolism and LEA Gene during Embryogenesis in Hemp. Plants. 2022;11:2995. doi: 10.3390/plants11212995. PubMed DOI PMC

Chapman E.J., Estelle M. Mechanism of Auxin-Regulated Gene Expression in Plants. Annu. Rev. Genet. 2009;43:265–285. doi: 10.1146/annurev-genet-102108-134148. PubMed DOI

Mockaitis K., Estelle M. Auxin Receptors and Plant Development: A New Signaling Paradigm. Annu. Rev. Cell Dev. Biol. 2008;24:55–80. doi: 10.1146/annurev.cellbio.23.090506.123214. PubMed DOI

Hasegawa J., Sakamoto T., Fujimoto S., Yamashita T., Suzuki T., Matsunaga S. Auxin Decreases Chromatin Accessibility through the TIR1/AFBs Auxin Signaling Pathway in Proliferative Cells. Sci. Rep. 2018;8:7773. doi: 10.1038/s41598-018-25963-y. PubMed DOI PMC

Takato S., Kakei Y., Mitsui M., Ishida Y., Suzuki M., Yamazaki C., Hayashi K., Ishii T., Nakamura A., Soeno K., et al. Auxin Signaling through SCFTIR1/AFBs Mediates Feedback Regulation of IAA Biosynthesis. Biosci. Biotechnol. Biochem. 2017;81:1320–1326. doi: 10.1080/09168451.2017.1313694. PubMed DOI

Murphy R., Adelberg J. Physical Factors Increased Quantity and Quality of Micropropagated Shoots of Cannabis sativa L. in a Repeated Harvest System with Ex Vitro Rooting. In Vitr. Cell. Dev. Biol. Plant. 2021;57:923–931. doi: 10.1007/s11627-021-10166-4. DOI

Cabrera J., Díaz-Manzano F.E., Sanchez M., Rosso M., Melillo T., Goh T., Fukaki H., Cabello S., Hofmann J., Fenoll C., et al. A Role for LATERAL ORGAN BOUNDARIES-DOMAIN 16 during the Interaction Arabidopsis–Meloidogyne spp. Provides a Molecular Link between Lateral Root and Root-knot Nematode Feeding Site Development. New Phytol. 2014;203:632–645. doi: 10.1111/nph.12826. PubMed DOI

Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Fulvio F., Paris R., Montanari M., Citti C., Cilento V., Bassolino L., Moschella A., Alberti I., Pecchioni N., Cannazza G., et al. Analysis of Sequence Variability and Transcriptional Profile of Cannabinoid Synthase Genes in Cannabis sativa L. Chemotypes with a Focus on Cannabichromenic Acid Synthase. Plants. 2021;10:1857. doi: 10.3390/plants10091857. PubMed DOI PMC

Van Bakel H., Stout J.M., Cote A.G., Tallon C.M., Sharpe A.G., Hughes T.R., Page J.E. The Draft Genome and Transcriptome of Cannabis sativa. Genome Biol. 2011;12:R102. doi: 10.1186/gb-2011-12-10-r102. PubMed DOI PMC

Pfaffl M.W. A New Mathematical Model for Relative Quantification in Real-Time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Béres T., Černochová L., Ćavar Zeljković S., Benická S., Gucký T., Berčák M., Tarkowski P. Intralaboratory Comparison of Analytical Methods for Quantification of Major Phytocannabinoids. Anal. Bioanal. Chem. 2019;411:3069–3079. doi: 10.1007/s00216-019-01760-y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace