Expression of Genes Involved in ABA and Auxin Metabolism and LEA Gene during Embryogenesis in Hemp

. 2022 Nov 07 ; 11 (21) : . [epub] 20221107

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36365448

Grantová podpora
QK1910103 Ministry of Agriculture
IGA PrF-2022-002 IGA PrF, UPOL

The level of phytohormones such as abscisic acid (ABA) and auxins (Aux) changes dynamically during embryogenesis. Knowledge of the transcriptional activity of the genes of their metabolic pathways is essential for a deeper understanding of embryogenesis itself; however, it could also help breeding programs of important plants, such as Cannabis sativa, attractive for the pharmaceutical, textile, cosmetic, and food industries. This work aimed to find out how genes of metabolic pathways of Aux (IAA-1, IAA-2, X15-1, X15-2) and ABA (PP2C-1) alongside one member of the LEA gene family (CanLea34) are expressed in embryos depending on the developmental stage and the embryo cultivation in vitro. Walking stick (WS) and mature (M) cultivated and uncultivated embryos of C. sativa cultivars 'KC Dora' and 'USO 31' were analyzed. The RT-qPCR results indicated that for the development of immature (VH) embryos, the genes (IAA-1, IAA-2) are likely to be fundamental. Only an increased expression of the CanLea34 gene was characteristic of the fully maturated (M) embryos. In addition, this feature was significantly increased by cultivation. In conclusion, the cultivation led to the upsurge of expression of all studied genes.

Zobrazit více v PubMed

De Smet I., Lau S., Mayer U., Jürgens G. Embryogenesis—The Humble Beginnings of Plant Life. Plant J. 2010;61:959–970. doi: 10.1111/j.1365-313X.2010.04143.x. PubMed DOI

de Vries S.C., Weijers D. Plant Embryogenesis. Curr. Biol. 2017;27:R870–R873. doi: 10.1016/j.cub.2017.05.026. PubMed DOI

Vaddepalli P., de Zeeuw T., Strauss S., Bürstenbinder K., Liao C.-Y., Ramalho J.J., Smith R.S., Weijers D. Auxin-Dependent Control of Cytoskeleton and Cell Shape Regulates Division Orientation in the Arabidopsis Embryo. Curr. Biol. 2021;31:4946–4955.e4. doi: 10.1016/j.cub.2021.09.019. PubMed DOI PMC

Leyser O. Auxin Signaling. Plant Physiol. 2018;176:465–479. doi: 10.1104/pp.17.00765. PubMed DOI PMC

Robert H.S., Grones P., Stepanova A.N., Robles L.M., Lokerse A.S., Alonso J.M., Weijers D., Friml J. Local Auxin Sources Orient the Apical-Basal Axis in Arabidopsis Embryos. Curr. Biol. 2013;23:2506–2512. doi: 10.1016/j.cub.2013.09.039. PubMed DOI

Chapman E., Estelle M. Mechanism of Auxin-Regulated Gene Expression in Plants. Annu. Rev. Genet. 2009;43:265–285. doi: 10.1146/annurev-genet-102108-134148. PubMed DOI

Salehin M., Bagchi R., Estelle M. SCFTIR1/AFB-Based Auxin Perception: Mechanism and Role in Plant Growth and Development. Plant Cell. 2015;27:9–19. doi: 10.1105/tpc.114.133744. PubMed DOI PMC

Penfield S. Seed Dormancy and Germination. Curr. Biol. 2017;27:R874–R878. doi: 10.1016/j.cub.2017.05.050. PubMed DOI

Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. Abscisic Acid: Emergence of a Core Signaling Network. Annu. Rev. Plant Biol. 2010;61:651–679. doi: 10.1146/annurev-arplant-042809-112122. PubMed DOI

Zhu J.-K. Abiotic Stress Signaling and Responses in Plants. Cell. 2016;167:313–324. doi: 10.1016/j.cell.2016.08.029. PubMed DOI PMC

Gong Z., Xiong L., Shi H., Yang S., Herrera-Estrella L.R., Xu G., Chao D.-Y., Li J., Wang P.-Y., Qin F., et al. Plant Abiotic Stress Response and Nutrient Use Efficiency. Sci. China Life Sci. 2020;63:635–674. doi: 10.1007/s11427-020-1683-x. PubMed DOI

Park S.-Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T.F., et al. Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science. 2009;324:1068–1071. doi: 10.1126/science.1173041. PubMed DOI PMC

Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., Grill E. Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science. 2009;324:1064–1068. doi: 10.1126/science.1172408. PubMed DOI

Melcher K., Ng L.-M., Zhou X.E., Soon F.-F., Xu Y., Suino-Powell K.M., Park S.-Y., Weiner J.J., Fujii H., Chinnusamy V., et al. A Gate-Latch-Lock Mechanism for Hormone Signalling by Abscisic Acid Receptors. Nature. 2009;462:602–608. doi: 10.1038/nature08613. PubMed DOI PMC

Fujii H., Zhu J.-K. Arabidopsis Mutant Deficient in 3 Abscisic Acid-Activated Protein Kinases Reveals Critical Roles in Growth, Reproduction, and Stress. Proc. Natl. Acad. Sci. USA. 2009;106:8380–8385. doi: 10.1073/pnas.0903144106. PubMed DOI PMC

Soon F.-F., Ng L.-M., Zhou X.E., West G.M., Kovach A., Tan M.H.E., Suino-Powell K.M., He Y., Xu Y., Chalmers M.J., et al. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases. Science. 2012;335:85–88. doi: 10.1126/science.1215106. PubMed DOI PMC

Campalans A., Messeguer R., Goday A., Pagès M. Plant Responses to Drought, from ABA Signal Transduction Events to the Action of the Induced Proteins. Plant Physiol. Biochem. 1999;37:327–340. doi: 10.1016/S0981-9428(99)80039-4. DOI

Liu H., Xing M., Yang W., Mu X., Wang X., Lu F., Wang Y., Zhang L. Genome-Wide Identification of and Functional Insights into the Late Embryogenesis Abundant (LEA) Gene Family in Bread Wheat (Triticum Aestivum) Sci. Rep. 2019;9:13375. doi: 10.1038/s41598-019-49759-w. PubMed DOI PMC

Swaminathan K., Peterson K., Jack T. The Plant B3 Superfamily. Trends Plant Sci. 2008;13:647–655. doi: 10.1016/j.tplants.2008.09.006. PubMed DOI

Stone S.L., Kwong L.W., Yee K.M., Pelletier J., Lepiniec L., Fischer R.L., Goldberg R.B., Harada J.J. LEAFY COTYLEDON2 Encodes a B3 Domain Transcription Factor That Induces Embryo Development. Proc. Natl. Acad. Sci. USA. 2001;98:11806–11811. doi: 10.1073/pnas.201413498. PubMed DOI PMC

Giraudat J., Hauge B.M., Valon C., Smalle J., Parcy F., Goodman H.M. Isolation of the Arabidopsis ABI3 Gene by Positional Cloning. Plant Cell. 1992;4:1251–1261. doi: 10.1105/tpc.4.10.1251. PubMed DOI PMC

Luerßen H., Kirik V., Herrmann P., Miséra S. FUSCA3 Encodes a Protein with a Conserved VP1/ABI3-like B3 Domain Which Is of Functional Importance for the Regulation of Seed Maturation in Arabidopsis Thaliana. Plant J. 1998;15:755–764. doi: 10.1046/j.1365-313X.1998.00259.x. PubMed DOI

Stone S.L., Braybrook S.A., Paula S.L., Kwong L.W., Meuser J., Pelletier J., Hsieh T.-F., Fischer R.L., Goldberg R.B., Harada J.J. Arabidopsis LEAFY COTYLEDON2 Induces Maturation Traits and Auxin Activity: Implications for Somatic Embryogenesis. Proc. Natl. Acad. Sci. USA. 2008;105:3151–3156. doi: 10.1073/pnas.0712364105. PubMed DOI PMC

Grimault A., Gendrot G., Chaignon S., Gilard F., Tcherkez G., Thévenin J., Dubreucq B., Depège-Fargeix N., Rogowsky P.M. Role of B3 Domain Transcription Factors of the AFL Family in Maize Kernel Filling. Plant Sci. 2015;236:116–125. doi: 10.1016/j.plantsci.2015.03.021. PubMed DOI

Manan S., Ahmad M.Z., Zhang G., Chen B., Haq B.U., Yang J., Zhao J. Soybean LEC2 Regulates Subsets of Genes Involved in Controlling the Biosynthesis and Catabolism of Seed Storage Substances and Seed Development. Front. Plant Sci. 2017;8:1604. doi: 10.3389/fpls.2017.01604. PubMed DOI PMC

Meinke D.W., Franzmann L.H., Nickle T.C., Yeung E.C. Leafy Cotyledon Mutants of Arabidopsis. Plant Cell. 1994;6:1049–1064. doi: 10.2307/3869884. PubMed DOI PMC

Keith K., Kraml M., Dengler N.G., McCourt P. Fusca3: A Heterochronic Mutation Affecting Late Embryo Development in Arabidopsis. Plant Cell. 1994;6:589–600. doi: 10.2307/3869865. PubMed DOI PMC

McCarty D.R., Carson C.B., Stinard P.S., Robertson D.S. Molecular Analysis of Viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize. Plant Cell. 1989;1:523–532. doi: 10.2307/3868973. PubMed DOI PMC

Manan S., Zhao J. Role of Glycine Max ABSCISIC ACID INSENSITIVE 3 (GmABI3) in Lipid Biosynthesis and Stress Tolerance in Soybean. Funct. Plant Biol. FPB. 2020;48:171–179. doi: 10.1071/FP19260. PubMed DOI

Razem F.A., Baron K., Hill R.D. Turning on Gibberellin and Abscisic Acid Signaling. Curr. Opin. Plant Biol. 2006;9:454–459. doi: 10.1016/j.pbi.2006.07.007. PubMed DOI

Hays D.B., Yeung E.C., Pharis R.P. The Role of Gibberellins in Embryo Axis Development. J. Exp. Bot. 2002;53:1747–1751. doi: 10.1093/jxb/erf017. PubMed DOI

Swain S.M., Reid J.B., Kamiya Y. Gibberellins Are Required for Embryo Growth and Seed Development in Pea. Plant J. 1997;12:1329–1338. doi: 10.1046/j.1365-313x.1997.12061329.x. DOI

Sun T., Gubler F. Molecular Mechanism of Gibberellin Signaling in Plants. Annu. Rev. Plant Biol. 2004;55:197–223. doi: 10.1146/annurev.arplant.55.031903.141753. PubMed DOI

Murase K., Hirano Y., Sun T., Hakoshima T. Gibberellin-Induced DELLA Recognition by the Gibberellin Receptor GID1. Nature. 2008;456:459–463. doi: 10.1038/nature07519. PubMed DOI

Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., Chow T., Hsing Y.C., Kitano H., Yamaguchi I., et al. GIBBERELLIN INSENSITIVE DWARF1 Encodes a Soluble Receptor for Gibberellin. Nature. 2005;437:693–698. doi: 10.1038/nature04028. PubMed DOI

Hu Y., Zhou L., Huang M., He X., Yang Y., Liu X., Li Y., Hou X. Gibberellins Play an Essential Role in Late Embryogenesis of Arabidopsis. Nat. Plants. 2018;4:289–298. doi: 10.1038/s41477-018-0143-8. PubMed DOI

Miller C.O., Skoog F., Von Saltza M.H., Strong F.M. KINETIN, A CELL DIVISION FACTOR FROM DEOXYRIBONUCLEIC ACID1. J. Am. Chem. Soc. 1955;77:1392. doi: 10.1021/ja01610a105. DOI

Riefler M., Novak O., Strnad M., Schmülling T. Arabidopsis Cytokinin Receptor Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed Size, Germination, Root Development, and Cytokinin Metabolism. Plant Cell. 2006;18:40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC

Gonzalez-Rizzo S., Crespi M., Frugier F. The Medicago Truncatula CRE1 Cytokinin Receptor Regulates Lateral Root Development and Early Symbiotic Interaction with Sinorhizobium Meliloti. Plant Cell. 2006;18:2680–2693. doi: 10.1105/tpc.106.043778. PubMed DOI PMC

Hanano S., Domagalska M.A., Nagy F., Davis S.J. Multiple Phytohormones Influence Distinct Parameters of the Plant Circadian Clock. Genes Cells. 2006;11:1381–1392. doi: 10.1111/j.1365-2443.2006.01026.x. PubMed DOI

Schaller G.E., Bishopp A., Kieber J.J. The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. Plant Cell. 2015;27:44–63. doi: 10.1105/tpc.114.133595. PubMed DOI PMC

Müller B., Sheen J. Cytokinin and Auxin Interaction in Root Stem-Cell Specification during Early Embryogenesis. Nature. 2008;453:1094–1097. doi: 10.1038/nature06943. PubMed DOI PMC

Fukaki H., Tasaka M. Hormone Interactions during Lateral Root Formation. Plant Mol. Biol. 2008;69:437. doi: 10.1007/s11103-008-9417-2. PubMed DOI

Hallmark H.T., Rashotte A.M. Review—Cytokinin Response Factors: Responding to More than Cytokinin. Plant Sci. 2019;289:110251. doi: 10.1016/j.plantsci.2019.110251. PubMed DOI

Shi X., Gupta S., Rashotte A.M. Characterization of Two Tomato AP2/ERF Genes, SlCRF1 and SlCRF2 in Hormone and Stress Responses. Plant Cell Rep. 2014;33:35–45. doi: 10.1007/s00299-013-1510-6. PubMed DOI

Šimášková M., O’Brien J.A., Khan M., Van Noorden G., Ötvös K., Vieten A., De Clercq I., Van Haperen J.M.A., Cuesta C., Hoyerová K., et al. Cytokinin Response Factors Regulate PIN-FORMED Auxin Transporters. Nat. Commun. 2015;6:8717. doi: 10.1038/ncomms9717. PubMed DOI

Capote T., Usié A., Barbosa P., Ramos M., Morais-Cecílio L., Gonçalves S. Transcriptome Dynamics of Cork Oak (Quercus Suber) Somatic Embryogenesis Reveals Active Gene Players in Transcription Regulation and Phytohormone Homeostasis of Embryo Development. Tree Genet. Genomes. 2019;15:52. doi: 10.1007/s11295-019-1353-6. DOI

Hesami M., Pepe M., Alizadeh M., Rakei A., Baiton A., Phineas Jones A.M. Recent Advances in Cannabis Biotechnology. Ind. Crops Prod. 2020;158:113026. doi: 10.1016/j.indcrop.2020.113026. DOI

Chandra S., Lata H., Khan I.A., ElSohly M.A. Cannabis sativa L.: Botany and Horticulture. In: Chandra S., Lata H., ElSohly M.A., editors. Cannabis sativa L.—Botany and Biotechnology. Springer International Publishing; Cham, Switzerland: 2017. pp. 79–100.

McPartland J.M., Hegman W., Long T. Cannabis in Asia: Its Center of Origin and Early Cultivation, Based on a Synthesis of Subfossil Pollen and Archaeobotanical Studies. Veg. Hist. Archaeobotany. 2019;28:691–702. doi: 10.1007/s00334-019-00731-8. DOI

Mitchell J. The Secret History of Cannabis in Japan. Asia-Pac. J. 2014;12:6.

Russo E.B., Jiang H.-E., Li X., Sutton A., Carboni A., del Bianco F., Mandolino G., Potter D.J., Zhao Y.-X., Bera S., et al. Phytochemical and Genetic Analyses of Ancient Cannabis from Central Asia. J. Exp. Bot. 2008;59:4171–4182. doi: 10.1093/jxb/ern260. PubMed DOI PMC

Ren G., Zhang X., Li Y., Ridout K., Serrano-Serrano M.L., Yang Y., Liu A., Ravikanth G., Nawaz M.A., Mumtaz A.S., et al. Large-Scale Whole-Genome Resequencing Unravels the Domestication History of Cannabis sativa. Sci. Adv. 2021;7:eabg2286. doi: 10.1126/sciadv.abg2286. PubMed DOI PMC

Andre C.M., Hausman J.-F., Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016;7:19. doi: 10.3389/fpls.2016.00019. PubMed DOI PMC

Schilling S., Dowling C.A., Shi J., Ryan L., Hunt D., OReilly E., Perry A.S., Kinnane O., McCabe P.F., Melzer R. The Cream of the Crop: Biology, Breeding and Applications of Cannabis sativa. Annu. Plant Rev. Online. 2020;4:471–528. doi: 10.22541/au.160139712.25104053/v2. DOI

Karche T., Singh M. The Application of Hemp (Cannabis sativa L.) for a Green Economy: A Review. Turk. J. Bot. 2019;43:710–723. doi: 10.3906/bot-1907-15. DOI

Ahmed A.T.M.F., Islam M.Z., Mahmud M.S., Sarker M.E., Islam M.R. Hemp as a Potential Raw Material toward a Sustainable World: A Review. Heliyon. 2022;8:e08753. doi: 10.1016/j.heliyon.2022.e08753. PubMed DOI PMC

Hesami M., Pepe M., Baiton A., Salami S.A., Jones A.M.P. New Insight into Ornamental Applications of Cannabis: Perspectives and Challenges. Plants. 2022;11:2383. doi: 10.3390/plants11182383. PubMed DOI PMC

Sharma D., Bhushan S., Agrawal D.C., Dhar M.K., Kaul S. Cannabis as a Potent Therapeutic Agent for Pharmaceutical Drugs: Recent Advancement in Drug Discovery and Human Healthcare. In: Agrawal D.C., Kumar R., Dhanasekaran M., editors. Cannabis/Marijuana for Healthcare. Springer Nature; Singapore: 2022. pp. 77–99.

Hesami M., Baiton A., Alizadeh M., Pepe M., Torkamaneh D., Jones A.M.P. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int. J. Mol. Sci. 2021;22:5671. doi: 10.3390/ijms22115671. PubMed DOI PMC

Adhikary D., Kulkarni M., El-Mezawy A., Mobini S., Elhiti M., Gjuric R., Ray A., Polowick P., Slaski J.J., Jones M.P., et al. Medical Cannabis and Industrial Hemp Tissue Culture: Present Status and Future Potential. Front. Plant Sci. 2021;12:627240. doi: 10.3389/fpls.2021.627240. PubMed DOI PMC

van Bakel H., Stout J.M., Cote A.G., Tallon C.M., Sharpe A.G., Hughes T.R., Page J.E. The Draft Genome and Transcriptome of Cannabis sativa. Genome Biol. 2011;12:R102. doi: 10.1186/gb-2011-12-10-r102. PubMed DOI PMC

Gao S., Wang B., Xie S., Xu X., Zhang J., Pei L., Yu Y., Yang W., Zhang Y. A High-Quality Reference Genome of Wild Cannabis sativa. Hortic. Res. 2020;7:1–11. doi: 10.1038/s41438-020-0295-3. PubMed DOI PMC

MacKinnon L., McDougall G., Aziz N., Millam S. Progress towards Transformation of Fibre Hemp. Annu. Rep. Scott. Crop. Res. Inst. 2000;18:84–86.

Feeney M., Punja Z.K. Tissue Culture and Agrobacterium-Mediated Transformation of Hemp (Cannabis sativa L.) Vitro Cell. Dev. Biol.—Plant. 2003;39:578–585. doi: 10.1079/IVP2003454. DOI

Wróbel T., Dreger M., Wielgus K., Słomski R. The Application of Plant in Vitro Cultures in Cannabinoid Production. Biotechnol. Lett. 2018;40:445–454. doi: 10.1007/s10529-017-2492-1. PubMed DOI

Lata H., Chandra S., Khan I., ElSohly M.A. Thidiazuron-Induced High-Frequency Direct Shoot Organogenesis of Cannabis sativa L. Vitro Cell. Dev. Biol.—Plant. 2009;45:12–19. doi: 10.1007/s11627-008-9167-5. DOI

Wang R., He L.-S., Xia B., Tong J.-F., Li N., Peng F. A Micropropagation System for Cloning of Hemp (Cannabis sativa L.) by Shoot Tip Culture. Pak. J. Bot. 2009;41:603–608.

Pepe M., Hesami M., Jones A.M.P. Machine Learning-Mediated Development and Optimization of Disinfection Protocol and Scarification Method for Improved In Vitro Germination of Cannabis Seeds. Plants. 2021;10:2397. doi: 10.3390/plants10112397. PubMed DOI PMC

Gao C., Cheng C., Zhao L., Yu Y., Tang Q., Xin P., Liu T., Yan Z., Guo Y., Zang G. Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress. Int. J. Genom. 2018;2018:1–13. doi: 10.1155/2018/3057272. PubMed DOI PMC

Zhao H., Xiong H., Chen J. Regional Comparison and Strategy Recommendations of Industrial Hemp in China Based on a SWOT Analysis. Sustainability. 2021;13:6419. doi: 10.3390/su13116419. DOI

Wang J., Li Y., Huang J., Yan T., Sun T. Growing Water Scarcity, Food Security and Government Responses in China. Glob. Food Secur. 2017;14:9–17. doi: 10.1016/j.gfs.2017.01.003. DOI

Amaducci S., Zatta A., Pelatti F., Venturi G. Influence of Agronomic Factors on Yield and Quality of Hemp (Cannabis sativa L.) Fibre and Implication for an Innovative Production System. Field Crops Res. 2008;107:161–169. doi: 10.1016/j.fcr.2008.02.002. DOI

Reed S.M. Embryo Rescue. In: Trigiano R.N., Gray D.J., editors. Plant Development and Biotechnology. CRC Press; New York, NY, USA: 2005. pp. 235–239.

Collins G.B., Grosser J.W. Cell Culture and Somatic Cell Genetics of Plants. Volume 1. Academic Press; New York, NY, USA: 1984. Culture of Embryos; pp. 241–257.

Davies P.J. Plant Hormones. 3rd ed. Springer; Dordrecht, The Netherlands: 2010.

Chen Q., Westfall C.S., Hicks L.M., Wang S., Jez J.M. Kinetic Basis for the Conjugation of Auxin by a GH3 Family Indole-Acetic Acid-Amido Synthetase*. J. Biol. Chem. 2010;285:29780–29786. doi: 10.1074/jbc.M110.146431. PubMed DOI PMC

Mayer A.M., Poljakoff-Mayber A. The Germination of Seeds. 4th ed. Pergamon Press; Oxford, UK: 1989.

Kristiansen K., Ørnstrup H., Brandt K. In Vitro PPFD and Media Composition Affect both in and Ex Vitro Performance of Alstroemeria Butterfly-Hybrids. Plant Cell Tissue Organ Cult. 1999;56:145–153. doi: 10.1023/A:1006208119297. DOI

Mroginski L.A., Rouvier S.M., Fabisik J.C., Levit M., Marassi M.A., Sansberro P.A., Rey H.Y. Effect of Medium Composition and Light Supply on in Vitro Shoot Proliferation in Ilex Paraguariensis (Aquifoloaceae) J. Plant Nutr. 1999;22:359–368. doi: 10.1080/01904169909365633. DOI

Morard P., Henry M. Optimization of the Mineral Composition of in Vitro Culture Media. J. Plant Nutr. 1998;21:1565–1576. doi: 10.1080/01904169809365504. DOI

Xu L., Li S., Shabala S., Jian T., Zhang W. Plants Grown in Parafilm-Wrapped Petri Dishes Are Stressed and Possess Altered Gene Expression Profile. Front. Plant Sci. 2019;10:637. doi: 10.3389/fpls.2019.00637. PubMed DOI PMC

Jackson M.B., Belcher A.R., Brain P. Measuring Shortcomings in Tissue Culture Aeration and Their Consequences for Explant Development. In: Lumsden P.J., Nicholas J.R., Davies W.J., editors. Physiology, Growth and Development of Plants in Culture. Springer; Dordrecht, The Netherlands: 1994. pp. 191–203.

Wang M., Su L., Cong Y., Chen J., Geng Y., Qian C., Xu Q., Chen X., Qi X. Sugars Enhance Parthenocarpic Fruit Formation in Cucumber by Promoting Auxin and Cytokinin Signaling. Sci. Hortic. 2021;283:110061. doi: 10.1016/j.scienta.2021.110061. DOI

Hughes D.W., Galau G.A. Developmental and Environmental Induction of Lea and LeaA MRNAs and the Postabscission Program during Embryo Culture. Plant Cell. 1991;3:605–618. doi: 10.1105/tpc.3.6.605. PubMed DOI PMC

Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Pfaffl M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Vasavada N. One-Way ANOVA (ANalysis Of VAriance) with Post-Hoc Tukey HSD (Honestly Significant Difference) Test Calculator for Comparing Multiple Treatments. [(accessed on 5 September 2022)]. Available online: https://astatsa.com/OneWay_Anova_with_TukeyHSD/

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...