Expression of Genes Involved in ABA and Auxin Metabolism and LEA Gene during Embryogenesis in Hemp
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910103
Ministry of Agriculture
IGA PrF-2022-002
IGA PrF, UPOL
PubMed
36365448
PubMed Central
PMC9657790
DOI
10.3390/plants11212995
PII: plants11212995
Knihovny.cz E-zdroje
- Klíčová slova
- Cannabis sativa, LEA gene, RT-qPCR, abscisic acid, auxin, embryo cultures, embryogenesis, gene expression,
- Publikační typ
- časopisecké články MeSH
The level of phytohormones such as abscisic acid (ABA) and auxins (Aux) changes dynamically during embryogenesis. Knowledge of the transcriptional activity of the genes of their metabolic pathways is essential for a deeper understanding of embryogenesis itself; however, it could also help breeding programs of important plants, such as Cannabis sativa, attractive for the pharmaceutical, textile, cosmetic, and food industries. This work aimed to find out how genes of metabolic pathways of Aux (IAA-1, IAA-2, X15-1, X15-2) and ABA (PP2C-1) alongside one member of the LEA gene family (CanLea34) are expressed in embryos depending on the developmental stage and the embryo cultivation in vitro. Walking stick (WS) and mature (M) cultivated and uncultivated embryos of C. sativa cultivars 'KC Dora' and 'USO 31' were analyzed. The RT-qPCR results indicated that for the development of immature (VH) embryos, the genes (IAA-1, IAA-2) are likely to be fundamental. Only an increased expression of the CanLea34 gene was characteristic of the fully maturated (M) embryos. In addition, this feature was significantly increased by cultivation. In conclusion, the cultivation led to the upsurge of expression of all studied genes.
Zobrazit více v PubMed
De Smet I., Lau S., Mayer U., Jürgens G. Embryogenesis—The Humble Beginnings of Plant Life. Plant J. 2010;61:959–970. doi: 10.1111/j.1365-313X.2010.04143.x. PubMed DOI
de Vries S.C., Weijers D. Plant Embryogenesis. Curr. Biol. 2017;27:R870–R873. doi: 10.1016/j.cub.2017.05.026. PubMed DOI
Vaddepalli P., de Zeeuw T., Strauss S., Bürstenbinder K., Liao C.-Y., Ramalho J.J., Smith R.S., Weijers D. Auxin-Dependent Control of Cytoskeleton and Cell Shape Regulates Division Orientation in the Arabidopsis Embryo. Curr. Biol. 2021;31:4946–4955.e4. doi: 10.1016/j.cub.2021.09.019. PubMed DOI PMC
Leyser O. Auxin Signaling. Plant Physiol. 2018;176:465–479. doi: 10.1104/pp.17.00765. PubMed DOI PMC
Robert H.S., Grones P., Stepanova A.N., Robles L.M., Lokerse A.S., Alonso J.M., Weijers D., Friml J. Local Auxin Sources Orient the Apical-Basal Axis in Arabidopsis Embryos. Curr. Biol. 2013;23:2506–2512. doi: 10.1016/j.cub.2013.09.039. PubMed DOI
Chapman E., Estelle M. Mechanism of Auxin-Regulated Gene Expression in Plants. Annu. Rev. Genet. 2009;43:265–285. doi: 10.1146/annurev-genet-102108-134148. PubMed DOI
Salehin M., Bagchi R., Estelle M. SCFTIR1/AFB-Based Auxin Perception: Mechanism and Role in Plant Growth and Development. Plant Cell. 2015;27:9–19. doi: 10.1105/tpc.114.133744. PubMed DOI PMC
Penfield S. Seed Dormancy and Germination. Curr. Biol. 2017;27:R874–R878. doi: 10.1016/j.cub.2017.05.050. PubMed DOI
Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. Abscisic Acid: Emergence of a Core Signaling Network. Annu. Rev. Plant Biol. 2010;61:651–679. doi: 10.1146/annurev-arplant-042809-112122. PubMed DOI
Zhu J.-K. Abiotic Stress Signaling and Responses in Plants. Cell. 2016;167:313–324. doi: 10.1016/j.cell.2016.08.029. PubMed DOI PMC
Gong Z., Xiong L., Shi H., Yang S., Herrera-Estrella L.R., Xu G., Chao D.-Y., Li J., Wang P.-Y., Qin F., et al. Plant Abiotic Stress Response and Nutrient Use Efficiency. Sci. China Life Sci. 2020;63:635–674. doi: 10.1007/s11427-020-1683-x. PubMed DOI
Park S.-Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T.F., et al. Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science. 2009;324:1068–1071. doi: 10.1126/science.1173041. PubMed DOI PMC
Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., Grill E. Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science. 2009;324:1064–1068. doi: 10.1126/science.1172408. PubMed DOI
Melcher K., Ng L.-M., Zhou X.E., Soon F.-F., Xu Y., Suino-Powell K.M., Park S.-Y., Weiner J.J., Fujii H., Chinnusamy V., et al. A Gate-Latch-Lock Mechanism for Hormone Signalling by Abscisic Acid Receptors. Nature. 2009;462:602–608. doi: 10.1038/nature08613. PubMed DOI PMC
Fujii H., Zhu J.-K. Arabidopsis Mutant Deficient in 3 Abscisic Acid-Activated Protein Kinases Reveals Critical Roles in Growth, Reproduction, and Stress. Proc. Natl. Acad. Sci. USA. 2009;106:8380–8385. doi: 10.1073/pnas.0903144106. PubMed DOI PMC
Soon F.-F., Ng L.-M., Zhou X.E., West G.M., Kovach A., Tan M.H.E., Suino-Powell K.M., He Y., Xu Y., Chalmers M.J., et al. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases. Science. 2012;335:85–88. doi: 10.1126/science.1215106. PubMed DOI PMC
Campalans A., Messeguer R., Goday A., Pagès M. Plant Responses to Drought, from ABA Signal Transduction Events to the Action of the Induced Proteins. Plant Physiol. Biochem. 1999;37:327–340. doi: 10.1016/S0981-9428(99)80039-4. DOI
Liu H., Xing M., Yang W., Mu X., Wang X., Lu F., Wang Y., Zhang L. Genome-Wide Identification of and Functional Insights into the Late Embryogenesis Abundant (LEA) Gene Family in Bread Wheat (Triticum Aestivum) Sci. Rep. 2019;9:13375. doi: 10.1038/s41598-019-49759-w. PubMed DOI PMC
Swaminathan K., Peterson K., Jack T. The Plant B3 Superfamily. Trends Plant Sci. 2008;13:647–655. doi: 10.1016/j.tplants.2008.09.006. PubMed DOI
Stone S.L., Kwong L.W., Yee K.M., Pelletier J., Lepiniec L., Fischer R.L., Goldberg R.B., Harada J.J. LEAFY COTYLEDON2 Encodes a B3 Domain Transcription Factor That Induces Embryo Development. Proc. Natl. Acad. Sci. USA. 2001;98:11806–11811. doi: 10.1073/pnas.201413498. PubMed DOI PMC
Giraudat J., Hauge B.M., Valon C., Smalle J., Parcy F., Goodman H.M. Isolation of the Arabidopsis ABI3 Gene by Positional Cloning. Plant Cell. 1992;4:1251–1261. doi: 10.1105/tpc.4.10.1251. PubMed DOI PMC
Luerßen H., Kirik V., Herrmann P., Miséra S. FUSCA3 Encodes a Protein with a Conserved VP1/ABI3-like B3 Domain Which Is of Functional Importance for the Regulation of Seed Maturation in Arabidopsis Thaliana. Plant J. 1998;15:755–764. doi: 10.1046/j.1365-313X.1998.00259.x. PubMed DOI
Stone S.L., Braybrook S.A., Paula S.L., Kwong L.W., Meuser J., Pelletier J., Hsieh T.-F., Fischer R.L., Goldberg R.B., Harada J.J. Arabidopsis LEAFY COTYLEDON2 Induces Maturation Traits and Auxin Activity: Implications for Somatic Embryogenesis. Proc. Natl. Acad. Sci. USA. 2008;105:3151–3156. doi: 10.1073/pnas.0712364105. PubMed DOI PMC
Grimault A., Gendrot G., Chaignon S., Gilard F., Tcherkez G., Thévenin J., Dubreucq B., Depège-Fargeix N., Rogowsky P.M. Role of B3 Domain Transcription Factors of the AFL Family in Maize Kernel Filling. Plant Sci. 2015;236:116–125. doi: 10.1016/j.plantsci.2015.03.021. PubMed DOI
Manan S., Ahmad M.Z., Zhang G., Chen B., Haq B.U., Yang J., Zhao J. Soybean LEC2 Regulates Subsets of Genes Involved in Controlling the Biosynthesis and Catabolism of Seed Storage Substances and Seed Development. Front. Plant Sci. 2017;8:1604. doi: 10.3389/fpls.2017.01604. PubMed DOI PMC
Meinke D.W., Franzmann L.H., Nickle T.C., Yeung E.C. Leafy Cotyledon Mutants of Arabidopsis. Plant Cell. 1994;6:1049–1064. doi: 10.2307/3869884. PubMed DOI PMC
Keith K., Kraml M., Dengler N.G., McCourt P. Fusca3: A Heterochronic Mutation Affecting Late Embryo Development in Arabidopsis. Plant Cell. 1994;6:589–600. doi: 10.2307/3869865. PubMed DOI PMC
McCarty D.R., Carson C.B., Stinard P.S., Robertson D.S. Molecular Analysis of Viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize. Plant Cell. 1989;1:523–532. doi: 10.2307/3868973. PubMed DOI PMC
Manan S., Zhao J. Role of Glycine Max ABSCISIC ACID INSENSITIVE 3 (GmABI3) in Lipid Biosynthesis and Stress Tolerance in Soybean. Funct. Plant Biol. FPB. 2020;48:171–179. doi: 10.1071/FP19260. PubMed DOI
Razem F.A., Baron K., Hill R.D. Turning on Gibberellin and Abscisic Acid Signaling. Curr. Opin. Plant Biol. 2006;9:454–459. doi: 10.1016/j.pbi.2006.07.007. PubMed DOI
Hays D.B., Yeung E.C., Pharis R.P. The Role of Gibberellins in Embryo Axis Development. J. Exp. Bot. 2002;53:1747–1751. doi: 10.1093/jxb/erf017. PubMed DOI
Swain S.M., Reid J.B., Kamiya Y. Gibberellins Are Required for Embryo Growth and Seed Development in Pea. Plant J. 1997;12:1329–1338. doi: 10.1046/j.1365-313x.1997.12061329.x. DOI
Sun T., Gubler F. Molecular Mechanism of Gibberellin Signaling in Plants. Annu. Rev. Plant Biol. 2004;55:197–223. doi: 10.1146/annurev.arplant.55.031903.141753. PubMed DOI
Murase K., Hirano Y., Sun T., Hakoshima T. Gibberellin-Induced DELLA Recognition by the Gibberellin Receptor GID1. Nature. 2008;456:459–463. doi: 10.1038/nature07519. PubMed DOI
Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., Chow T., Hsing Y.C., Kitano H., Yamaguchi I., et al. GIBBERELLIN INSENSITIVE DWARF1 Encodes a Soluble Receptor for Gibberellin. Nature. 2005;437:693–698. doi: 10.1038/nature04028. PubMed DOI
Hu Y., Zhou L., Huang M., He X., Yang Y., Liu X., Li Y., Hou X. Gibberellins Play an Essential Role in Late Embryogenesis of Arabidopsis. Nat. Plants. 2018;4:289–298. doi: 10.1038/s41477-018-0143-8. PubMed DOI
Miller C.O., Skoog F., Von Saltza M.H., Strong F.M. KINETIN, A CELL DIVISION FACTOR FROM DEOXYRIBONUCLEIC ACID1. J. Am. Chem. Soc. 1955;77:1392. doi: 10.1021/ja01610a105. DOI
Riefler M., Novak O., Strnad M., Schmülling T. Arabidopsis Cytokinin Receptor Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed Size, Germination, Root Development, and Cytokinin Metabolism. Plant Cell. 2006;18:40–54. doi: 10.1105/tpc.105.037796. PubMed DOI PMC
Gonzalez-Rizzo S., Crespi M., Frugier F. The Medicago Truncatula CRE1 Cytokinin Receptor Regulates Lateral Root Development and Early Symbiotic Interaction with Sinorhizobium Meliloti. Plant Cell. 2006;18:2680–2693. doi: 10.1105/tpc.106.043778. PubMed DOI PMC
Hanano S., Domagalska M.A., Nagy F., Davis S.J. Multiple Phytohormones Influence Distinct Parameters of the Plant Circadian Clock. Genes Cells. 2006;11:1381–1392. doi: 10.1111/j.1365-2443.2006.01026.x. PubMed DOI
Schaller G.E., Bishopp A., Kieber J.J. The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. Plant Cell. 2015;27:44–63. doi: 10.1105/tpc.114.133595. PubMed DOI PMC
Müller B., Sheen J. Cytokinin and Auxin Interaction in Root Stem-Cell Specification during Early Embryogenesis. Nature. 2008;453:1094–1097. doi: 10.1038/nature06943. PubMed DOI PMC
Fukaki H., Tasaka M. Hormone Interactions during Lateral Root Formation. Plant Mol. Biol. 2008;69:437. doi: 10.1007/s11103-008-9417-2. PubMed DOI
Hallmark H.T., Rashotte A.M. Review—Cytokinin Response Factors: Responding to More than Cytokinin. Plant Sci. 2019;289:110251. doi: 10.1016/j.plantsci.2019.110251. PubMed DOI
Shi X., Gupta S., Rashotte A.M. Characterization of Two Tomato AP2/ERF Genes, SlCRF1 and SlCRF2 in Hormone and Stress Responses. Plant Cell Rep. 2014;33:35–45. doi: 10.1007/s00299-013-1510-6. PubMed DOI
Šimášková M., O’Brien J.A., Khan M., Van Noorden G., Ötvös K., Vieten A., De Clercq I., Van Haperen J.M.A., Cuesta C., Hoyerová K., et al. Cytokinin Response Factors Regulate PIN-FORMED Auxin Transporters. Nat. Commun. 2015;6:8717. doi: 10.1038/ncomms9717. PubMed DOI
Capote T., Usié A., Barbosa P., Ramos M., Morais-Cecílio L., Gonçalves S. Transcriptome Dynamics of Cork Oak (Quercus Suber) Somatic Embryogenesis Reveals Active Gene Players in Transcription Regulation and Phytohormone Homeostasis of Embryo Development. Tree Genet. Genomes. 2019;15:52. doi: 10.1007/s11295-019-1353-6. DOI
Hesami M., Pepe M., Alizadeh M., Rakei A., Baiton A., Phineas Jones A.M. Recent Advances in Cannabis Biotechnology. Ind. Crops Prod. 2020;158:113026. doi: 10.1016/j.indcrop.2020.113026. DOI
Chandra S., Lata H., Khan I.A., ElSohly M.A. Cannabis sativa L.: Botany and Horticulture. In: Chandra S., Lata H., ElSohly M.A., editors. Cannabis sativa L.—Botany and Biotechnology. Springer International Publishing; Cham, Switzerland: 2017. pp. 79–100.
McPartland J.M., Hegman W., Long T. Cannabis in Asia: Its Center of Origin and Early Cultivation, Based on a Synthesis of Subfossil Pollen and Archaeobotanical Studies. Veg. Hist. Archaeobotany. 2019;28:691–702. doi: 10.1007/s00334-019-00731-8. DOI
Mitchell J. The Secret History of Cannabis in Japan. Asia-Pac. J. 2014;12:6.
Russo E.B., Jiang H.-E., Li X., Sutton A., Carboni A., del Bianco F., Mandolino G., Potter D.J., Zhao Y.-X., Bera S., et al. Phytochemical and Genetic Analyses of Ancient Cannabis from Central Asia. J. Exp. Bot. 2008;59:4171–4182. doi: 10.1093/jxb/ern260. PubMed DOI PMC
Ren G., Zhang X., Li Y., Ridout K., Serrano-Serrano M.L., Yang Y., Liu A., Ravikanth G., Nawaz M.A., Mumtaz A.S., et al. Large-Scale Whole-Genome Resequencing Unravels the Domestication History of Cannabis sativa. Sci. Adv. 2021;7:eabg2286. doi: 10.1126/sciadv.abg2286. PubMed DOI PMC
Andre C.M., Hausman J.-F., Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016;7:19. doi: 10.3389/fpls.2016.00019. PubMed DOI PMC
Schilling S., Dowling C.A., Shi J., Ryan L., Hunt D., OReilly E., Perry A.S., Kinnane O., McCabe P.F., Melzer R. The Cream of the Crop: Biology, Breeding and Applications of Cannabis sativa. Annu. Plant Rev. Online. 2020;4:471–528. doi: 10.22541/au.160139712.25104053/v2. DOI
Karche T., Singh M. The Application of Hemp (Cannabis sativa L.) for a Green Economy: A Review. Turk. J. Bot. 2019;43:710–723. doi: 10.3906/bot-1907-15. DOI
Ahmed A.T.M.F., Islam M.Z., Mahmud M.S., Sarker M.E., Islam M.R. Hemp as a Potential Raw Material toward a Sustainable World: A Review. Heliyon. 2022;8:e08753. doi: 10.1016/j.heliyon.2022.e08753. PubMed DOI PMC
Hesami M., Pepe M., Baiton A., Salami S.A., Jones A.M.P. New Insight into Ornamental Applications of Cannabis: Perspectives and Challenges. Plants. 2022;11:2383. doi: 10.3390/plants11182383. PubMed DOI PMC
Sharma D., Bhushan S., Agrawal D.C., Dhar M.K., Kaul S. Cannabis as a Potent Therapeutic Agent for Pharmaceutical Drugs: Recent Advancement in Drug Discovery and Human Healthcare. In: Agrawal D.C., Kumar R., Dhanasekaran M., editors. Cannabis/Marijuana for Healthcare. Springer Nature; Singapore: 2022. pp. 77–99.
Hesami M., Baiton A., Alizadeh M., Pepe M., Torkamaneh D., Jones A.M.P. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int. J. Mol. Sci. 2021;22:5671. doi: 10.3390/ijms22115671. PubMed DOI PMC
Adhikary D., Kulkarni M., El-Mezawy A., Mobini S., Elhiti M., Gjuric R., Ray A., Polowick P., Slaski J.J., Jones M.P., et al. Medical Cannabis and Industrial Hemp Tissue Culture: Present Status and Future Potential. Front. Plant Sci. 2021;12:627240. doi: 10.3389/fpls.2021.627240. PubMed DOI PMC
van Bakel H., Stout J.M., Cote A.G., Tallon C.M., Sharpe A.G., Hughes T.R., Page J.E. The Draft Genome and Transcriptome of Cannabis sativa. Genome Biol. 2011;12:R102. doi: 10.1186/gb-2011-12-10-r102. PubMed DOI PMC
Gao S., Wang B., Xie S., Xu X., Zhang J., Pei L., Yu Y., Yang W., Zhang Y. A High-Quality Reference Genome of Wild Cannabis sativa. Hortic. Res. 2020;7:1–11. doi: 10.1038/s41438-020-0295-3. PubMed DOI PMC
MacKinnon L., McDougall G., Aziz N., Millam S. Progress towards Transformation of Fibre Hemp. Annu. Rep. Scott. Crop. Res. Inst. 2000;18:84–86.
Feeney M., Punja Z.K. Tissue Culture and Agrobacterium-Mediated Transformation of Hemp (Cannabis sativa L.) Vitro Cell. Dev. Biol.—Plant. 2003;39:578–585. doi: 10.1079/IVP2003454. DOI
Wróbel T., Dreger M., Wielgus K., Słomski R. The Application of Plant in Vitro Cultures in Cannabinoid Production. Biotechnol. Lett. 2018;40:445–454. doi: 10.1007/s10529-017-2492-1. PubMed DOI
Lata H., Chandra S., Khan I., ElSohly M.A. Thidiazuron-Induced High-Frequency Direct Shoot Organogenesis of Cannabis sativa L. Vitro Cell. Dev. Biol.—Plant. 2009;45:12–19. doi: 10.1007/s11627-008-9167-5. DOI
Wang R., He L.-S., Xia B., Tong J.-F., Li N., Peng F. A Micropropagation System for Cloning of Hemp (Cannabis sativa L.) by Shoot Tip Culture. Pak. J. Bot. 2009;41:603–608.
Pepe M., Hesami M., Jones A.M.P. Machine Learning-Mediated Development and Optimization of Disinfection Protocol and Scarification Method for Improved In Vitro Germination of Cannabis Seeds. Plants. 2021;10:2397. doi: 10.3390/plants10112397. PubMed DOI PMC
Gao C., Cheng C., Zhao L., Yu Y., Tang Q., Xin P., Liu T., Yan Z., Guo Y., Zang G. Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress. Int. J. Genom. 2018;2018:1–13. doi: 10.1155/2018/3057272. PubMed DOI PMC
Zhao H., Xiong H., Chen J. Regional Comparison and Strategy Recommendations of Industrial Hemp in China Based on a SWOT Analysis. Sustainability. 2021;13:6419. doi: 10.3390/su13116419. DOI
Wang J., Li Y., Huang J., Yan T., Sun T. Growing Water Scarcity, Food Security and Government Responses in China. Glob. Food Secur. 2017;14:9–17. doi: 10.1016/j.gfs.2017.01.003. DOI
Amaducci S., Zatta A., Pelatti F., Venturi G. Influence of Agronomic Factors on Yield and Quality of Hemp (Cannabis sativa L.) Fibre and Implication for an Innovative Production System. Field Crops Res. 2008;107:161–169. doi: 10.1016/j.fcr.2008.02.002. DOI
Reed S.M. Embryo Rescue. In: Trigiano R.N., Gray D.J., editors. Plant Development and Biotechnology. CRC Press; New York, NY, USA: 2005. pp. 235–239.
Collins G.B., Grosser J.W. Cell Culture and Somatic Cell Genetics of Plants. Volume 1. Academic Press; New York, NY, USA: 1984. Culture of Embryos; pp. 241–257.
Davies P.J. Plant Hormones. 3rd ed. Springer; Dordrecht, The Netherlands: 2010.
Chen Q., Westfall C.S., Hicks L.M., Wang S., Jez J.M. Kinetic Basis for the Conjugation of Auxin by a GH3 Family Indole-Acetic Acid-Amido Synthetase*. J. Biol. Chem. 2010;285:29780–29786. doi: 10.1074/jbc.M110.146431. PubMed DOI PMC
Mayer A.M., Poljakoff-Mayber A. The Germination of Seeds. 4th ed. Pergamon Press; Oxford, UK: 1989.
Kristiansen K., Ørnstrup H., Brandt K. In Vitro PPFD and Media Composition Affect both in and Ex Vitro Performance of Alstroemeria Butterfly-Hybrids. Plant Cell Tissue Organ Cult. 1999;56:145–153. doi: 10.1023/A:1006208119297. DOI
Mroginski L.A., Rouvier S.M., Fabisik J.C., Levit M., Marassi M.A., Sansberro P.A., Rey H.Y. Effect of Medium Composition and Light Supply on in Vitro Shoot Proliferation in Ilex Paraguariensis (Aquifoloaceae) J. Plant Nutr. 1999;22:359–368. doi: 10.1080/01904169909365633. DOI
Morard P., Henry M. Optimization of the Mineral Composition of in Vitro Culture Media. J. Plant Nutr. 1998;21:1565–1576. doi: 10.1080/01904169809365504. DOI
Xu L., Li S., Shabala S., Jian T., Zhang W. Plants Grown in Parafilm-Wrapped Petri Dishes Are Stressed and Possess Altered Gene Expression Profile. Front. Plant Sci. 2019;10:637. doi: 10.3389/fpls.2019.00637. PubMed DOI PMC
Jackson M.B., Belcher A.R., Brain P. Measuring Shortcomings in Tissue Culture Aeration and Their Consequences for Explant Development. In: Lumsden P.J., Nicholas J.R., Davies W.J., editors. Physiology, Growth and Development of Plants in Culture. Springer; Dordrecht, The Netherlands: 1994. pp. 191–203.
Wang M., Su L., Cong Y., Chen J., Geng Y., Qian C., Xu Q., Chen X., Qi X. Sugars Enhance Parthenocarpic Fruit Formation in Cucumber by Promoting Auxin and Cytokinin Signaling. Sci. Hortic. 2021;283:110061. doi: 10.1016/j.scienta.2021.110061. DOI
Hughes D.W., Galau G.A. Developmental and Environmental Induction of Lea and LeaA MRNAs and the Postabscission Program during Embryo Culture. Plant Cell. 1991;3:605–618. doi: 10.1105/tpc.3.6.605. PubMed DOI PMC
Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Pfaffl M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Vasavada N. One-Way ANOVA (ANalysis Of VAriance) with Post-Hoc Tukey HSD (Honestly Significant Difference) Test Calculator for Comparing Multiple Treatments. [(accessed on 5 September 2022)]. Available online: https://astatsa.com/OneWay_Anova_with_TukeyHSD/