The use of silver solid amalgam electrodes for voltammetric and amperometric determination of nitrated polyaromatic compounds used as markers of incomplete combustion

. 2012 ; 2012 () : 231986. [epub] 20120430

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22619628

Genotoxic nitrated polycyclic aromatic hydrocarbons (NPAHs) are formed during incomplete combustion processes by reaction of polycyclic aromatic hydrocarbons (PAHs) with atmospheric nitrogen oxides. 1-Nitropyrene, 2-nitrofluorene, and 3-nitrofluoranthene as the dominating substances are used as markers of NPAHs formation by these processes. In the presented study, voltammetric properties and quantification of these compounds and of 5-nitroquinoline (as a representative of environmentally important genotoxic heterocyclic compounds) have been investigated using a mercury meniscus modified silver solid amalgam electrode (m-AgSAE), which represent a nontoxic alternative to traditional mercury electrodes. Linear calibration curves over three orders of magnitude and limits of determination mostly in the 10(-7) mol L(-1) concentration range were obtained using direct current and differential pulse voltammetry. Further, satisfactory HPLC separation of studied analytes in fifteen minutes was achieved using 0.01 mol L(-1) phosphate buffer, pH 7.0 : methanol (15 : 85, v/v) mobile phase, and C(18) reversed stationary phase. Limits of detection of around 1 · 10(-5) mol L(-1) were achieved using amperometric detection at m-AgSAE in wall-jet arrangement for all studied analytes. Practical applicability of this technique was demonstrated on the determination of 1-nitropyrene, 2-nitrofluorene, 3-nitrofluoranthene, and 5-nitroquinoline in drinking water after their preliminary separation and preconcentration using solid phase extraction with the limits of detection around 1 · 10(-6) mol L(-1).

Zobrazit více v PubMed

Novotný L, Yosypchuk B. Solid silver amalgam electrodes. Chemicke Listy. 2000;94(12):1118–1120.

Mikkelsen Ø, Schrøder K. Dental amalgam in voltammetry. Some preliminary results. Analytical Letters. 2000;33(15):3253–3269.

Yosypchuk B, Novotný L. Electrodes of nontoxic solid amalgams for electrochemical measurements. Electroanalysis. 2002;14(24):1733–1738.

Yosypchuk B, Novotný L. Nontoxic electrodes of solid amalgams. Critical Reviews in Analytical Chemistry. 2002;32(2):141–151.

Barek J, Fischer J, Navrátil T, Pecková K, Yosypchuk B, Zima J. Nontraditional electrode materials in environmental analysis of biologically active organic compounds. Electroanalysis. 2007;19(19-20):2003–2014.

Yosypchuk B, Barek J. Analytical applications of solid and paste amalgam electrodes. Critical Reviews in Analytical Chemistry. 2009;39(3):189–203.

Danhel A, Barek J. Amalgam electrodes in organic electrochemistry. Current Organic Chemistry. 2011;15(17):2957–2969.

Vyskočil V, Barek J. Mercury electrodes-possibilities and limitations in environmental electroanalysis. Critical Reviews in Analytical Chemistry. 2009;39(3):173–188.

Vyskočil V, Barek J. Electroanalysis of nitro and amino derivatives of polycyclic aromatic hydrocarbons. Current Organic Chemistry. 2011;15(17):3059–3076.

Jiranek I, Peckova K, Kralova Z, Moreira JC, Barek J. The use of silver solid amalgam electrode for voltammetric and amperometric determination of nitroquinolines. Electrochimica Acta. 2009;54(7):1939–1947.

Pecková K, Vrzalová L, Bencko V, Barek J. Voltammetric and amperometric determination of N-nitroso antineoplastic drugs at mercury and amalgam electrodes. Collection of Czechoslovak Chemical Communications. 2009;74(11-12):1697–1713.

Danhel A, Shin KK, Yosypchuk B, Barek J, Peckova K, Vyskocil V. The use of silver solid amalgam working electrode for determination of nitrophenols by HPLC with electrochemical detection. Electroanalysis. 2009;21(3–5):303–308.

WHO. Selected Nitro- and Nitro-Oxy-Polycyclic Aromatic Hydrocarbons. Geneva, Switzerland: WHO; 2003.

Bleeker EAJ, Wiegman S, de Voogt P. Reviews of Environmental Contamination and Toxicology. New York, NY, USA: Springer; 2002.

Naughton ABJ, Jespersen ND. Detection of nitroaromatics as mutagenic components of used motor oils. Analytica Chimica Acta. 1991;251(1-2):95–99.

Scheepers PTJ, Bos RP. Combustion of diesel fuel from a toxicological perspective I. Origin of incomplete combustion products. International Archives of Occupational and Environmental Health. 1992;64(3):149–161. PubMed

Zielinska B, Samy S. Analysis of nitrated polycyclic aromatic hydrocarbons. Analytical and Bioanalytical Chemistry. 2006;386(4):883–890. PubMed

Atkinson R, Arey J. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environmental Health Perspectives. 1994;102(4):117–126. PubMed PMC

Zielinska B, Arey J, Atkinson R, Winer AM. The nitroarenes of molecular weight 247 in ambient particulate samples collected in southern California. Atmospheric Environment. 1989;23(1):223–229.

Arey J, Zielinksa B, Atkinson R. The formation of nitro-PAH from the gas-phase reactions of fluoranthene and pyrene with the OH radical in the presence of NOx . Atmospheric Environment Part A. 1986;20(12):2339–2345.

Arey J, Zielinska B, Atkinson R, Winer AM. Polycyclic aromatic hydrocarbon and nitroarene concentrations in ambient air during a wintertime high-NOx episode in the Los Angeles basin. Atmospheric Environment Part A. 1987;21(6):1437–1444.

Jacob J, Karcher W, Belliardo JJ, Dumler R, Boenke A. Polycyclic aromatic compounds of environmental and occupational importance—their occurrence, toxicity and the development of high-purity certified reference materials—part III. Fresenius’ Journal of Analytical Chemistry. 1991;340(12):755–767.

Moreira JC, Barek J. Analysis of carcinogenic nitrated polycyclic aromatic hydrocarbons. Quimica Nova. 1995;18:362–367.

Pereira Netto AD, Moreira JC, Dias AEXO, et al. Evaluation of human contamination with polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NPAHs): a review of methodology. Quimica Nova. 2000;23(6):765–773.

Kuo C-T, Chen H-W, Lin S-T. Trace determination of nitrated polycyclic aromatic hydrocarbons using liquid chromatography with on-line electrochemical reduction and fluorescence detection. Analytica Chimica Acta. 2003;482(2):219–228.

Murayama M, Dasgupta PK. Liquid chromatographic determination of nitro-substituted polynuclear aromatic hydrocarbons by sequential electrochemical and fluorescence detection. Analytical Chemistry. 1996;68(7):1226–1232. PubMed

Schauer C, Niessner R, Pöschl U. Analysis of nitrated polycyclic aromatic hydrocarbons by liquid chromatography with fluorescence and mass spectrometry detection: air particulate matter, soot, and reaction product studies. Analytical and Bioanalytical Chemistry. 2004;378(3):725–736. PubMed

Brichac J, Zima J, Barek J. HPLC determination of nitrated polycyclic aromatic hydrocarbons after their reduction to amino derivatives. Analytical Letters. 2004;37(11):2379–2392.

Hayakawa K, Noji K, Tang N, et al. A high-performance liquid chromatographic system equipped with on-line reducer, clean-up and concentrator columns for determination of trace levels of nitropolycyclic aromatic hydrocarbons in airborne particulates. Analytica Chimica Acta. 2001;445(2):205–212.

Rappaport SM, Jin ZL, Xu XB. High-performance liquid chromatography with reductive electrochemical detection of mutagenic nitro-substituted polynuclear aromatic hydrocarbons in diesel exhausts. Journal of Chromatography. 1982;240(1):145–154.

Galceran MT, Moyano E. Determination of oxygenated and nitro-substituted polycyclic aromatic hydrocarbons by HPLC and electrochemical detection. Talanta. 1993;40(5):615–621. PubMed

Barek J, Zima J, Moreira JC, Muck A. Polarographic and voltammetric determination of 1-nitropyrene. Collection of Czechoslovak Chemical Communications. 2000;65(12):1888–1896.

Barek J, Pumera M, Muck A, Kadeřábková M, Zima J. Polarographic and voltammetric determination of selected nitrated polycyclic aromatic hydrocarbons. Analytica Chimica Acta. 1999;393(1–3):141–146.

Čížek K, Barek J, Zima J. Polarographic and voltammetric determination of trace amounts of 3-nitrofluoranthene. Collection of Czechoslovak Chemical Communications. 2006;71(11-12):1571–1587.

Yosypchuk O, Pecková K, Barek J. Voltammetric determination of 1-nitropyrene and 1-aminopyrene at a boron-doped diamond film electrode. Chemicke Listy. 2010;104(3):186–190.

Vyskočil V, Daňhel A, Fischer J, et al. The beauty and usefulness of novel electrode materials. Chemicke Listy. 2010;104(12):1181–1195.

Cizek K, Barek J, Fischer J, Peckova K, Zima J. Voltammetric determination of 3-nitrofluoranthene and 3-aminofluoranthene at boron doped diamond thin-film electrode. Electroanalysis. 2007;19(12):1295–1299.

Inczedy J, Lengyel T, Ure AM. Compendium of Analytical Nomenclature (Definitive Rules 1997) Blackwell Science; 1998.

Zuman P, Fijalek Z, Dumanovic D, Suznjevic D. Polarographic and electrochemical studies of some aromatic and heterocyclic nitro-compounds—1. General mechanistic aspects. Electroanalysis. 1992;4:783–794.

Laviron E, Vallat A, Meunier-Prest R. The reduction mechanism of aromatic nitro compounds in aqueous medium—part V. The reduction of nitrosobenzene between pH 0.4 and 13. Journal of Electroanalytical Chemistry. 1994;379(1-2):427–435.

Pecková K, Barek J, Navrátil T, Yosypchuk B, Zima J. Voltammetric determination of nitronaphthalenes at a silver solid amalgam electrode. Analytical Letters. 2009;42(15):2339–2363.

Zuman P, Fijalek Z. Addition of hydroxide ions to nitrosobenzene: equilibria and some reactions of the adduct. Journal of Organic Chemistry. 1991;56(18):5486–5488.

Laviron E, Vallat A. Thin layer linear sweep voltammetry. A study of the condensation of nitrosobenzene with phenylhydroxylamine. Journal of Electroanalytical Chemistry. 1973;46(2):421–426.

Rubinstein I. Voltammetric study of nitrobenzene and related compounds on solid electrodes in aqueous solution. Journal of Electroanalytical Chemistry. 1985;183(1-2):379–386.

Cizek K. Prague, Czech Republic: Charles University in Prague; 2006. Ph.D. thesis.

Vaňková L, Maixnerová L, Čížek K, et al. Voltammetric determination of submicromolar concentrations of 3-nitrofluoranthene and pendimethalin at silver solid amalgam electrode. Chemicke Listy. 2006;100(12):1105–1110.

Barek J, Fischer J, Navratil T, Peckova K, Yosypchuk B. Silver solid amalgam electrodes as sensors for chemical carcinogens. Sensors. 2006;6(4):445–452.

Pecková K, Barek J, Moreira JC, Zima J. Polarographic and voltammetric determination of trace amounts of 2-nitronaphthalene. Analytical and Bioanalytical Chemistry. 2005;381(2):520–525. PubMed

Pecková K, Barek J, Zima J. Determination of trace-amounts of 1-nitronaphthalene by modern polarographic and voltammetric methods using mercury electrodes. Chemicke Listy. 2001;95(11):709–712.

Yosypchuk O, Barek J. Properties of solid and paste amalgam electrodes which are different from metal mercury electrodes. Chemicke Listy. 2009;103:284–290.

Yosypchuk B, Šestáková I. Working electrodes from amalgam paste for electrochemical measurements. Electroanalysis. 2008;20(4):426–433.

Tvrdikova J, Danhel A, Vyskocil V, Barek J. Analytical Sciences. submitted. PubMed

Danhel A, Mansfeldova V, Janda P, Vyskocil V, Barek J. Crystallic silver amalgam—a novel electrode material. Analyst. 2011;136(18):3656–3662. PubMed

Tvrdikova J, Danhel A, Barek J, Vyskocil V. Voltammetric and amperometric determination of selected dinitronaphthalenes using single crystal silver amalgam based sensors. Electrochimica Acta. In press.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...