Effect of augmented nutrient composition and fertigation system on biomass yield and cannabinoid content of medicinal cannabis (Cannabis sativa L.) cultivation

. 2024 ; 15 () : 1322824. [epub] 20240124

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38328699

Growing evidence underscores the role of nutrients and fertigation systems in soilless production, influencing medicinal cannabis biomass and secondary metabolite content. This study delves into the impact of enhanced nutrient regimes on the 'ionome' and its ramifications for biomass and cannabinoid production in medicinal cannabis, comparing two distinct fertigation systems: recirculation and drain-to-waste. Notably, we assess the optimal harvest time for maximizing profitability. In comparing the experimental variant with elevated levels of phosphorus (P), potassium (K), and iron (Fe) in the nutrient solution to the control variant, we observe distinct patterns in element composition across stems, leaves, and flowers, with significant differences between fertigation systems. Total nitrogen content was determined through the Kjeldahl method. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were employed for elemental analysis. Cannabinoid identification and quantification used high-performance liquid chromatography with a diode-array detector (HPLC/DAD). Followed statistical analyses included ANOVA and Tukey's HSD test. Although the augmented nutrient regimen does not substantially increase plant biomass, interesting differences emerge between the two fertigation systems. The recirculation fertigation system proves more profitable during the recommended harvest period. Nonetheless, the altered nutrient regime does not yield statistically significant differences in final inflorescence harvest mass or cannabinoid concentrations in medicinal cannabis. The choice of fertigation system influences the quantity and quality of harvested inflorescence. To optimize the balance between the dry biomass yield of flowers and cannabinoid concentration, primarily total THC yield (sum of tetrahydrocannabinolic acid, Δ9-tetrahydrocannabinol, and Δ8-tetrahydrocannabinol), we propose the 11th week of cultivation as the suitable harvest time for the recirculation system. Importantly, the recirculation system consistently outperformed the drain-to-waste system, especially after the ninth week, resulting in significantly higher total THC yields. Enriched nutrition, when compared with control, increased THC yield up to 50.7%, with a remarkable 182% surge in the recirculation system when compared with the drain-to-waste system.

Zobrazit více v PubMed

Ågren G. I., Wetterstedt J.Å.M., Billberger M. F. K. (2012). Nutrient limitation on terrestrial plant growth – modeling the interaction between nitrogen and phosphorus. New Phytol. 194, 953–960. doi: 10.1111/j.1469-8137.2012.04116.x PubMed DOI

Asao T. (2012). Hydroponics: a standard methodology for plant biological researches (Rijeka, Croatia: InTech; ).

Atherton H. R., Li P. (2023). Hydroponic cultivation of medicinal plants–plant organs and hydroponic systems: techniques and trends. Horticulturae 9, 349. doi: 10.3390/horticulturae9030349 DOI

Aubin M., Seguin P., Vanasse A., Tremblay G. F., Mustafa A. F., Charron J. (2015). Industrial hemp response to nitrogen, phosphorus, and potassium fertilization. Crop Forage Turfgrass Mgmt 1, 1–10. doi: 10.2134/cftm2015.0159 DOI

Baker W. H., Thompson T. L. (1992). Determination of total nitrogen in plant samples by Kjeldahl. Plant Anal. reference procedures South. region United States 1992, 13–16.

Balliu A., Zheng Y., Sallaku G., Fernández J. A., Gruda N. S., Tuzel Y. (2021). Environmental and cultivation factors affect the morphology, architecture and performance of root systems in soilless grown plants. Horticulturae 7, 243. doi: 10.3390/horticulturae7080243 DOI

Bernstein N., Gorelick J., Koch S. (2019. a). Interplay between chemistry and morphology in medical cannabis (Cannabis sativa L.). Ind. Crops Products 129, 185–194. doi: 10.1016/j.indcrop.2018.11.039 DOI

Bernstein N., Gorelick J., Zerahia R., Koch S. (2019. b). Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00736 PubMed DOI PMC

Bevan L., Jones M., Zheng Y. (2021). Optimisation of nitrogen, phosphorus, and potassium for soilless production of cannabis sativa in the flowering stage using response surface analysis. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.764103 PubMed DOI PMC

Bouchard M., Dion C. B. (2009). Growers and facilitators: probing the role of entrepreneurs in the development of the cannabis cultivation industry. J. Small Business Entrepreneurship 22, 25–37. doi: 10.1080/08276331.2009.10593440 DOI

Briat J.-F., Dubos C., Gaymard F. (2015). Iron nutrition, biomass production, and plant product quality. Trends Plant Sci. 20, 33–40. doi: 10.1016/j.tplants.2014.07.005 PubMed DOI

Caplan D., Dixon M., Zheng Y. (2017). Optimal rate of organic fertilizer during the flowering stage for cannabis grown in two coir-based substrates. horts 52, 1796–1803. doi: 10.21273/HORTSCI12401-17 DOI

Chandra S., Lata H., ElSohly M. A., Walker L. A., Potter D. (2017). Cannabis cultivation: Methodological issues for obtaining medical-grade product. Epilepsy Behav. 70, 302–312. doi: 10.1016/j.yebeh.2016.11.029 PubMed DOI

Chaouqi S., Moratalla-López N., Alonso G. L., Lorenzo C., Zouahri A., Asserar N., et al. (2023). Effect of Soil Composition on Secondary Metabolites of Moroccan Saffron (Crocus sativus L.). Plants 12, 711. doi: 10.3390/plants12040711 PubMed DOI PMC

Chrysargyris A., Drouza C., Tzortzakis N. (2017). Optimization of potassium fertilization/nutrition for growth, physiological development, essential oil composition and antioxidant activity of Lavandula angustifolia Mill. J. Soil Sci. Plant Nutr. 291–306. doi: 10.4067/S0718-95162017005000023 DOI

Coffman C. B., Gentner W. A. (1977). Response of greenhouse grown Cannabis sativa L. to nitrogen, phosphorus and potassium. Agron. J. 69 (5), 832–836. doi: 10.2134/agronj1977.00021962006900050026x DOI

Danziger N., Bernstein N. (2021). Plant architecture manipulation increases cannabinoid standardization in ‘drug-type’ medical cannabis. Ind. Crops Products 167, 113528. doi: 10.1016/j.indcrop.2021.113528 DOI

De Prato L., Ansari O., Hardy G. E., St. J., Howieson J., O’Hara G., et al. . (2022). The cannabinoid profile and growth of hemp (Cannabis sativa L.) is influenced by tropical daylengths and temperatures, genotype and nitrogen nutrition. Ind. Crops Products 178, 114605. doi: 10.1016/j.indcrop.2022.114605 DOI

Gaaliche B., Ladhari A., Zarrelli A., Ben Mimoun M. (2019). Impact of foliar potassium fertilization on biochemical composition and antioxidant activity of fig (Ficus carica L.). Scientia Hortic. 253, 111–119. doi: 10.1016/j.scienta.2019.04.024 DOI

Gorelick J., Bernstein N. (2014). “Chapter five - elicitation: an underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites,” in Advances in agronomy (Amsterdam: Elsevier; ), 201–230. doi: 10.1016/B978-0-12-800138-7.00005-X DOI

Hawkesford M., Horst W., Kichey T., Lambers H., Schjoerring J., Møller I. S., et al. . (2012). “Functions of macronutrients,” in Marschner’s mineral nutrition of higher plants (Amsterdam: Elsevier; ), 135–189. doi: 10.1016/B978-0-12-384905-2.00006-6 DOI

Hesami M., Baiton A., Alizadeh M., Pepe M., Torkamaneh D., Jones A. M. P. (2021). Advances and perspectives in tissue culture and genetic engineering of cannabis. IJMS 22, 5671. doi: 10.3390/ijms22115671 PubMed DOI PMC

Janatová A., Fraňková A., Tlustoš P., Hamouz K., Božik M., Klouček P. (2018). Yield and cannabinoids contents in different cannabis (Cannabis sativa L.) genotypes for medical use. Ind. Crops Products 112, 363–367. doi: 10.1016/j.indcrop.2017.12.006 DOI

Johnson R., Vishwakarma K., Hossen Md. S., Kumar V., Shackira A. M., Puthur J. T., et al. . (2022). Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 172, 56–69. doi: 10.1016/j.plaphy.2022.01.001 PubMed DOI

Král D., Šenkyřík J. B., Ondřej V. (2022). Expression of genes involved in ABA and auxin metabolism and LEA gene during embryogenesis in hemp. Plants 11, 2995. doi: 10.3390/plants11212995 PubMed DOI PMC

Križman M. (2020). A simplified approach for isocratic HPLC analysis of cannabinoids by fine tuning chromatographic selectivity. Eur. Food Res. Technol. 246, 315–322. doi: 10.1007/s00217-019-03344-7 DOI

Kumar S., Kumar S., Mohapatra T. (2021). Interaction between macro- and micro-nutrients in plants. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.665583 PubMed DOI PMC

Langenfeld N. J., Pinto D. F., Faust J. E., Heins R., Bugbee B. (2022). Principles of nutrient and water management for indoor agriculture. Sustainability 14, 10204. doi: 10.3390/su141610204 DOI

Lata H., Chandra S., Techen N., Khan I. A., ElSohly M. A. (2016). In vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. J. Appl. Res. Medicinal Aromatic Plants 3, 18–26. doi: 10.1016/j.jarmap.2015.12.001 DOI

Lee J. Y., Rahman A., Azam H., Kim H. S., Kwon M. J. (2017). Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. cerasiforme Alef. growth in a closed indoor hydroponic system. PloS One 12, e0177041. doi: 10.1371/journal.pone.0177041 PubMed DOI PMC

Lefever K., Laubscher C. P., Ndakidemi P. A., Nchu F. (2017). “Effects of pH and Phosphorus Concentrations on the Chlorophyll Responses of Salvia chamelaeagnea (Lamiaceae) Grown in Hydroponics,” in Chlorophyll. Eds. Jacob-Lopes E., Zepka L. Q., Queiroz M. I. (Rijeka: InTech; ). doi: 10.5772/67610 DOI

Liu T.-Y., Huang T.-K., Yang S.-Y., Hong Y.-T., Huang S.-M., Wang F.-N., et al. . (2016). Identification of plant vacuolar transporters mediating phosphate storage. Nat. Commun. 7, 11095. doi: 10.1038/ncomms11095 PubMed DOI PMC

Llewellyn D., Golem S., Jones A. M. P., Zheng Y. (2023). Foliar symptomology, nutrient content, yield, and secondary metabolite variability of cannabis grown hydroponically with different single-element nutrient deficiencies. Plants 12, 422. doi: 10.3390/plants12030422 PubMed DOI PMC

Malík M., Praus L., Tlustoš P. (2023). Comparison of recirculation and drain-to-waste hydroponic systems in relation to medical cannabis (Cannabis sativa L.) plants. Ind. Crops Products 202, 117059. doi: 10.1016/j.indcrop.2023.117059 DOI

Malík M., Velechovský J., Praus L., Janatová A., Kahánková Z., Klouček P., et al. . (2022). Amino acid supplementation as a biostimulant in medical cannabis (Cannabis sativa L.) plant nutrition. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.868350 PubMed DOI PMC

Malík M., Velechovský J., Tlustoš P. (2021). The overview of existing knowledge on medical cannabis plants growing. Plant Soil Environ. 67, 425–442. doi: 10.17221/96/2021-PSE DOI

Mardamootoo T., Du Preez. C.C., Barnard. J. H. (2021). Phosphorus management issues for crop production: A review. Afr. J. Agric. Res. 17, 939–952. doi: 10.5897/AJAR2020.15205 DOI

Marschner H., Marschner P. (2012). Marschner’s mineral nutrition of higher plants. 3rd ed (Amsterdam: Academic Press; ).

Mester Z., Sturgeon R. (2003). Sample preparation for trace element analysis. 1st ed (Amsterdam: Elsevier; ).

Meychik N. R., Yermakov I. P. (2001). Ion exchange properties of plant root cell walls. Plant Soil 234, 181–193. doi: 10.1023/A:1017936318435 DOI

Miholová D., Mader P., Száková J., Slámová A., Svatoš Z. (1993). CzechoSlovakian biological certified reference materials and their use in the analytical quality assurance system in a trace element laboratory. Fresenius J. Anal. Chem. 345, 256–260. doi: 10.1007/BF00322606 DOI

Moeller K., Lindholst C. (2014). Sanctioning large-scale domestic cannabis production - potency, yield, and professionalism. Scandinavian J. Forensic Sci. 20, 20–27. doi: 10.2478/sjfs-2014-0002 DOI

Naumann M., Koch M., Thiel H., Gransee A., Pawelzik E. (2020). The importance of nutrient management for potato production part II: plant nutrition and tuber quality. Potato Res. 63, 121–137. doi: 10.1007/s11540-019-09430-3 DOI

Nguyen P. M., Kwee E. M., Niemeyer E. D. (2010). Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem. 123, 1235–1241. doi: 10.1016/j.foodchem.2010.05.092 DOI

Oosterhuis D. M., Loka D. A., Kawakami E. M., Pettigrew W. T. (2014). “The physiology of potassium in crop production,” in Advances in agronomy (Amsterdam: Elsevier; ), 203–233. doi: 10.1016/B978-0-12-800132-5.00003-1 DOI

Papastylianou P., Kakabouki I., Travlos I. (2018). Effect of nitrogen fertilization on growth and yield of industrial hemp (Cannabis sativa L.). Not Bot. Horti Agrobo 46, 197–201. doi: 10.15835/nbha46110862 DOI

Patel B., Wene D., Fan Z. T. (2017). Qualitative and quantitative measurement of cannabinoids in cannabis using modified HPLC/DAD method. J. Pharm. Biomed. Anal. 146, 15–23. doi: 10.1016/j.jpba.2017.07.021 PubMed DOI

Prasad R., Power J. F. (1997). Soil fertility management for sustainable agriculture. (Boca Raton: CRC/Lewis Publishers; ).

Raghothama K. G. (2015). Phosphorus and plant nutrition: an overview. Phosphorus: Agriculture and the Environment 46, 353–378. doi: 10.2134/agronmonogr46.c11 DOI

Rioba N. B., Itulya F. M., Saidi M., Dudai N., Bernstein N. (2015). Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.). J. Appl. Res. Medicinal Aromatic Plants 2, 21–29. doi: 10.1016/j.jarmap.2015.01.003 DOI

Roberts S. K. (2006). Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol. 169, 647–666. doi: 10.1111/j.1469-8137.2006.01639.x PubMed DOI

Saloner A., Bernstein N. (2021). Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Ind. Crops Products 167, 113516. doi: 10.1016/j.indcrop.2021.113516 DOI

Saloner A., Bernstein N. (2022). Effect of potassium (K) supply on cannabinoids, terpenoids and plant function in medical cannabis. Agronomy 12, 1242. doi: 10.3390/agronomy12051242 DOI

Saloner A., Sacks M. M., Bernstein N. (2019). Response of medical cannabis (Cannabis sativa L.) genotypes to K supply under long photoperiod. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01369 PubMed DOI PMC

Sample E. C., Soper R. J., Racz G. J. (2015). “Reactions of phosphate fertilizers in soils,” in ASA, CSSA, and SSSA books. Eds. Khasawneh F. E., Sample E. C., Kamprath E. J. (Muscle Shoals: Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; ), 263–310. doi: 10.2134/1980.roleofphosphorus.c12 DOI

San Martín-Hernández C., Gómez-Merino F. C., Saucedo-Veloz C., Quintana-Obregón E. A., Muy-Rangel M. D., Trejo-Téllez L. I. (2021). Nitrogen and potassium supplied by phenological stages affect the carotenoid and nutritive content of the tomato fruit. Not Bot. Horti Agrobo 49, 12320. doi: 10.15835/nbha49212320 DOI

Šenkyřík J. B., Křivánková T., Kaczorová D., Štefelová N. (2023). Investigation of the Effect of the Auxin Antagonist PEO-IAA on Cannabinoid Gene Expression and Content in Cannabis sativa L. Plants under In Vitro Conditions. Plants 12, 1664. doi: 10.3390/plants12081664 PubMed DOI PMC

Shi P., Song C., Chen H., Duan B., Zhang Z., Meng J. (2018). Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil. Food Chem. 253, 164–170. doi: 10.1016/j.foodchem.2018.01.109 PubMed DOI

Shiponi S., Bernstein N. (2021. a). Response of medical cannabis (Cannabis sativa L.) genotypes to P supply under long photoperiod: Functional phenotyping and the ionome. Ind. Crops Products 161, 113154. doi: 10.1016/j.indcrop.2020.113154 DOI

Shiponi S., Bernstein N. (2021. b). The highs and lows of P supply in medical cannabis: effects on cannabinoids, the ionome, and morpho-physiology. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.657323 PubMed DOI PMC

Toonen M., Ribot S., Thissen J. (2006). Yield of illicit indoor cannabis cultivation in the Netherlands. J. Forensic Sci. 51, 1050–1054. doi: 10.1111/j.1556-4029.2006.00228.x PubMed DOI

Vanhove W., Van Damme P., Meert N. (2011). Factors determining yield and quality of illicit indoor cannabis (Cannabis spp.) production. Forensic Science International 212, 158–163. doi: 10.1016/j.forsciint.2011.06.006 PubMed DOI

Varo M. A., Martin-Gomez J., Serratosa M. P., Merida J. (2022). Effect of potassium metabisulphite and potassium bicarbonate on color, phenolic compounds, vitamin C and antioxidant activity of blueberry wine. LWT 163, 113585. doi: 10.1016/j.lwt.2022.113585 DOI

Velazquez L. A. (2013). First advances on the development of a hydroponic system for cherry tomato culture. In 2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 155–159. doi: 10.1109/ICEEE.2013.6676029 DOI

Vera C. L., Malhi S. S., Phelps S. M., May W. E., Johnson E. N. (2010). N, P, and S fertilization effects on industrial hemp in Saskatchewan. Can. J. Plant Sci. 90, 179–184. doi: 10.4141/CJPS09101 DOI

Yep B., Gale N. V., Zheng Y. (2020). Comparing hydroponic and aquaponic rootzones on the growth of two drug-type Cannabis sativa L. cultivars during the flowering stage. Ind. Crops Products 157, 112881. doi: 10.1016/j.indcrop.2020.112881 DOI

Yep B., Zheng Y. (2021). Potassium and micronutrient fertilizer addition in a mock aquaponic system for drug-type Cannabis sativa L. cultivation. Can. J. Plant Sci. 101, 341–352. doi: 10.1139/cjps-2020-0107 DOI

Zhao J., Zhu W.-H., Hu Q. (2001). Selection of fungal elicitors to increase indole alkaloid accumulation in catharanthus roseus suspension cell culture. Enzyme Microbial Technol. 28, 666–672. doi: 10.1016/S0141-0229(01)00309-X PubMed DOI

Zheng Y. (2021). “Advances in understanding plant root behaviour and rootzone management in soilless culture systems,” in Advances in horticultural soilless culture. Ed. Gruda N. S. (London: Burleigh Dodds Science Publishing; ), 23–44. doi: 10.1201/9781003048206-3 DOI

Zheng Y. (2022). Handbook of cannabis production in controlled environments. 1st ed (Boca Raton: CRC Press; ). doi: 10.1201/9781003150442 DOI

Zhu B., Guo H., Cao Y., An R., Shi Y. (2021). Perceived importance of factors in cannabis purchase decisions: A best-worst scaling experiment. Int. J. Drug Policy 91, 102793. doi: 10.1016/j.drugpo.2020.102793 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...