Early protoplast culture and partial regeneration in Cannabis sativa: gene expression dynamics of proliferation and stress response

. 2025 ; 16 () : 1609413. [epub] 20250606

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40546425

Cannabis sativa L. is a plant of significant interest due to its high content of biologically active compounds, durable fibers, and bioeconomic potential. Despite recent progress in protoplast isolation, complete plant regeneration from cannabis protoplasts remains unachieved, highlighting gaps in protoplast-to-plant systems. This study reports the second successful establishment and partial regeneration of cannabis protoplast cultures, and investigates their molecular dynamics, marking a significant step forward. We demonstrated that the age of donor material is critical for the protoplast isolation, with the optimal source being 1-2-week-old leaves from in vitro-grown seedlings. Cultivation in a modified medium developed for Arabidopsis thaliana supported initial cell divisions and microcallus formation. Transcriptomic analyses of cell proliferation and stress response markers indicate that the cultured protoplasts were viable, re-entered the cell cycle, and exhibited oxidative and abiotic stress resilience. These findings enhance our understanding of cannabis cell biology and lay the groundwork for a protoplast-based regeneration system, paving the way for advanced applications in biotechnology.

Zobrazit více v PubMed

Abdalla N., El-Ramady H., Seliem M. K., El-Mahrouk M. E., Taha N., Bayoumi Y., et al. (2022). An academic and technical overview on plant micropropagation challenges. Horticulturae 8, 677. doi:  10.3390/horticulturae8080677 DOI

Abel S., Nguyen M. D., Theologis A. (1995). The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J. Mol. Biol. 251, 533–549. doi:  10.1006/jmbi.1995.0454 PubMed DOI

Abel S., Oeller P. W., Theologis A. (1994). Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. U S A 91, 326–330. doi:  10.1073/pnas.91.1.326 PubMed DOI PMC

Adhikary D., Kulkarni M., El-Mezawy A., Mobini S., Elhiti M., Gjuric R., et al. (2021). Medical PubMed DOI PMC

Aoyagi H. (2011). Application of plant protoplasts for the production of useful metabolites. Biochem. Eng. J. 56, 1–8. doi:  10.1016/j.bej.2010.05.004 DOI

Beard K. M., Boling A. W. H., Bargmann B. O. R. (2021). Protoplast isolation, transient transformation, and flow-cytometric analysis of reporter-gene activation in DOI

Cápal P., Ondřej V. (2014). Expression and epigenetic profile of protoplast cultures ( DOI

Cassells A. C., Curry R. F. (2001). Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Culture 64, 145–157. doi:  10.1023/A:1010692104861 DOI

Caverzan A., Passaia G., Rosa S. B., Ribeiro C. W., Lazzarotto F., Margis-Pinheiro M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35, 1011–1019. doi:  10.1590/S1415-47572012000600016 PubMed DOI PMC

Davey M. R., Anthony P. (2010). Plant Cell Culture: Essential Methods (Loughborough, UK: Wiley-Blackwell; ).

Deguchi M., Potlakayala S., Spuhler Z., George H., Sheri V., Agili R., et al. (2021). Selection and validation of reference genes for normalization of qRT-PCR data to study the cannabinoid pathway genes in industrial hemp. PloS One 16, e0260660. doi:  10.1371/journal.pone.0260660 PubMed DOI PMC

Evans D. A., Bravo J. E. (2013). “Plant Protoplast Isolation and Culture,” in Plant Protoplasts: International Review of Cytology. Ed. Giles K. L. (Elsevier Science, New Jersey: ), 33–53.

Finkelstein R., Reeves W., Ariizumi T., Steber C. (2008). Molecular aspects of seed dormancy*. Annu. Rev. Plant Biol. 59, 387–415. doi:  10.1146/annurev.arplant.59.032607.092740 PubMed DOI

Flaishman M. A., Cohen Peer R., Cohen O., Bocobza S. (2019). Agricultural research organization of Israel. Methods of regenerating and transforming. Cannabis. Available online at: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019234750.

Gao C., Cheng C., Zhao L., Yu Y., Tang Q., Xin P., et al. (2018). Genome-wide expression profiles of hemp ( PubMed DOI PMC

Hesami M., Baiton A., Alizadeh M., Pepe M., Torkamaneh D., Jones A. M. P. (2021). Advances and perspectives in tissue culture and genetic engineering of PubMed DOI PMC

Ishii S. (1987). Generation of active oxygen species during enzymic isolation of protoplasts from oat leaves. In Vitro Cell Dev. Biol. 23, 653–658. doi:  10.1007/BF02621075 DOI

Ishii S. (1988). Factors influencing protoplast viability of suspension-cultured rice cells during isolation process 1. Plant Physiol. 88, 26–29. doi:  10.1104/pp.88.1.26 PubMed DOI PMC

Jiang F., Zhu J., Liu H.-L. (2013). Protoplasts: a useful research system for plant cell biology, especially dedifferentiation. Protoplasma 250, 1231–1238. doi:  10.1007/s00709-013-0513-z PubMed DOI

Jones R. (1979). Cell culture, protoplast isolation, and cell fusion of DOI

Kapur R., Saleem M., Harvey B. L., Cutler A. J. (1993). Oxidative metabolism and protoplast culture. In Vitro Cell Dev. Biol. - Plant 29, 200–206. doi:  10.1007/BF02632035 DOI

Kemat N., Visser R. G. F., Krens F. A. (2021). Hypolignification: A decisive factor in the development of hyperhydricity. Plants 10, 2625. doi:  10.3390/plants10122625 PubMed DOI PMC

Kim A. L., Yun Y. J., Choi H. W., Hong C.-H., Shim H. J., Lee J. H., et al. (2022). Establishment of efficient cannabis ( DOI

Král D. (2025). Workflow for isolation, cultivation and molecular analysis of cannabis protoplasts. Created in BioRender. Available online at: https://biorender.com/p09w255.

Král D., Šenkyřík J. B., Ondřej V. (2022). Expression of genes involved in ABA and auxin metabolism and LEA gene during embryogenesis in hemp. Plants 11, 2995. doi:  10.3390/plants11212995 PubMed DOI PMC

Lazič S. (2020). Izolacija protoplastov navadne konoplje (

Lee C.-C., Wang J.-W., Leu W.-M., Huang Y.-T., Huang Y.-W., Hsu Y.-H., et al. (2019). Proliferating cell nuclear antigen suppresses RNA replication of PubMed DOI PMC

Li L., Yu S., Chen J., Cheng C., Sun J., Xu Y., et al. (2022). Releasing the full potential of DOI

Liu H., Xing M., Yang W., Mu X., Wang X., Lu F., et al. (2019). Genome-wide identification of and functional insights into the late embryogenesis abundant ( PubMed DOI PMC

Majada J. P., Fal M. A., Sánchez-Tamés R. (1997). The effect of ventilation rate on proliferation and hyperhydricity of DOI

Matchett-Oates L., Mohamaden E., Spangenberg G. C., Cogan N. O. I. (2021). Development of a robust transient expression screening system in protoplasts of DOI

Mathur J., Koncz C. (1998). “Protoplast Isolation, Culture, and Regeneration,” in Arabidopsis Protocols, Methods in Molecular Biology PubMed DOI

Monthony A. S., Jones A. M. P. (2024). Enhancing Protoplast Isolation and Early Cell Division from PubMed DOI PMC

Moricová P., Ondřej V., Navrátilová B., Luhová L. (2013). Changes of DNA methylation and hydroxymethylation in plant protoplast cultures. Acta Biochim. Pol. 60, 33–36. doi:  10.18388/abp.2013_1947 PubMed DOI

Morimoto S., Tanaka Y., Sasaki K., Tanaka H., Fukamizu T., Shoyama Y., et al. (2007). Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in PubMed DOI

Ondřej V., Navrátilová B., Lebeda A. (2008). The heterochromatin as a marker for protoplast differentiation of DOI

Ondřej V., Navrátilová B., Protivánková I., Piterková J., Sedlářová M., Luhová L., et al. (2010). Recondensation level of repetitive sequences in the plant protoplast nucleus is limited by oxidative stress. J. Exp. Bot. 61, 2395–2401. doi:  10.1093/jxb/erq067 PubMed DOI PMC

Page S. R. G., Monthony A. S., Jones A. M. P. (2021). DKW basal salts improve micropropagation and callogenesis compared with MS basal salts in multiple commercial cultivars of DOI

Pâques M., Boxus P. H. (1987). A model to learn “vitrification”, the rootstock apple M. 26. Present Results. Acta Hortic. 212, 193–210. doi:  10.17660/ActaHortic.1987.212.30 DOI

Park S.-Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071. doi:  10.1126/science.1173041 PubMed DOI PMC

Pasternak T., Paponov I. A., Kondratenko S. (2021). Optimizing protocols for PubMed DOI PMC

Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, e45. doi:  10.1093/nar/29.9.e45 PubMed DOI PMC

Rasco S. M., Patena L. F. (1997).

Ratanasanobon K., Seaton K. A. (2013). Protoplast isolation for species in the Chamelaucium group and the effect of antioxidant enzymes (superoxide dismutase and catalase) on protoplast viability. In Vitro Cell.Dev.Biol.-Plant 49, 593–598. doi:  10.1007/s11627-013-9527-7 DOI

Ševčíková H., Lipavská H., Mašková P. (2016). Metodika fotoautotrofní kultivace rostlin za podmínek

Siminis C. I., Kanellis A. K., Roubelakis-Angelakis K. A. (1994). Catalase is differentially expressed in dividing and nondividing protoplasts. Plant Physiol. 105, 1375–1383. doi:  10.1104/pp.105.4.1375 PubMed DOI PMC

Stephen C., Zayas V. A., Galic A., Bridgen M. P. (2023). Micropropagation of hemp ( DOI

Tsay H.-S., Lee C.-Y., Agrawal D. C., Basker S. (2006). Influence of ventilation closure, gelling agent and explant type on shoot bud proliferation and hyperhydricity in DOI

Van Diest P. J., Brugal G., Baak J. P. (1998). Proliferation markers in tumours: interpretation and clinical value. J. Clin. Pathol. 51, 716–724. doi:  10.1136/jcp.51.10.716 PubMed DOI PMC

Vissenberg K., Quelo A.-H., Van Gestel K., Olyslaegers G., Verbelen J.-P. (2000). From hormone signal, via the cytoskeleton, to cell growth in single cells of tobacco. Cell Biol. Int. 24, 343–349. doi:  10.1006/cbir.1999.0516 PubMed DOI

Williams L., Zhao J., Morozova N., Li Y., Avivi Y., Grafi G. (2003). Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev. Dynamics 228, 113–120. doi:  10.1002/dvdy.10348 PubMed DOI

Xu M., Du Q., Tian C., Wang Y., Jiao Y. (2021). Stochastic gene expression drives mesophyll protoplast regeneration. Sci. Adv. 7, eabg8466. doi:  10.1126/sciadv.abg8466 PubMed DOI PMC

Xu L., Li S., Shabala S., Jian T., Zhang W. (2019). Plants grown in parafilm-wrapped petri dishes are stressed and possess altered gene expression profile. Front. Plant Sci. 10. doi:  10.3389/fpls.2019.00637 PubMed DOI PMC

Yang Z., Wang Y., Wei X., Zhao X., Wang B., Sui N. (2017). Transcription profiles of genes related to hormonal regulations under salt stress in sweet sorghum. Plant Mol. Biol. Rep. 35, 586–599. doi:  10.1007/s11105-017-1047-x DOI

Zhang D., Wang R., Xiao J., Zhu S., Li X., Han S., et al. (2022). An integrated physiology, cytology, and proteomics analysis reveals a network of sugarcane protoplast responses to enzymolysis. Front. Plant Sci. 13. doi:  10.3389/fpls.2022.1066073 PubMed DOI PMC

Zhang X., Xu G., Cheng C., Lei L., Sun J., Xu Y., et al. (2021). Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp ( PubMed DOI PMC

Zhao J., Morozova N., Williams L., Libs L., Avivi Y., Grafi G. (2001). Two phases of chromatin decondensation during dedifferentiation of plant cells - Distinction between competence for cell fate switch and a commitment for S phase. J. Biol. Chem. 276, 22772–22778. doi:  10.1074/jbc.M101756200 PubMed DOI

Zhu P., Zhao Y., You X., Zhang Y. J., Vasseur L., Haughn G., et al. (2022). A versatile protoplast system and its application in DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...