Early protoplast culture and partial regeneration in Cannabis sativa: gene expression dynamics of proliferation and stress response
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40546425
PubMed Central
PMC12179117
DOI
10.3389/fpls.2025.1609413
Knihovny.cz E-zdroje
- Klíčová slova
- Cannabis culture, cell proliferation, gene expression, in vitro, microcallus formation, oxidative stress, protoplast isolation, stress response,
- Publikační typ
- časopisecké články MeSH
Cannabis sativa L. is a plant of significant interest due to its high content of biologically active compounds, durable fibers, and bioeconomic potential. Despite recent progress in protoplast isolation, complete plant regeneration from cannabis protoplasts remains unachieved, highlighting gaps in protoplast-to-plant systems. This study reports the second successful establishment and partial regeneration of cannabis protoplast cultures, and investigates their molecular dynamics, marking a significant step forward. We demonstrated that the age of donor material is critical for the protoplast isolation, with the optimal source being 1-2-week-old leaves from in vitro-grown seedlings. Cultivation in a modified medium developed for Arabidopsis thaliana supported initial cell divisions and microcallus formation. Transcriptomic analyses of cell proliferation and stress response markers indicate that the cultured protoplasts were viable, re-entered the cell cycle, and exhibited oxidative and abiotic stress resilience. These findings enhance our understanding of cannabis cell biology and lay the groundwork for a protoplast-based regeneration system, paving the way for advanced applications in biotechnology.
Zobrazit více v PubMed
Abdalla N., El-Ramady H., Seliem M. K., El-Mahrouk M. E., Taha N., Bayoumi Y., et al. (2022). An academic and technical overview on plant micropropagation challenges. Horticulturae 8, 677. doi: 10.3390/horticulturae8080677 DOI
Abel S., Nguyen M. D., Theologis A. (1995). The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J. Mol. Biol. 251, 533–549. doi: 10.1006/jmbi.1995.0454 PubMed DOI
Abel S., Oeller P. W., Theologis A. (1994). Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. U S A 91, 326–330. doi: 10.1073/pnas.91.1.326 PubMed DOI PMC
Adhikary D., Kulkarni M., El-Mezawy A., Mobini S., Elhiti M., Gjuric R., et al. (2021). Medical PubMed DOI PMC
Aoyagi H. (2011). Application of plant protoplasts for the production of useful metabolites. Biochem. Eng. J. 56, 1–8. doi: 10.1016/j.bej.2010.05.004 DOI
Beard K. M., Boling A. W. H., Bargmann B. O. R. (2021). Protoplast isolation, transient transformation, and flow-cytometric analysis of reporter-gene activation in DOI
Cápal P., Ondřej V. (2014). Expression and epigenetic profile of protoplast cultures ( DOI
Cassells A. C., Curry R. F. (2001). Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Culture 64, 145–157. doi: 10.1023/A:1010692104861 DOI
Caverzan A., Passaia G., Rosa S. B., Ribeiro C. W., Lazzarotto F., Margis-Pinheiro M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35, 1011–1019. doi: 10.1590/S1415-47572012000600016 PubMed DOI PMC
Davey M. R., Anthony P. (2010). Plant Cell Culture: Essential Methods (Loughborough, UK: Wiley-Blackwell; ).
Deguchi M., Potlakayala S., Spuhler Z., George H., Sheri V., Agili R., et al. (2021). Selection and validation of reference genes for normalization of qRT-PCR data to study the cannabinoid pathway genes in industrial hemp. PloS One 16, e0260660. doi: 10.1371/journal.pone.0260660 PubMed DOI PMC
Evans D. A., Bravo J. E. (2013). “Plant Protoplast Isolation and Culture,” in Plant Protoplasts: International Review of Cytology. Ed. Giles K. L. (Elsevier Science, New Jersey: ), 33–53.
Finkelstein R., Reeves W., Ariizumi T., Steber C. (2008). Molecular aspects of seed dormancy*. Annu. Rev. Plant Biol. 59, 387–415. doi: 10.1146/annurev.arplant.59.032607.092740 PubMed DOI
Flaishman M. A., Cohen Peer R., Cohen O., Bocobza S. (2019). Agricultural research organization of Israel. Methods of regenerating and transforming. Cannabis. Available online at: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019234750.
Gao C., Cheng C., Zhao L., Yu Y., Tang Q., Xin P., et al. (2018). Genome-wide expression profiles of hemp ( PubMed DOI PMC
Hesami M., Baiton A., Alizadeh M., Pepe M., Torkamaneh D., Jones A. M. P. (2021). Advances and perspectives in tissue culture and genetic engineering of PubMed DOI PMC
Ishii S. (1987). Generation of active oxygen species during enzymic isolation of protoplasts from oat leaves. In Vitro Cell Dev. Biol. 23, 653–658. doi: 10.1007/BF02621075 DOI
Ishii S. (1988). Factors influencing protoplast viability of suspension-cultured rice cells during isolation process 1. Plant Physiol. 88, 26–29. doi: 10.1104/pp.88.1.26 PubMed DOI PMC
Jiang F., Zhu J., Liu H.-L. (2013). Protoplasts: a useful research system for plant cell biology, especially dedifferentiation. Protoplasma 250, 1231–1238. doi: 10.1007/s00709-013-0513-z PubMed DOI
Jones R. (1979). Cell culture, protoplast isolation, and cell fusion of DOI
Kapur R., Saleem M., Harvey B. L., Cutler A. J. (1993). Oxidative metabolism and protoplast culture. In Vitro Cell Dev. Biol. - Plant 29, 200–206. doi: 10.1007/BF02632035 DOI
Kemat N., Visser R. G. F., Krens F. A. (2021). Hypolignification: A decisive factor in the development of hyperhydricity. Plants 10, 2625. doi: 10.3390/plants10122625 PubMed DOI PMC
Kim A. L., Yun Y. J., Choi H. W., Hong C.-H., Shim H. J., Lee J. H., et al. (2022). Establishment of efficient cannabis ( DOI
Král D. (2025). Workflow for isolation, cultivation and molecular analysis of cannabis protoplasts. Created in BioRender. Available online at: https://biorender.com/p09w255.
Král D., Šenkyřík J. B., Ondřej V. (2022). Expression of genes involved in ABA and auxin metabolism and LEA gene during embryogenesis in hemp. Plants 11, 2995. doi: 10.3390/plants11212995 PubMed DOI PMC
Lazič S. (2020). Izolacija protoplastov navadne konoplje (
Lee C.-C., Wang J.-W., Leu W.-M., Huang Y.-T., Huang Y.-W., Hsu Y.-H., et al. (2019). Proliferating cell nuclear antigen suppresses RNA replication of PubMed DOI PMC
Li L., Yu S., Chen J., Cheng C., Sun J., Xu Y., et al. (2022). Releasing the full potential of DOI
Liu H., Xing M., Yang W., Mu X., Wang X., Lu F., et al. (2019). Genome-wide identification of and functional insights into the late embryogenesis abundant ( PubMed DOI PMC
Majada J. P., Fal M. A., Sánchez-Tamés R. (1997). The effect of ventilation rate on proliferation and hyperhydricity of DOI
Matchett-Oates L., Mohamaden E., Spangenberg G. C., Cogan N. O. I. (2021). Development of a robust transient expression screening system in protoplasts of DOI
Mathur J., Koncz C. (1998). “Protoplast Isolation, Culture, and Regeneration,” in Arabidopsis Protocols, Methods in Molecular Biology PubMed DOI
Monthony A. S., Jones A. M. P. (2024). Enhancing Protoplast Isolation and Early Cell Division from PubMed DOI PMC
Moricová P., Ondřej V., Navrátilová B., Luhová L. (2013). Changes of DNA methylation and hydroxymethylation in plant protoplast cultures. Acta Biochim. Pol. 60, 33–36. doi: 10.18388/abp.2013_1947 PubMed DOI
Morimoto S., Tanaka Y., Sasaki K., Tanaka H., Fukamizu T., Shoyama Y., et al. (2007). Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in PubMed DOI
Ondřej V., Navrátilová B., Lebeda A. (2008). The heterochromatin as a marker for protoplast differentiation of DOI
Ondřej V., Navrátilová B., Protivánková I., Piterková J., Sedlářová M., Luhová L., et al. (2010). Recondensation level of repetitive sequences in the plant protoplast nucleus is limited by oxidative stress. J. Exp. Bot. 61, 2395–2401. doi: 10.1093/jxb/erq067 PubMed DOI PMC
Page S. R. G., Monthony A. S., Jones A. M. P. (2021). DKW basal salts improve micropropagation and callogenesis compared with MS basal salts in multiple commercial cultivars of DOI
Pâques M., Boxus P. H. (1987). A model to learn “vitrification”, the rootstock apple M. 26. Present Results. Acta Hortic. 212, 193–210. doi: 10.17660/ActaHortic.1987.212.30 DOI
Park S.-Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071. doi: 10.1126/science.1173041 PubMed DOI PMC
Pasternak T., Paponov I. A., Kondratenko S. (2021). Optimizing protocols for PubMed DOI PMC
Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, e45. doi: 10.1093/nar/29.9.e45 PubMed DOI PMC
Rasco S. M., Patena L. F. (1997).
Ratanasanobon K., Seaton K. A. (2013). Protoplast isolation for species in the Chamelaucium group and the effect of antioxidant enzymes (superoxide dismutase and catalase) on protoplast viability. In Vitro Cell.Dev.Biol.-Plant 49, 593–598. doi: 10.1007/s11627-013-9527-7 DOI
Ševčíková H., Lipavská H., Mašková P. (2016). Metodika fotoautotrofní kultivace rostlin za podmínek
Siminis C. I., Kanellis A. K., Roubelakis-Angelakis K. A. (1994). Catalase is differentially expressed in dividing and nondividing protoplasts. Plant Physiol. 105, 1375–1383. doi: 10.1104/pp.105.4.1375 PubMed DOI PMC
Stephen C., Zayas V. A., Galic A., Bridgen M. P. (2023). Micropropagation of hemp ( DOI
Tsay H.-S., Lee C.-Y., Agrawal D. C., Basker S. (2006). Influence of ventilation closure, gelling agent and explant type on shoot bud proliferation and hyperhydricity in DOI
Van Diest P. J., Brugal G., Baak J. P. (1998). Proliferation markers in tumours: interpretation and clinical value. J. Clin. Pathol. 51, 716–724. doi: 10.1136/jcp.51.10.716 PubMed DOI PMC
Vissenberg K., Quelo A.-H., Van Gestel K., Olyslaegers G., Verbelen J.-P. (2000). From hormone signal, via the cytoskeleton, to cell growth in single cells of tobacco. Cell Biol. Int. 24, 343–349. doi: 10.1006/cbir.1999.0516 PubMed DOI
Williams L., Zhao J., Morozova N., Li Y., Avivi Y., Grafi G. (2003). Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev. Dynamics 228, 113–120. doi: 10.1002/dvdy.10348 PubMed DOI
Xu M., Du Q., Tian C., Wang Y., Jiao Y. (2021). Stochastic gene expression drives mesophyll protoplast regeneration. Sci. Adv. 7, eabg8466. doi: 10.1126/sciadv.abg8466 PubMed DOI PMC
Xu L., Li S., Shabala S., Jian T., Zhang W. (2019). Plants grown in parafilm-wrapped petri dishes are stressed and possess altered gene expression profile. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00637 PubMed DOI PMC
Yang Z., Wang Y., Wei X., Zhao X., Wang B., Sui N. (2017). Transcription profiles of genes related to hormonal regulations under salt stress in sweet sorghum. Plant Mol. Biol. Rep. 35, 586–599. doi: 10.1007/s11105-017-1047-x DOI
Zhang D., Wang R., Xiao J., Zhu S., Li X., Han S., et al. (2022). An integrated physiology, cytology, and proteomics analysis reveals a network of sugarcane protoplast responses to enzymolysis. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1066073 PubMed DOI PMC
Zhang X., Xu G., Cheng C., Lei L., Sun J., Xu Y., et al. (2021). Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp ( PubMed DOI PMC
Zhao J., Morozova N., Williams L., Libs L., Avivi Y., Grafi G. (2001). Two phases of chromatin decondensation during dedifferentiation of plant cells - Distinction between competence for cell fate switch and a commitment for S phase. J. Biol. Chem. 276, 22772–22778. doi: 10.1074/jbc.M101756200 PubMed DOI
Zhu P., Zhao Y., You X., Zhang Y. J., Vasseur L., Haughn G., et al. (2022). A versatile protoplast system and its application in DOI