A highly selective biosensor with nanomolar sensitivity based on cytokinin dehydrogenase

. 2014 ; 9 (3) : e90877. [epub] 20140304

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24595403

Grantová podpora
Biotechnology and Biological Sciences Research Council - United Kingdom

We have developed a N6-dimethylallyladenine (cytokinin) dehydrogenase-based microbiosensor for real-time determination of the family of hormones known as cytokinins. Cytokinin dehydrogenase from Zea mays (ZmCKX1) was immobilised concurrently with electrodeposition of a silica gel film on the surface of a Pt microelectrode, which was further functionalized by free electron mediator 2,6-dichlorophenolindophenol (DCPIP) in supporting electrolyte to give a bioactive film capable of selective oxidative cleavage of the N6- side chain of cytokinins. The rapid electron shuffling between freely diffusible DCPIP and the FAD redox group in ZmCKX1 endowed the microbiosensor with a fast response time of less than 10 s. The immobilised ZmCKX1 retained a high affinity for its preferred substrate N6-(Δ2-isopentenyl) adenine (iP), and gave the miniaturized biosensor a large linear dynamic range from 10 nM to 10 µM, a detection limit of 3.9 nM and a high sensitivity to iP of 603.3 µAmM-1cm-2 (n = 4, R2 = 0.9999). Excellent selectivity was displayed for several other aliphatic cytokinins and their ribosides, including N6-(Δ2-isopentenyl) adenine, N6-(Δ2-isopentenyl) adenosine, cis-zeatin, trans-zeatin and trans-zeatin riboside. Aromatic cytokinins and metabolites such as cytokinin glucosides were generally poor substrates. The microbiosensors exhibited excellent stability in terms of pH and long-term storage and have been used successfully to determine low nanomolar cytokinin concentrations in tomato xylem sap exudates.

Zobrazit více v PubMed

Hwang I, Sakakibara H (2006) Cytokinin biosynthesis and perception. Physiologia Plantarum 126: 528–538.

Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, et al. (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. Journal of Experimental Botany 62: 2827–2840. PubMed

Davis GC, Hein MB, Neely BC, Sharp CR, Carnes MG (1985) Strategies for the Determination of Plant Hormones. Analytical Chemistry 57: 638A–648A.

Vlasáková V, Březinová A, Holík J (1998) Study of cytokinin metabolism using HPLC with radioisotope detection. Journal of Pharmaceutical and Biomedical Analysis 17: 39–44. PubMed

Witters E, Vanhoutte K, Dewitte W, Machácková I, Benková E, et al. (1999) Analysis of cyclic nucleotides and cytokinins in minute plant samples using phase-system switching capillary electrospray–liquid chromatography–tandem mass spectrometry. Phytochemical Analysis 10: 143–151.

Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, et al. (2003) Quantitative analysis of cytokinins in plants by liquid chromatography–single-quadrupole mass spectrometry. Analytica Chimica Acta 480: 207–218.

Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69: 2214–2224. PubMed

Svačinová J, Novák O, Plačková L, Lenobel R, Holík J, et al. (2012) A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8: 1–14. PubMed PMC

Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453: 1094–U1097. PubMed PMC

Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, et al. (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482: 103–106. PubMed

Zürcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, et al. (2013) A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin Signaling Network in Planta. Plant Physiology 161: 1066–1075. PubMed PMC

Hernández L, Hernández P, Rica M, Galán F (1995) Determination of Zeatin in plant extracts by square wave stripping polarography and differential pulse stripping polarography. Analytica Chimica Acta 315: 33–39.

Hernández P, Paton F, Ballesteros Y, Hernández L (1997) Voltammetry study of zeatin in a carbon fiber ultramicroelectrode. Determination by adsorptive stripping. Electroanalysis 9: 235–238.

Li J, Xiao L-T, Zeng G-M, Huang G-H, Shen G-L, et al. (2003) Amperometric immunosensor based on polypyrrole/poly(m-pheylenediamine) multilayer on glassy carbon electrode for cytokinin N6-(Δ2-isopentenyl) adenosine assay. Analytical Biochemistry 321: 89–95. PubMed

Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, et al. (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany 59: 75–83. PubMed

Bilyeu KD, Cole JL, Laskey JG, Riekhof WR, Esparza TJ, et al. (2001) Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiology 125: 378–386. PubMed PMC

Frébortová J, Fraaije MW, Galuszka P, Sebela M, Pec P, et al. (2004) Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors. Biochemical Journal 380: 121–130. PubMed PMC

Galuszka P, Frébortová J, Luhová L, Bilyeu KD, English JT, et al. (2005) Tissue localization of cytokinin dehydrogenase in maize: Possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction. Plant and Cell Physiology 46: 716–728. PubMed

Kopečný D, Šebela M, Briozzo P, Spíchal L, Houba-Herin N, et al. (2008) Mechanism-based inhibitors of cytokinin oxidase/dehydrogenase attack FAD cofactor. Journal of Molecular Biology 380: 886–899. PubMed

Kowalska M, Tian F, Šmehilová M, Galuszka P, Frébort I, et al. (2011) Prussian Blue acts as a mediator in a reagentless cytokinin biosensor. Analytica Chimica Acta 701: 218–223. PubMed

Perez FG, Mascini M, Tothill IE, Turner APF (1998) Immunomagnetic separation with mediated flow injection analysis amperometric detection of viable Escherichia coli O157. Analytical Chemistry 70: 2380–2386. PubMed

Kim HJ, Bennetto HP, Halablab MA, Choi CH, Yoon S (2006) Performance of an electrochemical sensor with different types of liposomal mediators for the detection of hemolytic bacteria. Sensors and Actuators B-Chemical 119: 143–149.

Hassan RYA, Bilitewski U (2011) A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol. Analytical Biochemistry 419: 26–32. PubMed

Alferov SV, Tomashevskaya LG, Ponamoreva ON, Bogdanovskaya VA, Reshetilov AN (2006) Biofuel cell anode based on the Gluconobacter oxydans bacteria cells and 2,6-dichlorophenolindophenol as an electron transport mediator. Russian Journal of Electrochemistry 42: 403–404.

Tang HT, Hajizadeh K, Halsall HB, Heineman WR (1991) Flow-Injection Analysis with Electrochemical Detection of Reduced Nicotinamide Adenine-Dinucleotide Using 2,6-Dichloroindophenol as a Redox Coupling Agent. Analytical Biochemistry 192: 243–250. PubMed

Florou AB, Prodromidis MI, Karayannis MI, Tzouwara-Karayanni SM (1998) Electrocatalytic oxidation of NADH in flow analysis by graphite electrode modified with 2,6-dichlorophenolindophenol salts. Electroanalysis 10: 1261–1268.

Munteanu FD, Kubota LT, Gorton L (2001) Effect of pH on the catalytic electro oxidation of NADH using different two-electron mediators immobilised on zirconium phosphate. Journal of Electroanalytical Chemistry 509: 2–10.

Dicu D, Munteanu FD, Popeseu IC, Gorton L (2003) Indophenol and O-quinone derivatives immobilised on zirconium phosphate for NADH electro-oxidation. Analytical Letters 36: 1755–1779.

Florou AB, Prodromidis MI, Karayannis MI, Tzouwara-Karayanni SM (2000) Flow electrochemical determination of ascorbic acid in real samples using a glassy carbon electrode modified with a cellulose acetate film bearing 2,6-dichlorophenolindophenol. Analytica Chimica Acta 409: 113–121.

Šmehilová M, Galuszka P, Bilyeu KD, Jaworek P, Kowalska M, et al. (2009) Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. Journal of Experimental Botany 60: 2701–2712. PubMed

Frébortová J, Galuszka P, Werner T, Schmülling T, Frébort I (2007) Functional expression and purification of cytokinin dehydrogenase from Arabidopsis thaliana (AtCKX2) in Saccharomyces cerevisiae. Biologia Plantarum 51: 673–682.

Llaudet E, Hatz S, Droniou M, Dale N (2005) Microelectrode biosensor for real-time measurement of ATP in biological tissue. Analytical Chemistry 77: 3267–3273. PubMed

Tian FM, Gourine AV, Huckstepp RTR, Dale N (2009) A microelectrode biosensor for real time monitoring of L-glutamate release. Analytica Chimica Acta 645: 86–91. PubMed

Tian F, Llaudet E, Dale N (2007) Ruthenium purple-mediated microelectrode biosensors based on sol-gel film. Analytical Chemistry 79: 6760–6766. PubMed

Dale N, Frenguelli BG (2012) Measurement of purine release with microelectrode biosensors. Purinergic Signalling 8: S27–S40. PubMed PMC

Popelková H, Fraaije MW, Novák O, Frébortová J, Bilyeu KD, et al. (2006) Kinetic and chemical analyses of the cytokinin dehydrogenase-catalysed reaction: correlations with the crystal structure. Biochemical Journal 398: 113–124. PubMed PMC

Wall M, Eason R, Dale N (2010) Biosensor measurement of purine release from cerebellar cultures and slices. Purinergic Signalling 6: 339–348. PubMed PMC

Chikkaveeraiah BV, Liu H, Mani V, Papadimitrakopoulos F, Rusling JF (2009) A microfluidic electrochemical device for high sensitivity biosensing: Detection of nanomolar hydrogen peroxide. Electrochemistry Communications 11: 819–822. PubMed PMC

Voss U, Larrieu A, Wells DM (2013) From jellyfish to biosensors: the use of fluorescent proteins in plants. Int J Dev Biol 57: 525–533. PubMed

Kudoyarova GR, Vysotskaya LB, Cherkozyanova A, Dodd IC (2007) Effect of partial rootzone drying on the concentration of zeatin-type cytokinins in tomato (Solanum lycopersicum L.) xylem sap and leaves. Journal of Experimental Botany 58: 161–168. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...