Direct mapping of chemical oxidation of individual graphene sheets through dynamic force measurements at the nanoscale

. 2017 Jan 07 ; 9 (1) : 119-127. [epub] 20161013

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27735008

Graphene oxide is one of the most studied nanomaterials owing to its huge application potential in many fields, including biomedicine, sensing, drug delivery, optical and optoelectronic technologies. However, a detailed description of the chemical composition and the extent of oxidation in graphene oxide remains a key challenge affecting its applicability and further development of new applications. Here, we report direct monitoring of the chemical oxidation of an individual graphene flake during ultraviolet/ozone treatment through in situ atomic force microscopy based on dynamic force mapping. The results showed that graphene oxidation expanded from the graphene edges to the entire graphene surface. The interaction force mapping results correlated well with X-ray photoelectron spectroscopy data quantifying the degree of chemical oxidation. Density functional theory calculations confirmed the specific interaction forces measured between a silicon tip and graphene oxide. The developed methodology can be used as a simple protocol for evaluating the chemical functionalization of other two-dimensional materials with covalently attached functional groups.

Zobrazit více v PubMed

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Science. 2004;306:666–669. PubMed

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. Nature. 2005;438:197–200. PubMed

Gomes K. K., Mar W., Ko W., Guinea F., Manoharan H. C. Nature. 2012;483:306–310. PubMed

Berger C., Song Z. M., Li T. B., Li X. B., Ogbazghi A. Y., Feng R., Dai Z. T., Marchenkov A. N., Conrad E. H., First P. N., de Heer W. A. J. Phys. Chem. B. 2004;108:19912–19916.

Britnell L., Gorbachev R. V., Jalil R., Belle B. D., Schedin F., Mishchenko A., Georgiou T., Katsnelson M. I., Eaves L., Morozov S. V., Peres N. M. R., Leist J., Geim A. K., Novoselov K. S., Ponomarenko L. A. Science. 2012;335:947–950. PubMed

Tiwari J. N., Vij V., Kemp K. C., Kim K. S. ACS Nano. 2016;10:46–80. PubMed

Dong X. C., Xu H., Wang X. W., Huang Y. X., Chan-Park M. B., Zhang H., Wang L. H., Huang W., Chen P. ACS Nano. 2012;6:3206–3213. PubMed

Yoo E., Kim J., Hosono E., Zhou H.-s., Kudo T., Honma I. Nano Lett. 2008;8:2277–2282. PubMed

Wu Z. S., Ren W. C., Wen L., Gao L. B., Zhao J. P., Chen Z. P., Zhou G. M., Li F., Cheng H. M. ACS Nano. 2010;4:3187–3194. PubMed

Georgakilas V., Tiwari J. N., Kemp K. C., Perman J. A., Bourlinos A. B., Kim K. S., Zbořil R. Chem. Rev. 2016;116:5464–5519. PubMed

Tanaka H., Obata S., Saiki K. Chem. Lett. 2014;43:328–330.

Erickson K., Erni R., Lee Z., Alem N., Gannett W., Zettl A. Adv. Mater. 2010;22:4467–4472. PubMed

Park S., An J. H., Jung I. W., Piner R. D., An S. J., Li X. S., Velamakanni A., Ruoff R. S. Nano Lett. 2009;9:1593–1597. PubMed

Wang Z. J., Zhou X. Z., Zhang J., Boey F., Zhang H. J. Phys. Chem. C. 2009;113:14071–14075.

Kou L., He H. K., Gao C. Nano-Micro Lett. 2010;2:177–183.

Chandra V., Park J., Chun Y., Lee J. W., Hwang I.-C., Kim K. S. ACS Nano. 2010;4:3979–3986. PubMed

Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. Chem. Soc. Rev. 2010;39:228–240. PubMed

Mokdad A., Dimos K., Zoppellaro G., Tuček J., Perman J. A., Malina O., Andersson K. K., Datta K. K. R., Froning J. P., Zbořil R. RSC Adv. 2015;5:76556–76566.

Zhu H., Gao L., Jiang X., Liu R., Wei Y., Wang Y., Zhao Y., Chai Z., Gao X. Chem. Commun. 2014;50:3695–3698. PubMed

Shao Y. Y., Wang J., Wu H., Liu J., Aksay I. A., Lin Y. H. Electroanalysis. 2010;22:1027–1036.

Huang C. C., Li C., Shi G. Q. Energy Environ. Sci. 2012;5:8848–8868.

Parvez K., Yang S. B., Hernandez Y., Winter A., Turchanin A., Feng X. L., Mullen K. ACS Nano. 2012;6:9541–9550. PubMed

Yoo J. M., Kang J. H., Hong B. H. Chem. Soc. Rev. 2015;44:4835–4852. PubMed

Zhang L. M., Xing Y. D., He N. Y., Zhang Y., Lu Z. X., Zhang J. P., Zhang Z. J. J. Nanosci. Nanotechnol. 2012;12:2924–2928. PubMed

Datta K. K. R., Kozák O., Ranc V., Havrdová M., Bourlinos A. B., Šafářová K., Holá K., Tománková K., Zoppellaro G., Otyepka M., Zbořil R. Chem. Commun. 2014;50:10782–10785. PubMed

Shin S. R., Aghaei-Ghareh-Bolagh B., Gao X., Nikkhah M., Jung S. M., Dolatshahi-Pirouz A., Kim S. B., Kim S. M., Dokmeci M. R., Tang X., Khademhosseini A. Adv. Funct. Mater. 2014;24:6136–6144. PubMed PMC

Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Kim K. S., Ahn J.-H., Kim P., Choi J.-Y., Hong B. H. Nature. 2009;457:706–710. PubMed

Tung V. C., Allen M. J., Yang Y., Kaner R. B. Nat. Nanotechnol. 2009;4:25–29. PubMed

Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S. Science. 2009;324:1312–1314. PubMed

Eng A. Y. S., Chua C. K., Pumera M. Nanoscale. 2015;7:20256–20266. PubMed

Lu N., Yin D., Li Z. Y., Yang J. L. J. Phys. Chem. C. 2011;115:11991–11995.

Schniepp H. C., Li J. L., McAllister M. J., Sai H., Herrera-Alonso M., Adamson D. H., Prud'homme R. K., Car R., Saville D. A., Aksay I. A. J. Phys. Chem. B. 2006;110:8535–8539. PubMed

Zhang S., Aslan H., Besenbacher F., Dong M. Chem. Soc. Rev. 2014;43:7412–7429. PubMed

Whangbo M. H., Bar G., Brandsch R. Surf. Sci. 1998;411:L794–L801.

Stark R. W. Mater. Today. 2010;13:24–32.

Kulkarni D. D., Kim S., Chyasnavichyus M., Hu K., Fedorov A. G., Tsukruk V. V. J. Am. Chem. Soc. 2014;136:6546–6549. PubMed

Ding Y. H., Zhang P., Ren H. M., Zhuo Q., Yang Z. M., Jiang X., Jiang Y. Appl. Surf. Sci. 2011;258:1077–1081.

Zhang S., Bach-Gansmo F. L., Xia D., Besenbacher F., Birkedal H., Dong M. Nano Res. 2015;8:3250–3260.

Xia D., Zhang S., Hjortdal J. Ø., Li Q., Thomsen K., Chevallier J., Besenbacher F., Dong M. ACS Nano. 2014;8:6873–6882. PubMed

Pittenger B., Slade A. Microsc. Today. 2013;21:12–17.

Tao H. H., Moser J., Alzina F., Wang Q., Sotomayor-Torres C. M. J. Phys. Chem. C. 2011;115:18257–18260.

Leconte N., Moser J., Ordejón P., Tao H., Lherbier A., Bachtold A., Alsina F., Sotomayor Torres C. M., Charlier J.-C., Roche S. ACS Nano. 2010;4:4033–4038. PubMed

Lazar P., Zhang S., Šafářová K., Li Q., Froning J. P., Granatier J., Hobza P., Zbořil R., Besenbacher F., Dong M. D., Otyepka M. ACS Nano. 2013;7:1646–1651. PubMed

Ondráček M., Pou P., Rozsíval V., González C., Jelínek P., Pérez R. Phys. Rev. Lett. 2011;106:176101. PubMed

Goumans T. P. M., Wander A., Brown W. A., Catlow C. R. A. Phys. Chem. Chem. Phys. 2007;9:2146–2152. PubMed

Johnson K. L., Kendall K., Roberts A. D. Proc. R. Soc. London, Ser. A. 1971;324:301–313.

Derjaguin B. V., Muller V. M., Toporov Y. P. J. Colloid. Interface Sci. 1975;53:314–326.

Tabor D. J. Colloid. Interface Sci. 1977;58:2–13.

Jiang D.-e., Sumpter B. G., Dai S. J. Chem. Phys. 2007;126:134701. PubMed

Lazar P., Otyepková E., Banáš P., Fargašová A., Šafářová K., Lapčík L., Pechoušek J., Zbořil R., Otyepka M. Carbon. 2014;73:448–453.

Wang X. R., Li X. L., Zhang L., Yoon Y., Weber P. K., Wang H. L., Guo J., Dai H. J. Science. 2009;324:768–771. PubMed

Park S., Srivastava D., Cho K. Nano Lett. 2003;3:1273–1277.

Lisovskii I. P., Litovchenko V. G., Lozinskii V. B. Appl. Surf. Sci. 1995;86:299–302.

Kozlowska M., Goclon J., Rodziewicz P. Appl. Surf. Sci. 2016;362:1–10.

Chenoweth K., van Duin A. C. T., Goddard W. A. J. Phys. Chem. A. 2008;112:1040–1053. PubMed

Bagri A., Mattevi C., Acik M., Chabal Y. J., Chhowalla M., Shenoy V. B. Nat. Chem. 2010;2:581–587. PubMed

Plimpton S. J. Comput. Phys. 1995;117:1–19.

Blöchl P. E. Phys. Rev. B: Condens. Matter. 1994;50:17953–17979. PubMed

Kresse G., Joubert D. Phys. Rev. B: Condens. Matter. 1999;59:1758–1775.

Klimeš J., Bowler D. R., Michaelides A. Phys. Rev. B: Condens. Matter. 2011;83:195131.

Pykal M., Jurečka P., Karlický F., Otyepka M. Phys. Chem. Chem. Phys. 2016;18:6351–6372. PubMed

Lazar P., Martincová J., Otyepka M. Phys. Rev. B: Condens. Matter. 2015;92:224104.

Lazar P., Karlický F., Jurečka P., Kocman M., Otyepková E., Šafářová K., Otyepka M. J. Am. Chem. Soc. 2013;135:6372–6377. PubMed

Pou P. Nanotechnology. 2009;20:264015. PubMed

Šljivančanin Ž., Milošević A. S., Popović Z. S., Vukajlović F. R. Carbon. 2013;54:482–488.

Aria A. I., Gani A. W., Gharib M. Appl. Surf. Sci. 2014;293:1–11.

Yuan J., Ma L.-P., Pei S., Du J., Su Y., Ren W., Cheng H.-M. ACS Nano. 2013;7:4233–4241. PubMed

Kumar P., Subrahmanyam K. S., Rao C. N. R. Int. J. Nanosci. 2011;10:559–566.

Villarrubia J. S. J. Res. Natl. Inst. Stand. Technol. 1997;102:425–454. PubMed PMC

Ptak A., Gojzewski H., Kappl M., Butt H. J. Chem. Phys. Lett. 2011;503:66–70.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...