Direct mapping of chemical oxidation of individual graphene sheets through dynamic force measurements at the nanoscale
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27735008
PubMed Central
PMC5310523
DOI
10.1039/c6nr05799c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Graphene oxide is one of the most studied nanomaterials owing to its huge application potential in many fields, including biomedicine, sensing, drug delivery, optical and optoelectronic technologies. However, a detailed description of the chemical composition and the extent of oxidation in graphene oxide remains a key challenge affecting its applicability and further development of new applications. Here, we report direct monitoring of the chemical oxidation of an individual graphene flake during ultraviolet/ozone treatment through in situ atomic force microscopy based on dynamic force mapping. The results showed that graphene oxidation expanded from the graphene edges to the entire graphene surface. The interaction force mapping results correlated well with X-ray photoelectron spectroscopy data quantifying the degree of chemical oxidation. Density functional theory calculations confirmed the specific interaction forces measured between a silicon tip and graphene oxide. The developed methodology can be used as a simple protocol for evaluating the chemical functionalization of other two-dimensional materials with covalently attached functional groups.
Zobrazit více v PubMed
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Science. 2004;306:666–669. PubMed
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. Nature. 2005;438:197–200. PubMed
Gomes K. K., Mar W., Ko W., Guinea F., Manoharan H. C. Nature. 2012;483:306–310. PubMed
Berger C., Song Z. M., Li T. B., Li X. B., Ogbazghi A. Y., Feng R., Dai Z. T., Marchenkov A. N., Conrad E. H., First P. N., de Heer W. A. J. Phys. Chem. B. 2004;108:19912–19916.
Britnell L., Gorbachev R. V., Jalil R., Belle B. D., Schedin F., Mishchenko A., Georgiou T., Katsnelson M. I., Eaves L., Morozov S. V., Peres N. M. R., Leist J., Geim A. K., Novoselov K. S., Ponomarenko L. A. Science. 2012;335:947–950. PubMed
Tiwari J. N., Vij V., Kemp K. C., Kim K. S. ACS Nano. 2016;10:46–80. PubMed
Dong X. C., Xu H., Wang X. W., Huang Y. X., Chan-Park M. B., Zhang H., Wang L. H., Huang W., Chen P. ACS Nano. 2012;6:3206–3213. PubMed
Yoo E., Kim J., Hosono E., Zhou H.-s., Kudo T., Honma I. Nano Lett. 2008;8:2277–2282. PubMed
Wu Z. S., Ren W. C., Wen L., Gao L. B., Zhao J. P., Chen Z. P., Zhou G. M., Li F., Cheng H. M. ACS Nano. 2010;4:3187–3194. PubMed
Georgakilas V., Tiwari J. N., Kemp K. C., Perman J. A., Bourlinos A. B., Kim K. S., Zbořil R. Chem. Rev. 2016;116:5464–5519. PubMed
Tanaka H., Obata S., Saiki K. Chem. Lett. 2014;43:328–330.
Erickson K., Erni R., Lee Z., Alem N., Gannett W., Zettl A. Adv. Mater. 2010;22:4467–4472. PubMed
Park S., An J. H., Jung I. W., Piner R. D., An S. J., Li X. S., Velamakanni A., Ruoff R. S. Nano Lett. 2009;9:1593–1597. PubMed
Wang Z. J., Zhou X. Z., Zhang J., Boey F., Zhang H. J. Phys. Chem. C. 2009;113:14071–14075.
Kou L., He H. K., Gao C. Nano-Micro Lett. 2010;2:177–183.
Chandra V., Park J., Chun Y., Lee J. W., Hwang I.-C., Kim K. S. ACS Nano. 2010;4:3979–3986. PubMed
Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. Chem. Soc. Rev. 2010;39:228–240. PubMed
Mokdad A., Dimos K., Zoppellaro G., Tuček J., Perman J. A., Malina O., Andersson K. K., Datta K. K. R., Froning J. P., Zbořil R. RSC Adv. 2015;5:76556–76566.
Zhu H., Gao L., Jiang X., Liu R., Wei Y., Wang Y., Zhao Y., Chai Z., Gao X. Chem. Commun. 2014;50:3695–3698. PubMed
Shao Y. Y., Wang J., Wu H., Liu J., Aksay I. A., Lin Y. H. Electroanalysis. 2010;22:1027–1036.
Huang C. C., Li C., Shi G. Q. Energy Environ. Sci. 2012;5:8848–8868.
Parvez K., Yang S. B., Hernandez Y., Winter A., Turchanin A., Feng X. L., Mullen K. ACS Nano. 2012;6:9541–9550. PubMed
Yoo J. M., Kang J. H., Hong B. H. Chem. Soc. Rev. 2015;44:4835–4852. PubMed
Zhang L. M., Xing Y. D., He N. Y., Zhang Y., Lu Z. X., Zhang J. P., Zhang Z. J. J. Nanosci. Nanotechnol. 2012;12:2924–2928. PubMed
Datta K. K. R., Kozák O., Ranc V., Havrdová M., Bourlinos A. B., Šafářová K., Holá K., Tománková K., Zoppellaro G., Otyepka M., Zbořil R. Chem. Commun. 2014;50:10782–10785. PubMed
Shin S. R., Aghaei-Ghareh-Bolagh B., Gao X., Nikkhah M., Jung S. M., Dolatshahi-Pirouz A., Kim S. B., Kim S. M., Dokmeci M. R., Tang X., Khademhosseini A. Adv. Funct. Mater. 2014;24:6136–6144. PubMed PMC
Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Kim K. S., Ahn J.-H., Kim P., Choi J.-Y., Hong B. H. Nature. 2009;457:706–710. PubMed
Tung V. C., Allen M. J., Yang Y., Kaner R. B. Nat. Nanotechnol. 2009;4:25–29. PubMed
Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S. Science. 2009;324:1312–1314. PubMed
Eng A. Y. S., Chua C. K., Pumera M. Nanoscale. 2015;7:20256–20266. PubMed
Lu N., Yin D., Li Z. Y., Yang J. L. J. Phys. Chem. C. 2011;115:11991–11995.
Schniepp H. C., Li J. L., McAllister M. J., Sai H., Herrera-Alonso M., Adamson D. H., Prud'homme R. K., Car R., Saville D. A., Aksay I. A. J. Phys. Chem. B. 2006;110:8535–8539. PubMed
Zhang S., Aslan H., Besenbacher F., Dong M. Chem. Soc. Rev. 2014;43:7412–7429. PubMed
Whangbo M. H., Bar G., Brandsch R. Surf. Sci. 1998;411:L794–L801.
Stark R. W. Mater. Today. 2010;13:24–32.
Kulkarni D. D., Kim S., Chyasnavichyus M., Hu K., Fedorov A. G., Tsukruk V. V. J. Am. Chem. Soc. 2014;136:6546–6549. PubMed
Ding Y. H., Zhang P., Ren H. M., Zhuo Q., Yang Z. M., Jiang X., Jiang Y. Appl. Surf. Sci. 2011;258:1077–1081.
Zhang S., Bach-Gansmo F. L., Xia D., Besenbacher F., Birkedal H., Dong M. Nano Res. 2015;8:3250–3260.
Xia D., Zhang S., Hjortdal J. Ø., Li Q., Thomsen K., Chevallier J., Besenbacher F., Dong M. ACS Nano. 2014;8:6873–6882. PubMed
Pittenger B., Slade A. Microsc. Today. 2013;21:12–17.
Tao H. H., Moser J., Alzina F., Wang Q., Sotomayor-Torres C. M. J. Phys. Chem. C. 2011;115:18257–18260.
Leconte N., Moser J., Ordejón P., Tao H., Lherbier A., Bachtold A., Alsina F., Sotomayor Torres C. M., Charlier J.-C., Roche S. ACS Nano. 2010;4:4033–4038. PubMed
Lazar P., Zhang S., Šafářová K., Li Q., Froning J. P., Granatier J., Hobza P., Zbořil R., Besenbacher F., Dong M. D., Otyepka M. ACS Nano. 2013;7:1646–1651. PubMed
Ondráček M., Pou P., Rozsíval V., González C., Jelínek P., Pérez R. Phys. Rev. Lett. 2011;106:176101. PubMed
Goumans T. P. M., Wander A., Brown W. A., Catlow C. R. A. Phys. Chem. Chem. Phys. 2007;9:2146–2152. PubMed
Johnson K. L., Kendall K., Roberts A. D. Proc. R. Soc. London, Ser. A. 1971;324:301–313.
Derjaguin B. V., Muller V. M., Toporov Y. P. J. Colloid. Interface Sci. 1975;53:314–326.
Tabor D. J. Colloid. Interface Sci. 1977;58:2–13.
Jiang D.-e., Sumpter B. G., Dai S. J. Chem. Phys. 2007;126:134701. PubMed
Lazar P., Otyepková E., Banáš P., Fargašová A., Šafářová K., Lapčík L., Pechoušek J., Zbořil R., Otyepka M. Carbon. 2014;73:448–453.
Wang X. R., Li X. L., Zhang L., Yoon Y., Weber P. K., Wang H. L., Guo J., Dai H. J. Science. 2009;324:768–771. PubMed
Park S., Srivastava D., Cho K. Nano Lett. 2003;3:1273–1277.
Lisovskii I. P., Litovchenko V. G., Lozinskii V. B. Appl. Surf. Sci. 1995;86:299–302.
Kozlowska M., Goclon J., Rodziewicz P. Appl. Surf. Sci. 2016;362:1–10.
Chenoweth K., van Duin A. C. T., Goddard W. A. J. Phys. Chem. A. 2008;112:1040–1053. PubMed
Bagri A., Mattevi C., Acik M., Chabal Y. J., Chhowalla M., Shenoy V. B. Nat. Chem. 2010;2:581–587. PubMed
Plimpton S. J. Comput. Phys. 1995;117:1–19.
Blöchl P. E. Phys. Rev. B: Condens. Matter. 1994;50:17953–17979. PubMed
Kresse G., Joubert D. Phys. Rev. B: Condens. Matter. 1999;59:1758–1775.
Klimeš J., Bowler D. R., Michaelides A. Phys. Rev. B: Condens. Matter. 2011;83:195131.
Pykal M., Jurečka P., Karlický F., Otyepka M. Phys. Chem. Chem. Phys. 2016;18:6351–6372. PubMed
Lazar P., Martincová J., Otyepka M. Phys. Rev. B: Condens. Matter. 2015;92:224104.
Lazar P., Karlický F., Jurečka P., Kocman M., Otyepková E., Šafářová K., Otyepka M. J. Am. Chem. Soc. 2013;135:6372–6377. PubMed
Pou P. Nanotechnology. 2009;20:264015. PubMed
Šljivančanin Ž., Milošević A. S., Popović Z. S., Vukajlović F. R. Carbon. 2013;54:482–488.
Aria A. I., Gani A. W., Gharib M. Appl. Surf. Sci. 2014;293:1–11.
Yuan J., Ma L.-P., Pei S., Du J., Su Y., Ren W., Cheng H.-M. ACS Nano. 2013;7:4233–4241. PubMed
Kumar P., Subrahmanyam K. S., Rao C. N. R. Int. J. Nanosci. 2011;10:559–566.
Villarrubia J. S. J. Res. Natl. Inst. Stand. Technol. 1997;102:425–454. PubMed PMC
Ptak A., Gojzewski H., Kappl M., Butt H. J. Chem. Phys. Lett. 2011;503:66–70.