Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23346897
DOI
10.1021/nn305608a
Knihovny.cz E-zdroje
- MeSH
- grafit chemie MeSH
- kovy chemie MeSH
- kvantová teorie MeSH
- mikroskopie atomárních sil * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- grafit MeSH
- kovy MeSH
The two-dimensional material graphene has numerous potential applications in nano(opto)electronics, which inevitably involve metal graphene interfaces.Theoretical approaches have been employed to examine metal graphene interfaces, but experimental evidence is currently lacking. Here, we combine atomic force microscopy (AFM) based dynamic force measurements and density functional theory calculations to quantify the interaction between metal-coated AFM tips and graphene under ambient conditions. The results show that copper has the strongest affinity to graphene among the studied metals (Cu, Ag, Au, Pt, Si), which has important implications for the construction of a new generation of electronic devices. Observed differences in the nature of the metal-graphene bonding are well reproduced by the calculations, which included nonlocal Hartree-Fock exchange and van der Waals effects.
Citace poskytuje Crossref.org