Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120

. 2015 ; 10 (9) : e0138468. [epub] 20150916

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26376297

Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

Zobrazit více v PubMed

Werner T, Schmülling T. Cytokinin action in plant development. Curr Opin Plant Biol. 2009;12: 527–538. 10.1016/j.pbi.2009.07.002 PubMed DOI

Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P. Evolution of cytokinin biosynthesis and degradation. J Exp Bot. 2011;62: 2431–2452. 10.1093/jxb/err004 PubMed DOI

Kline LK, Fittler F, Hall RH. N6- (Δ2-Isopentenyl) adenosine. Biosynthesis in transfer ribonucleic acid in vitro . Biochemistry 1969;8: 4361–4371. PubMed

Taya Y, Tanaka Y, Nishimura S. 5’-AMP is a direct precursor of cytokinin in Dictyostelium discoideum . Nature 1978;271: 545–547. PubMed

Krall L, Raschke M, Zenk MH, Baron C. The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5’-phosphate from 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP. FEBS Lett. 2002;527: 315–318. PubMed

Barnes FM, Cheng LT, Gray JS. Biosynthesis of cytokinins by potato cell cultures. Phytochemistry 1980;19: 409–412.

Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, et al. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 2006;103: 16598–16603. PubMed PMC

von Schwartzenberg K. Hormonal regulation of development by auxin and cytokinin in moss In: Knight CD, Perroud PF, Cove D, editors. The moss Physcomitrella patens. Chichester: John Wiley & Sons; 2009. pp. 246–297.

Lindner A-C, Lang D, Seifert M, Podlešáková K, Novák O, Strnad M, et al. Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis. J Exp Bot. 2014;65: 2533–2543. 10.1093/jxb/eru142 PubMed DOI PMC

Lisitskaya TB, Trosheva TD. Microorganisms stimulating plant growth for sustainable agriculture. Russ J Gen Chem. 2013;83: 2765–2774.

Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 1984;81: 5994–5998. PubMed PMC

Barry GF, Rogers SG, Fraley RT, Brand L. Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 1984;81: 4776–4780. PubMed PMC

Powell GK, Morris RO. Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res. 1986;14: 2555–2565. PubMed PMC

Akiyoshi DE, Regier DA, Gordon MP. Nucleotide sequence of the tzs gene from Pseudomonas solanacearum strain K60. Nucleic Acids Res. 1989;17: 88–86. PubMed PMC

Crespi M, Messens E, Caplan AB, Van Montagu M, Desomer J. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. 1992;11: 795–804. PubMed PMC

Lichter A, Barash I, Valinsky L, Manulis S. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation. J Bacteriol. 1995;177: 4457–4465. PubMed PMC

Joshi M, Loria R. Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. Mol Plant-Microbe Interact. 2007;20: 751–758. PubMed

Takei K, Sakakibara H, Sugiyama T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana . J Biol Chem. 2001;276: 26405–26410. PubMed

Kakimoto T. Biosynthesis of cytokinins. J Plant Res. 2003;116: 233–239. PubMed

Koenig RL, Morris RO, Polacco JC. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol. 2002;184: 1832–1842. PubMed PMC

Samanovic MI, Tu S, Novák O, Iyer LM, McAllister FE, Aravind L, et al. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. Mol Cell 2015;19: 984–994. PubMed PMC

Whitty CD, Hall RH. A cytokinin oxidase in Zea mays . Can J Biochem. 1974;52: 787–799. PubMed

Galuszka P, Frébort I, Šebela M, Sauer P, Jacobsen S, Peč P. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals. Eur J Biochem. 2001;268: 450–461. PubMed

Bilyeu KD, Cole JL, Laskey JG, Riekhof WR, Esparza TJ, Kramer MD, et al. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Phys. 2001;125: 378–386. PubMed PMC

Werner T, Motyka V, Laucou V, Smets R, van Onckelen H. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 2003;15: 1–20. PubMed PMC

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, et al. Cytokinin oxidase regulates rice grain production. Science 2005;309: 741–5. PubMed

Gu R, Fu J, Guo S, Duan F, Wang Z, Mi G, et al. Comparative expression and phylogenetic analysis of maize cytokinin dehydrogenase/oxidase (CKX) gene family. J Plant Growth Regul. 2010;29: 428–440.

Zalabák D, Galuszka P, Mrízová K, Podlešáková K, Gu R, Frébortová J. Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant Phys Biochem. 2014;74: 283–293. PubMed

Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res. 2003;116: 241–252. PubMed

Pertry I, Václavíková K, Gemrotová M, Spíchal L, Galuszka P, Depuydt S, et al. Rhodococcus fascians impacts plant development through the dynamic Fas-mediated production of a cytokinin mix. Mol Plant-Microbe Interact. 2010;23: 1164–1174. 10.1094/MPMI-23-9-1164 PubMed DOI

Spíchal L. Cytokinins—recent news and views of evolutionally old molecules. Funct Plant Biol. 2012;39: 267–284. PubMed

Gruhn N, Heyl A. Updates on the model and the evolution of cytokinin signaling. Curr Opin Plant Biol. 2013;16: 569–574. 10.1016/j.pbi.2013.09.001 PubMed DOI

Rippka R, Neilson A, Kunisawa R, Cohen-Bazire G. Nitrogen fixation by unicellular blue-green algae. Arch Mikrobiol. 1971;76: 341–348. PubMed

Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, Strnad M. Quantitative analysis of cytokinins in plants by liquid chromatography—single-quadrupole mass spectrometry. Anal Chim Acta 2003;480: 207–218.

Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 2008;69: 2214–2224. 10.1016/j.phytochem.2008.04.022 PubMed DOI

Fiore MF, Moon DH, Tsai SM, Lee H, Trevors JT. Miniprep DNA isolation from unicellular and filamentous cyanobacteria. J Microbiol Methods 2000;39: 159–169. PubMed

Kowalska M, Galuszka P, Frébortová J, Šebela M, Béres T, Hluska T, et al. Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: Heterologous expression, purification and properties. Phytochemistry 2010;71: 1970–1978. 10.1016/j.phytochem.2010.08.013 PubMed DOI

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72: 248–254. PubMed

Joseph RE, Andreotti AH. Bacterial expression and purification of Interleukin-2 Tyrosine kinase: Single step separation of the chaperonin impurity. Protein Expr Purif. 2008;60: 194–197. 10.1016/j.pep.2008.04.001 PubMed DOI PMC

Chen XS, Casini G, Harrison SC, Garcea R. Papillomavirus capsid protein expression in Escherichia coli: Purification and assembly of HPV11 and HPV16 L1. J Mol Biol. 2001;307: 173–182. PubMed

Clark ED. Protein refolding for industrial processes. Curr Opin Biotechnol. 2001;12: 202–207. PubMed

Bondos SE, Bicknell A. Detection and prevention of protein aggregation before, during and after purification. Anal Biochem. 2003;316: 223–231. PubMed

Frébortová J, Galuszka P, Werner T, Schmülling T, Frébort I. Functional expression and purification of cytokinin dehydrogenase from Arabidopsis thaliana (AtCKX2) in Saccharomyces cerevisiae . Biol Plant. 2007;51: 673–682.

Soderberg T, Poulter CD. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: Site directed mutagenesis of highly conserved residues. Biochemistry 2001;40: 1734–1740. PubMed

Gehrke CW, Kuo KC, McCune RA, Gerhardt KO. Quantitative enzymatic hydrolysis of tRNAs. Reversed-phase high-performance liquid chromatography of tRNA nucleosides. J Chromatogr. 1982;230: 297–308. PubMed

Béres T, Zatloukal M, Voller J, Niemann P, Gahsche MC, Tarkowski P, et al. Tandem mass spectrometry identification and LC-MS quantification of intact cytokinin nucleotides in K-562 human leukemia cells. Anal Bioanal Chem. 2010;398: 2071–2080. 10.1007/s00216-010-4126-5 PubMed DOI

Voller J, Zatloukal M, Lenobel R, Doležal K, Béres T, Kryštof V, et al. Anticancer activity of natural cytokinins: a structure-activity relationship study. Phytochemistry 2010;71: 1350–1359. 10.1016/j.phytochem.2010.04.018 PubMed DOI

Béres T, Gemrotová M, Tarkowski P, Ganzera M, Maier V, Friedecký D, et al. Analysis of cytokinin nucleotides by capillary zone electrophoresis with diode array and mass spectrometric detection in a recombinant enzyme in vitro reaction. Anal Chim Acta 2012;751: 176–181. 10.1016/j.aca.2012.08.049 PubMed DOI

Frébort I, Šebela M, Galuszka P, Werner T, Schmülling T, Peč P. Cytokinin oxidase/dehydrogenase assay: optimized procedures and applications. Anal Biochem. 2002;306: 1–7. PubMed

Gruhn N, Halawa M, Snel B, Seidl MF, Heyl A. A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants. Plant Physiol. 2014;165: 227–237. 10.1104/pp.113.228080 PubMed DOI PMC

Finn RD, Clements J, Eddy S. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39: W29–37. 10.1093/nar/gkr367 PubMed DOI PMC

Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol. 2009;537: 39–64. 10.1007/978-1-59745-251-9_3 PubMed DOI

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25: 1972–1973. 10.1093/bioinformatics/btp348 PubMed DOI PMC

Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22: 2688–2690. PubMed

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41: 95–98.

Malito E, Coda A, Bilyeu KD, Fraaije MW, Mattevi A. Structures of Michaelis and product complexes of plant cytokinin dehydrogenase: implications for flavoenzyme catalysis. J Mol Biol. 2004;341: 1237–1249. PubMed

Werner T, Motyka V, Strnad M, Schmülling T. Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 2001;98: 10487–10492. PubMed PMC

Galuszka P, Frébortová J, Werner T, Yamada M, Strnad M, Schmülling T, et al. Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression. Eur J Biochem. 204; 271: 3990–4002. PubMed

Stirk WA, Ördög V, van Staden J. Identification of the cytokinin isopentenyladenine in a strain of Arthronema africanum (Cyanobacteria). J Phycol. 1999;35: 89–92.

Hussain A, Krischke M, Roitsch T, Hasnain S. Rapid determination of cytokinins and auxin in cyanobacteria. Curr Microbiol. 2010;61: 361–369. 10.1007/s00284-010-9620-7 PubMed DOI

Kamada-Nobusada T, Sakakibara H. Molecular basis for cytokinin biosynthesis. Phytochemistry 2009;70: 444–449. 10.1016/j.phytochem.2009.02.007 PubMed DOI

Sugawara H, Ueda N, Kojima M, Makita N, Yamaya T, Sakakibara H. Structural insight into reaction mechanism and evolution of cytokinin biosynthesis. Proc Natl Acad Sci USA 2008;105: 2734–2739. 10.1073/pnas.0707374105 PubMed DOI PMC

Chu H-M, Ko T-P, Wang AH-J. Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: distinctive binding affinity for purine and pyrimidine nucleotides. Nucleic Acid Res. 2010;38: 1738–1748. 10.1093/nar/gkp1093 PubMed DOI PMC

Persson BC, Esberg B, Olafsson O, Bjork GR. Synthesis and function of isopentenyl adenosine derivatives in transfer-RNA. Biochimie 1994;76: 1152–1160. PubMed

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. The Pfam protein families database. Nucl Acids Res. 2014;42: D222–D230. 10.1093/nar/gkt1223 PubMed DOI PMC

Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43: D222–D226. 10.1093/nar/gku1221 PubMed DOI PMC

Heuts DPHM, Scrutton NS, McIntire WS, Fraaije MW. What’s in a covalent bond? On the role and formation of covalently bound flavin cofactors. FEBS J. 2009;276: 3405–3427. 10.1111/j.1742-4658.2009.07053.x PubMed DOI

Pospíšilová H, Šebela M, Novák O, Frébort I. Hydrolytic cleavage of N6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep. 2008;28: 335–347. 10.1042/BSR20080081 PubMed DOI

Goble AM, Fan H, Sali A, Raushel FM. Discovery of a cytokinin deaminase. ACS Chem Biol. 2011;6: 1036–1040. 10.1021/cb200198c PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...