Occurrence and biosynthesis of cytokinins in poplar
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
15-16888S
Grantová Agentura České Republiky
RO0418
Ministerstvo Zemědělství
PubMed
30980246
DOI
10.1007/s00425-019-03152-z
PII: 10.1007/s00425-019-03152-z
Knihovny.cz E-zdroje
- Klíčová slova
- Cytokinin, Expression, Isopentenyltransferase, Poplar, Topolin, tRNA,
- MeSH
- alkyltransferasy a aryltransferasy genetika metabolismus MeSH
- Arabidopsis genetika metabolismus MeSH
- cytokininy biosyntéza MeSH
- fylogeneze MeSH
- geneticky modifikované rostliny MeSH
- listy rostlin genetika metabolismus MeSH
- Populus genetika metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenylate isopentenyltransferase MeSH Prohlížeč
- alkyltransferasy a aryltransferasy MeSH
- cytokininy MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Isoprenoid and aromatic cytokinins occur in poplar as free compounds and constituents of tRNA, poplar isopentenyltransferases are involved in the production of isoprenoid cytokinins, while biosynthesis of their aromatic counterparts remains unsolved. Cytokinins are phytohormones with a fundamental role in the regulation of plant growth and development. They occur naturally either as isoprenoid or aromatic derivatives, but the latter are quite rare and less studied. Here, the spatial expression of all nine isopentenyl transferase genes of Populus × canadensis cv. Robusta (PcIPTs) as analyzed by RT-qPCR revealed a tissue preference and strong differences in expression levels for the different adenylate and tRNA PcIPTs. Together with their phylogeny, this result suggests a functional diversification for the different PcIPT proteins. Additionally, the majority of PcIPT genes were cloned and expressed in Arabidopsis thaliana under an inducible promoter. The cytokinin levels measured in the Arabidopsis-overexpressing lines as well as their phenotype indicate that the studied adenylate and tRNA PcIPT proteins are functional in vivo and thus will contribute to the cytokinin pool in poplar. We screened the cytokinin content in leaves of 12 Populus species by ultra-high performance-tandem mass spectrometry (UHPLC-MS/MS) and discovered that the capacity to produce not only isoprenoid, but also aromatic cytokinins is widespread amongst the Populus accessions studied. Important for future studies is that the levels of aromatic cytokinins transiently increase after daybreak and are much higher in older plants.
Zobrazit více v PubMed
Mol Biol Evol. 2000 Apr;17(4):540-52 PubMed
Plant Cell. 2011 Jan;23(1):69-80 PubMed
Symp Soc Exp Biol. 1957;11:118-30 PubMed
Plant J. 2018 Feb;93(4):686-702 PubMed
Plant Physiol. 2013 Dec;163(4):1568-83 PubMed
J Biol Chem. 2004 Oct 1;279(40):41866-72 PubMed
Plant J. 1999 Mar;17(6):615-26 PubMed
Planta. 1973 Jun;114(2):119-29 PubMed
Plant Cell Physiol. 2001 Jul;42(7):677-85 PubMed
J Exp Bot. 2012 Sep;63(15):5569-79 PubMed
Plant Mol Biol. 2008 Jun;67(3):215-29 PubMed
BMC Genomics. 2013 Dec 16;14:885 PubMed
FEBS Lett. 2002 Sep 11;527(1-3):315-8 PubMed
Plant Physiol. 2008 Nov;148(3):1189-200 PubMed
J Biol Chem. 2009 Mar 13;284(11):6600-4 PubMed
Nature. 2007 Feb 8;445(7128):652-5 PubMed
Plant Cell Physiol. 2004 Sep;45(9):1299-305 PubMed
J Mol Biol. 2000 Sep 8;302(1):205-17 PubMed
Plant J. 2004 Jan;37(1):128-38 PubMed
J Exp Bot. 2011 May;62(8):2431-52 PubMed
Plant Physiol. 1993 Jul;102(3):867-872 PubMed
J Exp Bot. 2015 Aug;66(16):4913-31 PubMed
J Exp Bot. 2011 May;62(8):2827-40 PubMed
Phytochemistry. 2008 Aug;69(11):2214-24 PubMed
Front Plant Sci. 2017 Aug 23;8:1473 PubMed
Plant Physiol. 1992 May;99(1):74-80 PubMed
Plant Physiol. 2003 Oct;133(2):462-9 PubMed
New Phytol. 2015 Dec;208(4):1149-56 PubMed
Curr Opin Plant Biol. 2009 Oct;12(5):527-38 PubMed
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10487-92 PubMed
Biochimie. 1994;76(12):1152-60 PubMed
Science. 1995 Dec 22;270(5244):1986-8 PubMed
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16598-603 PubMed
Plant Physiol. 2008 Mar;146(3):1155-64 PubMed
Plant Cell Environ. 2017 May;40(5):622-634 PubMed
Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16142-7 PubMed
Integr Comp Biol. 2002 Jul;42(3):454-62 PubMed
Front Plant Sci. 2019 Jan 11;9:1936 PubMed
Plant Physiol. 2006 Sep;142(1):54-62 PubMed
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):20032-7 PubMed
BMC Plant Biol. 2015 Mar 12;15:85 PubMed
Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 PubMed
Science. 2006 Sep 15;313(5793):1596-604 PubMed
PLoS One. 2015 Sep 16;10(9):e0138468 PubMed
Trends Plant Sci. 2018 Mar;23(3):179-181 PubMed
Annu Rev Phytopathol. 2011;49:69-86 PubMed
Plant Cell. 2016 Jul;28(7):1602-15 PubMed
J Phycol. 2017 Jun;53(3):703-714 PubMed
Plant Physiol. 2003 Jan;131(1):167-76 PubMed
Bioessays. 2015 Apr;37(4):356-63 PubMed
Parasitol Int. 2018 Feb;67(1):47-58 PubMed
Nucleic Acids Res. 2010 Mar;38(5):1738-48 PubMed
Biochem Biophys Res Commun. 1999 Feb 16;255(2):328-33 PubMed
Physiol Plant. 2003 Apr;117(4):453-458 PubMed
Plant Cell Physiol. 2001 Feb;42(2):107-13 PubMed
Syst Biol. 2010 May;59(3):307-21 PubMed
Curr Opin Plant Biol. 2018 Aug;44:82-87 PubMed
Mol Cell. 2015 Mar 19;57(6):984-994 PubMed
J Biol Chem. 2001 Jul 13;276(28):26405-10 PubMed
Plant Physiol. 2009 Sep;151(1):433-47 PubMed