Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato

. 2015 Mar 12 ; 15 () : 85. [epub] 20150312

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25888402
Odkazy

PubMed 25888402
PubMed Central PMC4404076
DOI 10.1186/s12870-015-0415-7
PII: 10.1186/s12870-015-0415-7
Knihovny.cz E-zdroje

BACKGROUND: Cytokinins (CKs) are involved in response to various environmental cues, including salinity. It has been previously reported that enhancing CK contents improved salt stress tolerance in tomato. However, the underlying mechanisms of CK metabolism and signaling under salt stress conditions remain to be deciphered. RESULTS: Two tomato isopentenyltransferases, SlIPT3 and SlIPT4, were characterized in tomato and Arabidopsis. Both proteins displayed isopentenyltransferase (IPT) activity in vitro, while their encoding genes exhibited different spatio-temporal expression patterns during tomato plant development. SlIPT3 and SlIPT4 were affected by the endogenous CK status, tightly connected with CKs feedback regulation, as revealed by hormonal treatements. In response to salt stress, SlIPT3 and SlIPT4 were strongly repressed in tomato roots, and differently affected in young and old leaves. SlIPT3 overexpression in tomato resulted in high accumulation of different CK metabolites, following modifications of CK biosynthesis-, signaling- and degradation-gene expression. In addition, 35S::SlIPT3 tomato plants displayed improved tolerance to salinity consecutive to photosynthetic pigments and K(+)/Na(+) ratio retention. Involvement of SlIPT3 and SlIPT4 in salt stress response was also observed in Arabidopsis ipt3 knock-out complemented plants, through maintenance of CK homeostasis. CONCLUSIONS: SlIPT3 and SlIPT4 are functional IPTs encoded by differently expressed genes, distinctively taking part in the salinity response. The substantial participation of SlIPT3 in CK metabolism during salt stress has been determined in 35S::SlIPT3 tomato transformants, where enhancement of CKs accumulation significantly improved plant tolerance to salinity, underlining the importance of this phytohormone in stress response.

Zobrazit více v PubMed

Cuartero J, Fernández-Muñoz R. Tomato and salinity. Sci Horticult. 1999;78:83–125. doi: 10.1016/S0304-4238(98)00191-5. DOI

Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, et al. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot. 2008;59:4119–31. doi: 10.1093/jxb/ern251. PubMed DOI PMC

Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospísilová H, Martínez-Andújar C, et al. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot. 2011;62:125–40. doi: 10.1093/jxb/erq266. PubMed DOI PMC

Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, et al. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.) J Exp Bot. 2008;59:3039–50. doi: 10.1093/jxb/ern153. PubMed DOI PMC

Cueno ME, Imai K, Ochiai K, Okamoto T. Cytokinin dehydrogenase differentially regulates cytokinin and indirectly affects hydrogen peroxide accumulation in tomato leaf. J Plant Physiol. 2012;169:834–8. doi: 10.1016/j.jplph.2012.01.008. PubMed DOI

Spíchal L. Cytokinins – recent news and views of evolutionally old molecules. Funct Plant Biol. 2012;39:267–84. doi: 10.1071/FP11276. PubMed DOI

Mok DW, Mok MC. Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI

Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, et al. Distribution, biological activities, metabolism, and the possible function of cis-zeatin-type cytokinins in plants. J Exp Bot. 2011;62:2827–40. doi: 10.1093/jxb/erq457. PubMed DOI

Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 2001;42:677–85. doi: 10.1093/pcp/pce112. PubMed DOI

Takei K, Sakakibara H, Sugiyama T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem. 2001;276:26405–10. doi: 10.1074/jbc.M102130200. PubMed DOI

Vyroubalová S, Václavíková K, Turecková V, Novák O, Smehilová M, Hluska T, et al. Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol. 2009;151:433–47. doi: 10.1104/pp.109.142489. PubMed DOI PMC

Matsuo S, Kikuchi K, Fukuda M, Honda I, Imanishi S. Roles and regulation of cytokinins in tomato fruit development. J Exp Bot. 2012;63:5569–79. doi: 10.1093/jxb/ers207. PubMed DOI PMC

Smigocki AC, Owens LD. Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc Natl Acad Sci USA. 1988;85:5131–5. doi: 10.1073/pnas.85.14.5131. PubMed DOI PMC

Smart CM, Scofield SR, Bevan MV, Dyer TA. Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell. 1991;3:647–56. doi: 10.1105/tpc.3.7.647. PubMed DOI PMC

Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA. 1997;94:2117–21. doi: 10.1073/pnas.94.6.2117. PubMed DOI PMC

Sýkorová B, Kurešová G, Daskalova S, Trčková M, Hoyerová K, Raimanová I, et al. Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J Exp Bot. 2008;59:377–87. doi: 10.1093/jxb/erm319. PubMed DOI

Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, et al. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Nat Acad Sci USA. 2006;103:16598–603. doi: 10.1073/pnas.0603522103. PubMed DOI PMC

Ma QH. Genetic engineering of cytokinins and their application to agriculture. Crit Rev Biotechnol. 2008;28:213–32. doi: 10.1080/07388550802262205. PubMed DOI

Peleg Z, Apse MP, Blumwald E. Engineering salinity and water-stress tolerance in crop plants: getting closer to the field. Adv Bot Res. 2011;57:405–28. doi: 10.1016/B978-0-12-387692-8.00012-6. DOI

Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Galuszka P. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv. 2013;31:97–117. doi: 10.1016/j.biotechadv.2011.12.003. PubMed DOI

Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, et al. Transcriptome analyses of a salt-tolerantcytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One. 2012;7:e32124. doi: 10.1371/journal.pone.0032124. PubMed DOI PMC

Liu YD, Yin ZJ, Yu JW, Li J, Wei HL, Han XL, et al. Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant. 2012;56:237–46. doi: 10.1007/s10535-012-0082-6. DOI

Qiu W, Liu M, Qiao G, Jiang J, Xie L, Zhuo R. An isopentenyl transferase gene driven by the stress-inducible rd29A promoter improves salinity stress tolerance in transgenic tobacco. Plant Mol Biol Rep. 2012;30:519–28. doi: 10.1007/s11105-011-0337-y. DOI

Hwang I, Sheen J, Müller B. Cytokinin signaling networks. Annu Rev Plant Biol. 2012;63:353–80. doi: 10.1146/annurev-arplant-042811-105503. PubMed DOI

Mason MG, Jha D, Salt DE, Tester M, Hill K, Kieber JJ, et al. Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant J. 2010;64:753–63. doi: 10.1111/j.1365-313X.2010.04366.x. PubMed DOI

The Tomato Genome Consortium The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485:635–41. doi: 10.1038/nature11119. PubMed DOI PMC

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9. doi: 10.1093/molbev/msr121. PubMed DOI PMC

Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci. 1999;24:34–6. doi: 10.1016/S0968-0004(98)01336-X. PubMed DOI

Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, et al. Distinc isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem. 2004;279:14049–54. doi: 10.1074/jbc.M314195200. PubMed DOI

Galichet A, Hoyerová K, Kamínek M, Gruissem W. Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis. Plant Physiol. 2008;146:1155–64. doi: 10.1104/pp.107.107425. PubMed DOI PMC

Zhu YD, Jin YS, Wei S, Li H, Zhang W. Functional analysis of the isopentenyltransferase gene MdIPT3a from apple (Malus pumila Mill.). J Horticultural Sci. Biotech. 2012;87:478–84.

Brugière N, Humbert S, Rizzo N, Bohn J, Habben JE. A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Cytokinin biosynthesis in maize. Plant Mol Biol. 2008;67:215–29. doi: 10.1007/s11103-008-9312-x. PubMed DOI

Medford JI, Horgan R, El-Sawi Z, Klee HJ. Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell. 1989;1:403–13. doi: 10.1105/tpc.1.4.403. PubMed DOI PMC

Armstrong DJ. Cytokinin oxidase and the regulation of cytokinin degradation. In: Mok DWS, Mok MC, editors. Cytokinins: Chemistry, Activity and the Function. Boca Raton, FL: CRC Press; 1994. pp. 139–54.

Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell. 2011;23:2169–83. doi: 10.1105/tpc.111.087395. PubMed DOI PMC

Liu Z, Lv Y, Zhang M, Liu Y, Kong L, Zou M, et al. Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis) BMC Genomics. 2013;14:594. doi: 10.1186/1471-2164-14-594. PubMed DOI PMC

Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Res. 1999;27:297–300. doi: 10.1093/nar/27.1.297. PubMed DOI PMC

Hichri I, Muhovski Y, Žižkova E, Dobrev PI, Franco-Zorilla JM, Solano R, et al. The Solanum lycopersicum Zinc Finger2 cysteine-2/histidine-2 repressor-like transcription factor regulates development and tolerance to salinity in tomato and Arabidopsis. Plant Physiol. 2014;164:1967–90. doi: 10.1104/pp.113.225920. PubMed DOI PMC

Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotech J. 2011;9:747–58. doi: 10.1111/j.1467-7652.2010.00584.x. PubMed DOI

Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, et al. Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol. 2011;52:1904–14. doi: 10.1093/pcp/pcr125. PubMed DOI

Zhang P, Wang WQ, Zhang GL, Kaminek M, Dobrev P, Xu J, et al. Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol. 2010;52:653–69. PubMed

Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA. 2007;104:19631–6. doi: 10.1073/pnas.0709453104. PubMed DOI PMC

Guo JC, Duan RJ, Hu XW, Li KM, Fu SP. Isopentenyl transferase gene (ipt) downstream transcriptionally fused with gene expression improves the growth of transgenic plants. Transgenic Res. 2010;19:197–209. doi: 10.1007/s11248-009-9298-4. PubMed DOI

Macková H, Hronková M, Dobrá J, Turečková V, Novák O, Lubovská Z, et al. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expession. J Exp Bot. 2013;64:2805–15. doi: 10.1093/jxb/ert131. PubMed DOI PMC

Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA. 2007;104:20623–8. doi: 10.1073/pnas.0706547105. PubMed DOI PMC

Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, et al. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 2010;22:3905–20. doi: 10.1105/tpc.109.072694. PubMed DOI PMC

Ashraf M, Harris PJC. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013;51:163–90. doi: 10.1007/s11099-013-0021-6. DOI

Doganlar ZB, Demir K, Basak H, Gul I. Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. Afr J Agric Res. 2010;5:2056–65.

Karimi M, Inzé D, Depicker A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7:193–5. doi: 10.1016/S1360-1385(02)02251-3. PubMed DOI

Jyothishwaran G, Kotresha D, Selvaraj T, Srideshikan SM, Rajvanshi PK, Jayabaskaran C. A modified freeze-thaw method for efficient transformation of Agrobacterium tumefaciens. Current Sci. 2007;93:770–2.

Ellul P, Garcia-Sogo B, Pineda B, Ríos G, Roig LA, Moreno V. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum Mill.) is genotype and procedure dependent. Theor Appl Genet. 2003;106:231–8. PubMed

Fulton TM, Chunwongse J, Tanksley SD. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep. 1995;13:207–9. doi: 10.1007/BF02670897. DOI

Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, Delrot S, et al. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant. 2010;3:509–23. doi: 10.1093/mp/ssp118. PubMed DOI

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:Research0034. PubMed PMC

Dobrev PI, Kamínek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A. 2002;950:21–9. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Dobrev PI, Vankova R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. In: Shabala S, Cuin TA, editors. Plant salt tolerance: methods and protocols. Methods in molecular biology. New York: Springer Science + Business Media; 2012. pp. 251–61. PubMed

Djilianov DL, Dobrev PI, Moyankova DP, Vankova R, Georgieva DT, Gajdošová S, et al. Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J Plant Growth Regul. 2013;32:564–74. doi: 10.1007/s00344-013-9323-y. DOI

Motyka V, Vaňková R, Čapková V, Petrášek J, Kamínek M, Schmülling T. Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol Plant. 2003;117:11–21. doi: 10.1034/j.1399-3054.2003.1170102.x. DOI

Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, Zažímalová E. Purine cytokinins: a proposal of abbreviations. Plant Growth Regul. 2000;32:253–6. doi: 10.1023/A:1010743522048. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evolutionary Aspects of Hypericin Productivity and Endogenous Phytohormone Pools Evidenced in Hypericum Species In Vitro Culture Model

. 2022 Oct 18 ; 11 (20) : . [epub] 20221018

Phytohormone profiles in non-transformed and AtCKX transgenic centaury (Centaurium erythraea Rafn) shoots and roots in response to salinity stress in vitro

. 2021 Nov 02 ; 11 (1) : 21471. [epub] 20211102

The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction

. 2021 Feb 03 ; 11 (2) : . [epub] 20210203

New Insights Into the Metabolism and Role of Cytokinin N-Glucosides in Plants

. 2020 ; 11 () : 741. [epub] 20200605

Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress

. 2020 ; 15 (5) : e0233055. [epub] 20200515

Occurrence and biosynthesis of cytokinins in poplar

. 2019 Jul ; 250 (1) : 229-244. [epub] 20190412

Salt and oxidative stresses uniquely regulate tomato cytokinin levels and transcriptomic response

. 2018 Jul ; 2 (7) : e00071. [epub] 20180719

Plants under Stress: Involvement of Auxin and Cytokinin

. 2017 Jul 04 ; 18 (7) : . [epub] 20170704

Control of cytokinin and auxin homeostasis in cyanobacteria and algae

. 2017 Jan ; 119 (1) : 151-166. [epub] 20161005

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace