Antimicrobial peptide in polymethylmethacrylate bone cement as a prophylaxis of infectious complications in orthopedics-an experiment in a murine model

. 2022 Oct ; 67 (5) : 785-791. [epub] 20220525

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35612699

Grantová podpora
16-27726A Ministerstvo Zdravotnictví Ceské Republiky
RVO 61388963 Ústav Organické Chemie a Biochemie, Akademie Věd České Republiky
9777 Motol University Hospital
6010 Motol University Hospital

Odkazy

PubMed 35612699
DOI 10.1007/s12223-022-00979-0
PII: 10.1007/s12223-022-00979-0
Knihovny.cz E-zdroje

Polymethylmethacrylate (PMMA) bone cement mixed with antibiotics is used in orthopedic surgery to cope with implant-related infections which are typically associated with the formation of bacterial biofilms. Taking into account the growing bacterial resistance to current antibiotics, we examined here the efficacy of a selected antimicrobial peptide (AMP) mixed into the bone cement to inhibit bacterial adhesion and the consequent biofilm formation on its surface. In particular, we followed the formation of bacterial biofilms of methicillin-resistant Staphylococcus aureus (MRSA) on implants made from PMMA bone cement loaded with AMP composed of 12 amino acid residues. This was evaluated by CFU counting of bacteria released by sonication from the biofilms formed on their surfaces after these implants were retrieved from the infected murine femoral canals. The AMP loaded in these model implants prevented adhesion of MRSA and the subsequent formation of MRSA biofilm on the surfaces of more than 80% of these implants, whereas biofilms did form on control implants made from the plain cement. The results of our experiments performed in the murine femoral canal indicate the potential for this murine osteomyelitis model to mimic actual operations in orthopedics.

Zobrazit více v PubMed

Anagnostakos K, Hitzler P, Pape D, Kohn D, Kelm J (2008) Persistence of bacterial growth on antibiotic-loaded beads: is it actually a problem? Acta Orthop 79:302–307. https://doi.org/10.1080/17453670710015120 PubMed DOI

Arciola CR, Campoccia D, Ehrlich GD, Montanaro L (2015) Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol 830:29–46. https://doi.org/10.1007/978-3-319-11038-7-2 PubMed DOI

Baltzer SA, Brown MH (2011) Antimicrobial peptides–promising alternatives to conventional antibiotics. J Mol Microbiol Biotechnol 20:228–235. https://doi.org/10.1159/000331009 PubMed DOI

Birt MC, Anderson DW, Toby EB, Wang J (2016) Osteomyelitis: recent advances in pathophysiology and therapeutic strategies. J Orthop 14:45–52. https://doi.org/10.1016/j.jor.2016.10.004 PubMed DOI PMC

Bistolfi A, Massazza G, Verné E, Maseé A, Deledda D, Ferraris S, Miola M, Galetto F, Crova M (2011) Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop. https://doi.org/10.5402/2011/290851 PubMed DOI PMC

Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217–225. https://doi.org/10.1016/j.ijantimicag.2011.05.004 PubMed DOI PMC

Campoccia D, Montanaro L, Speziale P, Arciola CR (2010) Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 31:6363–6377. https://doi.org/10.1016/j.biomaterials.2010.05.005 PubMed DOI

Carli AV, Bhimani S, Yang X, de Mesy Bentley KL, Ross FP, Bostrom MPG (2018) Vancomycin loaded polymethylmethacrylate spacers fail to eradicate periprosthetic joint infection in a clinically representative mouse model. J Bone Joint Surg Am 100:e76. https://doi.org/10.2106/JBJS.17.01100 PubMed DOI

Costa B, Martínez-de-Tejada G, Gomes PAC, Martins MC, Costa F (2021) Antimicrobial peptides in the battle against orthopedic implant-related infections: a review. Pharmaceuticals 13:1918. https://doi.org/10.3390/pharmaceutics13111918 DOI

Faber C, Hoogendoorn RJW, Stallmann HP, Lyaruu DM, van Nieuw AA, Wuisman PIJM (2004) In vivo comparison of Dhvar-5 and gentamicin in MRSA osteomyelitis prevention model. J Antimicrob Chemother 54:1078–1084. https://doi.org/10.1093/jac/dkh441 PubMed DOI

Faber C, Stallmann HP, Lyaruu DM, de Blieck JMA, Bervoets ThJM, van Nieuw AA, Wuisman PIJM (2003) Release of antimicrobial peptide Dhvar-5 from polymethylmethacrylate beads. J Antimicrob Chemother 51:1359–1364. https://doi.org/10.1093/jac/dkg258 PubMed DOI

Faber C, Stallmann HP, Lyaruu DM, Joosten U, von Eiff C, van Nieuw AA, Wuisman PIJM (2005) Comparable efficacies of the antimicrobial peptide human lactoferrin 1–11 and gentamicin in a chronic methicillin-resistant Staphylococcus aureus osteomyelitis model. Antimicrob Agents Chemother 49:2438–2444. https://doi.org/10.1128/AAC.49.6.2438-2444.2005 PubMed DOI PMC

Fӧlsch C, Federmann M, Kuehn KD, Kittinger C, Kogler S, Zarfel G, Kerwat M, Braun S, Fuchs-Winkelmann S, Paletta JRJ, Roessler PP (2015) Coating with a novel gentamicinpalmitate formulation prevents implant-associated osteomyelitis induced by methicillin-susceptible Staphylococcus aureus in a rat model. Int Orthop 39:981–988. https://doi.org/10.1007/s00264-014-2582-9 DOI

Fӧlsch C, Federmann M, Lakemeier S, Kuehn KD, Kittinger C, Kerwat M, Fuchs-Winkelmann S, Paletta JRJ, Roessler PP (2016) Systemic antibiotic therapy does not significantly improve outcome in a rat model of implant-associated osteomyelitis induced by methicillin susceptible Staphylococcus aureus. Arch Orthop Trauma Surg 136:585–592. https://doi.org/10.1007/s00402-016-2419-7 DOI

Getzlaf MA, Lewallen EA, Kremers HM, Jones DL, Bonin CA, Dudakovic A, Thaler R, Cohen RC, Lewallen DG, van Wijnen AJ (2016) Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee. J Orthop Res 34:177–186. https://doi.org/10.1002/jor.23068 PubMed DOI

Hanssen AD, Osmon DR, Patel R (2005) Local antibiotic delivery systems: where are we and where are we going? Clin Orthop Rel Res 437:111–114. https://doi.org/10.1097/01.blo.0000175122.50804.ce DOI

Jackson J, Leung F, Duncan C, Mugabe C, Burt H (2011) The use of bone cement for the localized, controlled release of the antibiotics vancomycin, linezolid, or fusidic acid: effect of additives on drug release rates and mechanical strength. Drug Deliv Transl Res 1:121–131. https://doi.org/10.1007/s13346-011-0015-5 PubMed DOI

Jahoda D, Nyč O, Pokorný D, Landor I, Sosna A (2006) Antibiotic treatment for prevention of infectious complications in joint replacement. Acta Chir Orthop Traum Cech 73:108–114 PubMed

Kendoff DO, Gehrke T, Stangenberg P, Frommelt L, Bösebeck H (2016) Bioavailability of gentamicin and vancomycin released from an antibiotic containing bone cement in patients undergoing a septic one-stage total hip arthroplasty (THA) revision: a monocentric open clinical trial. Hip Int 26:90–96. https://doi.org/10.5301/hipint.5000307 PubMed DOI

Koehbach J, Craik DJ (2019) The vast structural diversity of antimicrobial peptides. Trends Pharmacol Sci 40:517–528. https://doi.org/10.1016/j.tips.2019.04.012 PubMed DOI

Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopaedic infections. J Orthop Res 36:22–32. https://doi.org/10.1002/jor.23656 PubMed DOI

Melicherčík P, Čeřovský V, Nešuta O, Jahoda D, Landor I, Ballay R, Fulín P (2018a) Testing the efficacy of antimicrobial peptides in the topical treatment of induced osteomyelitis in rats. Folia Microbiol 63:97–104. https://doi.org/10.1007/s12223-017-0540-9 DOI

Melicherčík P, Klapková E, Kotaška K, Jahoda D, Landor I, Čeřovský V (2020) High-performance liquid chromatography as a novel method for determination of α-defensins in synovial fluid for diagnosis of orthopedic infections. Diagnostics 10:33. https://doi.org/10.3390/diagnostics10010033 DOI PMC

Melicherčík P, Nešuta O, Čeřovský V (2018b) Antimicrobial peptides for topical treatment of osteomyelitis and implant-related infections: study in the spongy bone. Pharmaceuticals 11:20. https://doi.org/10.3390/ph11010020 DOI PMC

Mishra B, Reiling S, Zarena D, Wang G (2017) Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 38:87–96. https://doi.org/10.1016/j.cbpa.2017.03.014 PubMed DOI PMC

Monincová L, Buděšinský M, Slaninová J, Hovorka O, Cvačka J, Voburka Z, Fučík V, Borovičková L, Bednárová L, Straka J, Čeřovský V (2010) Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids 39:763–775. https://doi.org/10.1007/s00726-010-0519-1 PubMed DOI

Nandi SK, Bandyopadhyay S, Das P, Samanta I, Mukherjee P, Roy S, Kundu B (2016) Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv 34:1305–1317. https://doi.org/10.1016/j.biotechadv.2016.09.005 PubMed DOI

Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472. https://doi.org/10.1016/j.tibtech.2011.05.001 PubMed DOI

Parvizi J, Gehrke T (2014) Definition of periprosthetic joint infection. J Arthroplasty 29:1331. https://doi.org/10.1016/j.arth.2014.03.009 PubMed DOI

Pletzer D, Hancock REW (2016) Antibiofilm peptides: potential as broad-spectrum agents. J Bacteriol 198:2572–2578. https://doi.org/10.1128/JB.00017-16 PubMed DOI PMC

Ribeiro M, Monteiro FJ, Ferraz MP (2012) Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2:176–194. https://doi.org/10.4161/biom.22905 PubMed DOI PMC

Romano CL, Toscano M, Romano D, Drago L (2013) Antibiofilm agents and implant-related infections in orthopaedics: where are we? J Chemother 25:67–80. https://doi.org/10.1179/1973947812Y.0000000045 PubMed DOI

van Vugt TAG, Arts JJ, Geurts JAP (2019) Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation. Front Microbiol 10:1626. https://doi.org/10.3389/fmicb.2019.01626 PubMed DOI PMC

Volejníková A, Melicherčík P, Nešuta O, Vaňková E, Bednárová L, Rybáček J, Čeřovský V (2019) Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement. J Med Microbiol 68:961–972. https://doi.org/10.1099/jmm.0.001000 PubMed DOI

Webb JCJ, Spencer RF (2007) The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br 89:851–857. https://doi.org/10.1302/0301-620X.89B7.19148 PubMed DOI

Winkler H, Haiden P (2016) Treatment of chronic bone infection. Oper Tech Orthop 26:2–11. https://doi.org/10.1053/j.oto.2016.01.002 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...