Evolutionary Aspects of Hypericin Productivity and Endogenous Phytohormone Pools Evidenced in Hypericum Species In Vitro Culture Model

. 2022 Oct 18 ; 11 (20) : . [epub] 20221018

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36297777

Grantová podpora
КП-06-Н39/6 Bulgarian Science Fund
19-12262S Czech Science Foundation

Shoot cultures of hypericin non-producing H. calycinum L. (primitive Ascyreia section), hypericin-producing H. perforatum L., H. tetrapterum Fries (section Hypericum) and H. richeri Vill. (the evolutionarily most advanced section Drosocarpium in our study) were developed and investigated for their growth, development, hypericin content and endogenous phytohormone levels. Hypericins in wild-growing H. richeri significantly exceeded those in H. perforatum and H. tetrapterum. H. richeri also had the highest hypericin productivity in vitro in medium supplemented with 0.2 mg/L N6-benzyladenine and 0.1 mg/L indole-3-butyric acid and H. tetrapterum-the lowest one in all media modifications. In shoot culture conditions, the evolutionarily oldest H. calycinum had the highest content of salicylic acid and total jasmonates in some of its treatments, as well as dominance of the storage form of abscisic acid (ABA-glucose ester) and lowest cytokinin ribosides and cytokinin O-glucosides as compared with the other three species. In addition, the evolutionarily youngest H. richeri was characterized by the highest total amount of cytokinin ribosides. Thus, both evolutionary development and the hypericin production capacity seemed to interact closely with the physiological parameters of the plant organism, such as endogenous phytohormones, leading to the possible hypothesis that hypericin productivity may have arisen in the evolution of Hypericum as a means to adapt to environmental changes.

Zobrazit více v PubMed

Danova K. Potential of the Balkan flora as a source of prospective Hypericum genotypes for the conventional and biotechnological delivery of phytopharmaceuticals. In: Davis H.R., editor. Hypericum: Botanical Sources, Medical Properties and Health Effects. Nova Science Publishers; New York, NY, USA: 2015. pp. 19–52. (Series Plant Science Research and Practices). Chapter 2.

Nahrstedt A., Butterweck V. Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry. 1997;30:129–134. doi: 10.1055/s-2007-979533. PubMed DOI

Vuko E., Dunkić V., Ruščić M., Nazlić M., Mandić N., Soldo B., Šprung M., Fredotović Ž. Chemical Composition and New Biological Activities of Essential Oil and Hydrosol of Hypericum perforatum L. ssp. veronense (Schrank) H. Lindb. Plants. 2021;10:1014. doi: 10.3390/plants10051014. PubMed DOI PMC

Nahrstedt A., Butterweck V. Lessons learned from herbal medicinal products: The example of St. John’s wort. J. Nat. Prod. 2010;73:1015–1021. doi: 10.1021/np1000329. PubMed DOI

Barnes J., Anderson L.A., Phillipson J.D. St John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2001;53:583–600. doi: 10.1211/0022357011775910. PubMed DOI

Saddiqe Z., Naeem I., Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol. 2010;131:511–521. doi: 10.1016/j.jep.2010.07.034. PubMed DOI

Süntar I.P., Akkol E.K., Yilmazer D., Baykal T., Kirmizibekmez H., Alper M., Yeşilada E. Investigations on the in vivo wound healing potential of Hypericum perforatum L. J. Ethnopharmacol. 2010;127:468–477. doi: 10.1016/j.jep.2009.10.011. PubMed DOI

Crockett S.L., Robson N.K.B. Medicinal and Aromatic Plant Science and Biotechnology. Volume 5. Global Science Books; Bexhill, UK: 2011. Taxonomy and chemotaxonomy of the genus Hypericum; pp. 1–13. PubMed PMC

Karioti A., Bilia A.R. Hypericins as potential leads for new therapeutics. Int. J. Mol. Sci. 2010;11:562–594. doi: 10.3390/ijms11020562. PubMed DOI PMC

Vandenbogaerde A.L., Kamuhabwa A., Delaey E., Himpens B.E., Merlevede W.J., de Witte P.A. Photocytotoxic effect of pseudohypericin versus hypericin. J. Photochem. Photobiol. B. 1998;45:87–94. doi: 10.1016/S1011-1344(98)00163-8. PubMed DOI

Martinez-Poveda B., Quesada A.R., Medina M.A. Hypericin in the dark inhibits key steps of angiogenesis in vitro. Eur. J. Pharmacol. 2005;516:97–103. doi: 10.1016/j.ejphar.2005.03.047. PubMed DOI

Blank M., Lavie G., Mandel M., Hazan S., Orenstein A., Meruelo D., Keisari Y. Antimetastatic activity of the photodynamic agent hypericin in the dark. Int. J. Cancer. 2004;111:596–603. doi: 10.1002/ijc.20285. PubMed DOI

Zhang Y., Chen H., Zou M., Oerlemans R., Shao C., Ren Y., Zhang R., Huang X., Li G., Cong Y. Hypericin inhibit alpha-coronavirus replication by targeting 3CL protease. Viruses. 2021;13:1825. doi: 10.3390/v13091825. PubMed DOI PMC

Shivanika C., Deepak K.S., Venkataraghavan R., Pawan T., Sumitha A., Brindha D.P. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn. 2022;40:585–611. doi: 10.1080/07391102.2020.1815584. PubMed DOI PMC

Islam R., Parves R., Paul A.S., Uddin N., Rahman S., Al Mamun A., Hossain N., Ali A., Halim M.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn. 2020;39:3213–3224. doi: 10.1080/07391102.2020.1761883. PubMed DOI PMC

Saravanan K.M., Zhang H., Senthil R., Vijayakumar K.K., Sounderrajan V., Wei Y., Shakila H. Structural basis for the inhibition of SARS-CoV2 main protease by Indian medicinal plant-derived antiviral compounds. J. Biomol. Struct. Dyn. 2022;40:1970–1978. doi: 10.1080/07391102.2020.1834457. PubMed DOI PMC

Carrubba A., Lazzara S., Giovino A., Ruberto G., Napoli E. Content variability of bioactive secondary metabolites in Hypericum perforatum L. Phytochem. Lett. 2021;46:71–78. doi: 10.1016/j.phytol.2021.09.011. DOI

Kitanov G.M. Hypericin and pseudohypericin in some Hypericum species. Biochem. Syst. Ecol. 2001;29:171–178. doi: 10.1016/S0305-1978(00)00032-6. PubMed DOI

Smelcerovic A., Verma V., Spiteller M., Ahmad S.M., Puri S.C., Qazi G.N. Phytochemical analysis and genetic characterization of six Hypericum species from Serbia. Phytochemistry. 2006;67:171–177. doi: 10.1016/j.phytochem.2005.10.021. PubMed DOI

Bruni R., Sacchetti G. Factors affecting polyphenol biosynthesis in wild and field grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae) Molecules. 2009;14:682–725. doi: 10.3390/molecules14020682. PubMed DOI PMC

Yordanov D., Kojuharov S. Flora of the PR of Bulgaria. Volume 4. Bulgarian Academy of Sciences; Sofia, Bulgaria: 1970. Guttiferae Family; p. 227.

Robson N.K.B. Studies in the genus Hypericum L. (Guttiferae). 1. Infrageneric classification. Bull. Br. Mus. (Nat. Hist.) 1977;5:325. ISSN: 0068-2292.

Anchev M., Apostolova I., Assyov B., Bancheva S., Denchev C.M., Dimitrov D., Dimitrova D., Evstatieva L., Genova E., Georgiev V., et al. Red List of Bulgarian Vascular Plants. Phytol. Balc. 2009;15:63–94.

Danova K., Motyka V., Dobrev P. Could evolutionary factors affect endogenous cytokinin pools in Hypericum species in vitro? Annual of Sofia Universiti “St. Kliment Ohridski”. Volume 106. Faculty of Biology, Sofia Universiti “St. Kliment Ohridski”; Sofia, Bulgaria: 2021. pp. 12–19.

Huang W., Ratkowsky D.A., Hui C., Wang P., Su J., Shi P. Leaf Fresh Weight Versus Dry Weight: Which is Better for Describing the Scaling Relationship between Leaf Biomass and Leaf Area for Broad-Leaved Plants? Forests. 2019;10:256. doi: 10.3390/f10030256. DOI

Ciccarelli D., Andreucci A.C., Pagni A.M. Translucent glands and secretory canals in Hypericum perforatum L. (Hyperiacaceae): Morphological, anatomical and histochemical studies during the course of ontogenesis. Ann. Bot. 2001;88:637–644. doi: 10.1006/anbo.2001.1514. DOI

Adam P., Arigoni D., Bacher A., Eisenreich W. Biosynthesis of hyperforin in Hypericum perforatum. J. Med. Chem. 2002;45:4786–4793. doi: 10.1021/jm0209782. PubMed DOI

Soelberg J., Jørgensen L.B., Jäger A.K. Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann. Bot. 2007;99:1097–1100. doi: 10.1093/aob/mcm057. PubMed DOI PMC

Pradeep M., Franklin G. Understanding the hypericin biosynthesis via reversible inhibition of dark gland development in Hypericum perforatum L. Ind. Crop. Prod. 2022;182:114876. doi: 10.1016/j.indcrop.2022.114876. DOI

Zdunek K., Alfermann A.W. Introduction of shoot organ cultures of Hypericum perforatum and formation of hypericin derivatives. Planta Med. 1992;58:621–622. doi: 10.1055/s-2006-961623. DOI

Čellárová E., Kimáková K., Brutovská R. Multiple shoot formation and phenotypic changes of R0 regenerants in Hypericum perforatum L. Acta Biotechnol. 1992;12:445–452. doi: 10.1002/abio.370120602. DOI

Shakya P., Marslin G., Siram K., Beerhues L., Franklin G. Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. J. Pharm. Pharmacol. 2019;71:70–82. doi: 10.1111/jphp.12743. PubMed DOI PMC

Coste A., Vlase L., Halmagyi A., Deliu C., Coldea G. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tissue Organ Cult. 2011;106:279–288. doi: 10.1007/s11240-011-9919-5. DOI

Tusevski O., Stanoeva J.P., Markoska E., Brndevska N., Stefova M., Gadzovska Simic S. Callus cultures of Hypericum perforatum L. a novel and efficient source for xanthone production. Plant Cell Tissue Organ Cult. 2016;125:309–319. doi: 10.1007/s11240-016-0951-3. DOI

Božin B., Kladar N., Grujić N., Anačkov G., Samojlik I., Gavarić N., Conić B.S. Impact of origin and biological source on chemical composition, anticholinesterase and antioxidant properties of some St. John’s wort species (Hypericum spp., Hypericaceae) from the Central Balkans. Molecules. 2013;18:11733–11750. doi: 10.3390/molecules181011733. PubMed DOI PMC

Christmann A., Hoffmann T., Teplova I., Grill E., Müller A. Generation of Active Pools of Abscisic Acid Revealed by In Vivo Imaging of Water-Stressed Arabidopsis. Plant Physiol. 2005;137:209–219. doi: 10.1104/pp.104.053082. PubMed DOI PMC

Tallman G. Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? J. Exp. Bot. 2004;55:1963–1976. doi: 10.1093/jxb/erh212. PubMed DOI

Ma Y., Cao J., He J., Chen Q., Li X., Yang Y. Molecular Mechanism for the Regulation of ABA Homeostasis During Plant Development and Stress Responses. Int. J. Mol. Sci. 2018;19:3643. doi: 10.3390/ijms19113643. PubMed DOI PMC

Xiong D.M., Liu Z., Chen H., Xue J.T., Yang Y., Chen C., Ye L.M. Profiling the dynamics of abscisic acid and ABA-glucose ester after using the glucosyltransferase UGT71C5 to mediate abscisic acid homeostasis in Arabidopsis thaliana by HPLC-ESI-MS/MS. J. Pharm. Anal. 2014;4:190–196. doi: 10.1016/j.jpha.2014.01.004. PubMed DOI PMC

Lehmann H., Schutte H.R. Abscisic acid metabolism in intact wheat seedlings under normal and stress conditions. J. Plant Physiol. 1984;117:201–209. doi: 10.1016/S0176-1617(84)80002-4. PubMed DOI

Sauter G., Simon R. Perspective-predictive molecular pathology. N. Engl. J. Med. 2002;347:1995–1996. doi: 10.1056/NEJMp020155. PubMed DOI

Widhalm J.R., Dudareva N. A familiar ring to it: Biosynthesis of plant benzoic acids. Mol. Plant. 2015;8:83–97. doi: 10.1016/j.molp.2014.12.001. PubMed DOI

Creelman R.A., Mullet J.E. Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA. 1995;92:4114–4119. doi: 10.1073/pnas.92.10.4114. PubMed DOI PMC

Bertini L., Palazzi L., Proietti S., Pollastri S., Arrigoni G., de Laureto P., Carusco C. Proteomic analysis of MeJa-induced defense responses in rice against wounding. Int. J. Mol. Sci. 2019;2020:2525. doi: 10.3390/ijms20102525. PubMed DOI PMC

Giri C.C., Zaheer M. Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: Recent trends and a sky eye view appraisal. Plant Cell Tissue Organ Cult. 2016;126:1–18. doi: 10.1007/s11240-016-0985-6. DOI

Ho T.-T., Murthy H.N., Park S.-Y. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. Int. J. Mol. Sci. 2020;21:716. doi: 10.3390/ijms21030716. PubMed DOI PMC

Böttcher C., Burbidge C.A., di Rienzo V., Boss P.K., Davies C. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles. J. Integr. Plant Biol. 2015;57:618–627. doi: 10.1111/jipb.12321. PubMed DOI

Gibb M., Kisiala A.B., Morrison E.N., Emery R.J.N. The origins and roles of methylthiolated cytokinins: Evidence from among life kingdoms. Front. Cell Dev. Biol. 2020;8:605672. doi: 10.3389/fcell.2020.605672. PubMed DOI PMC

Žižková E., Kubeš M., Dobrev P.I., Přibyl P., Šimura J., Zahajská L., Záveská Drábková L., Novák O., Motyka V. Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann. Bot. 2017;119:151–166. doi: 10.1093/aob/mcw194. PubMed DOI PMC

Záveská Drábková L., Dobrev P.I., Motyka V. Phytohormone profiling across the bryophytes. PLoS ONE. 2015;10:e0125411. PubMed PMC

Zemanová V., Pavlíková D., Dobrev P.I., Motyka V., Pavlík M. Endogenous phytohormone profiles in Pteris fern species differing in arsenic accumulating ability. Environ. Exp. Bot. 2019;166:103822. doi: 10.1016/j.envexpbot.2019.103822. DOI

Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P.I., Galuszka P., Klíma P., Gaudinová A., Žižková E., et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI

Sugawara S., Mashiguchi K., Tanaka K., Hishiyama S., Sakai T., Hanada K., Kinoshita-Tsujimura K., Yu H., Dai X., Takebayashi Y., et al. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant Cell Physiol. 2015;56:1641–1654. doi: 10.1093/pcp/pcv088. PubMed DOI PMC

Sauer M., Robert S., Kleine-Vehn J. Auxin: Simply complicated. J. Exp. Bot. 2013;64:2565–2577. doi: 10.1093/jxb/ert139. PubMed DOI

Bondev I. Map of the Florostic Regions of Bulgaria. In: Yordanov D., editor. Flora of the Peoples Republic of BulgariaI. Volume 3. Publishing House of the Bulgarian Academy of Sciences; Sofia, Bulgaria: 1966. p. 638.

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Gamborg O.L., Miller R.A., Ojima K. Nutreint requerments of suspension culture of soybean root cells. Exp. Cell Res. 1968;50:151–158. doi: 10.1016/0014-4827(68)90403-5. PubMed DOI

Danova K., Čellárová E., Macková A., Daxnerová Z., Kapchina-Toteva V. In vitro culture of Hypericum rumeliacum Boiss. and production of phenolics and flavonoids. In Vitr. Cell. Dev. Biol.-Plant. 2010;46:422–429. doi: 10.1007/s11627-010-9299-2. DOI

Treneva G., Markovska Y., Wolfram E., Danova K. Effect of plant growth regulators on growth patterns and enzymatic antioxidant activities in Hypericum calycinum shoot cultures. Bulg. J. Agric. Sci. 2014;20((Suppl. S1)):46–50.

EDQM . European Pharmacopoeia. 8th ed. Volume 7. Deutscher Apotheker Verlag; Stuttgart, Germany: 2013. p. 1438.

Dobrev P.I., Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Djilianov D.L., Dobrev P.I., Moyankova D.P., Vaňková R., Georgieva D.T., Gajdošová S., Motyka V. Dynamics of endogenous phytohormones during dessication and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 2013;32:564–574. doi: 10.1007/s00344-013-9323-y. DOI

Žižková E., Dobrev P.I., Muhovski Y., Hošek P., Hoyerová K., Haisel D., Procházková D., Lutts S., Motyka V., Hichri I. Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato. BMC Plant Biol. 2015;15:85. doi: 10.1186/s12870-015-0415-7. PubMed DOI PMC

Kamínek M., Březinová A., Gaudinová A., Motyka V., Vaňková R., Zažímalová E. Purine cytokinins: A proposal for abbreviations. Plant Growth Regul. 2000;32:253–256. doi: 10.1023/A:1010743522048. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...