Evolutionary Aspects of Hypericin Productivity and Endogenous Phytohormone Pools Evidenced in Hypericum Species In Vitro Culture Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
КП-06-Н39/6
Bulgarian Science Fund
19-12262S
Czech Science Foundation
PubMed
36297777
PubMed Central
PMC9609395
DOI
10.3390/plants11202753
PII: plants11202753
Knihovny.cz E-zdroje
- Klíčová slova
- Hypericum evolution, endogenous phytohormones, hypericin, in vitro culture, wild habitats,
- Publikační typ
- časopisecké články MeSH
Shoot cultures of hypericin non-producing H. calycinum L. (primitive Ascyreia section), hypericin-producing H. perforatum L., H. tetrapterum Fries (section Hypericum) and H. richeri Vill. (the evolutionarily most advanced section Drosocarpium in our study) were developed and investigated for their growth, development, hypericin content and endogenous phytohormone levels. Hypericins in wild-growing H. richeri significantly exceeded those in H. perforatum and H. tetrapterum. H. richeri also had the highest hypericin productivity in vitro in medium supplemented with 0.2 mg/L N6-benzyladenine and 0.1 mg/L indole-3-butyric acid and H. tetrapterum-the lowest one in all media modifications. In shoot culture conditions, the evolutionarily oldest H. calycinum had the highest content of salicylic acid and total jasmonates in some of its treatments, as well as dominance of the storage form of abscisic acid (ABA-glucose ester) and lowest cytokinin ribosides and cytokinin O-glucosides as compared with the other three species. In addition, the evolutionarily youngest H. richeri was characterized by the highest total amount of cytokinin ribosides. Thus, both evolutionary development and the hypericin production capacity seemed to interact closely with the physiological parameters of the plant organism, such as endogenous phytohormones, leading to the possible hypothesis that hypericin productivity may have arisen in the evolution of Hypericum as a means to adapt to environmental changes.
Zobrazit více v PubMed
Danova K. Potential of the Balkan flora as a source of prospective Hypericum genotypes for the conventional and biotechnological delivery of phytopharmaceuticals. In: Davis H.R., editor. Hypericum: Botanical Sources, Medical Properties and Health Effects. Nova Science Publishers; New York, NY, USA: 2015. pp. 19–52. (Series Plant Science Research and Practices). Chapter 2.
Nahrstedt A., Butterweck V. Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry. 1997;30:129–134. doi: 10.1055/s-2007-979533. PubMed DOI
Vuko E., Dunkić V., Ruščić M., Nazlić M., Mandić N., Soldo B., Šprung M., Fredotović Ž. Chemical Composition and New Biological Activities of Essential Oil and Hydrosol of Hypericum perforatum L. ssp. veronense (Schrank) H. Lindb. Plants. 2021;10:1014. doi: 10.3390/plants10051014. PubMed DOI PMC
Nahrstedt A., Butterweck V. Lessons learned from herbal medicinal products: The example of St. John’s wort. J. Nat. Prod. 2010;73:1015–1021. doi: 10.1021/np1000329. PubMed DOI
Barnes J., Anderson L.A., Phillipson J.D. St John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2001;53:583–600. doi: 10.1211/0022357011775910. PubMed DOI
Saddiqe Z., Naeem I., Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol. 2010;131:511–521. doi: 10.1016/j.jep.2010.07.034. PubMed DOI
Süntar I.P., Akkol E.K., Yilmazer D., Baykal T., Kirmizibekmez H., Alper M., Yeşilada E. Investigations on the in vivo wound healing potential of Hypericum perforatum L. J. Ethnopharmacol. 2010;127:468–477. doi: 10.1016/j.jep.2009.10.011. PubMed DOI
Crockett S.L., Robson N.K.B. Medicinal and Aromatic Plant Science and Biotechnology. Volume 5. Global Science Books; Bexhill, UK: 2011. Taxonomy and chemotaxonomy of the genus Hypericum; pp. 1–13. PubMed PMC
Karioti A., Bilia A.R. Hypericins as potential leads for new therapeutics. Int. J. Mol. Sci. 2010;11:562–594. doi: 10.3390/ijms11020562. PubMed DOI PMC
Vandenbogaerde A.L., Kamuhabwa A., Delaey E., Himpens B.E., Merlevede W.J., de Witte P.A. Photocytotoxic effect of pseudohypericin versus hypericin. J. Photochem. Photobiol. B. 1998;45:87–94. doi: 10.1016/S1011-1344(98)00163-8. PubMed DOI
Martinez-Poveda B., Quesada A.R., Medina M.A. Hypericin in the dark inhibits key steps of angiogenesis in vitro. Eur. J. Pharmacol. 2005;516:97–103. doi: 10.1016/j.ejphar.2005.03.047. PubMed DOI
Blank M., Lavie G., Mandel M., Hazan S., Orenstein A., Meruelo D., Keisari Y. Antimetastatic activity of the photodynamic agent hypericin in the dark. Int. J. Cancer. 2004;111:596–603. doi: 10.1002/ijc.20285. PubMed DOI
Zhang Y., Chen H., Zou M., Oerlemans R., Shao C., Ren Y., Zhang R., Huang X., Li G., Cong Y. Hypericin inhibit alpha-coronavirus replication by targeting 3CL protease. Viruses. 2021;13:1825. doi: 10.3390/v13091825. PubMed DOI PMC
Shivanika C., Deepak K.S., Venkataraghavan R., Pawan T., Sumitha A., Brindha D.P. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn. 2022;40:585–611. doi: 10.1080/07391102.2020.1815584. PubMed DOI PMC
Islam R., Parves R., Paul A.S., Uddin N., Rahman S., Al Mamun A., Hossain N., Ali A., Halim M.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn. 2020;39:3213–3224. doi: 10.1080/07391102.2020.1761883. PubMed DOI PMC
Saravanan K.M., Zhang H., Senthil R., Vijayakumar K.K., Sounderrajan V., Wei Y., Shakila H. Structural basis for the inhibition of SARS-CoV2 main protease by Indian medicinal plant-derived antiviral compounds. J. Biomol. Struct. Dyn. 2022;40:1970–1978. doi: 10.1080/07391102.2020.1834457. PubMed DOI PMC
Carrubba A., Lazzara S., Giovino A., Ruberto G., Napoli E. Content variability of bioactive secondary metabolites in Hypericum perforatum L. Phytochem. Lett. 2021;46:71–78. doi: 10.1016/j.phytol.2021.09.011. DOI
Kitanov G.M. Hypericin and pseudohypericin in some Hypericum species. Biochem. Syst. Ecol. 2001;29:171–178. doi: 10.1016/S0305-1978(00)00032-6. PubMed DOI
Smelcerovic A., Verma V., Spiteller M., Ahmad S.M., Puri S.C., Qazi G.N. Phytochemical analysis and genetic characterization of six Hypericum species from Serbia. Phytochemistry. 2006;67:171–177. doi: 10.1016/j.phytochem.2005.10.021. PubMed DOI
Bruni R., Sacchetti G. Factors affecting polyphenol biosynthesis in wild and field grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae) Molecules. 2009;14:682–725. doi: 10.3390/molecules14020682. PubMed DOI PMC
Yordanov D., Kojuharov S. Flora of the PR of Bulgaria. Volume 4. Bulgarian Academy of Sciences; Sofia, Bulgaria: 1970. Guttiferae Family; p. 227.
Robson N.K.B. Studies in the genus Hypericum L. (Guttiferae). 1. Infrageneric classification. Bull. Br. Mus. (Nat. Hist.) 1977;5:325. ISSN: 0068-2292.
Anchev M., Apostolova I., Assyov B., Bancheva S., Denchev C.M., Dimitrov D., Dimitrova D., Evstatieva L., Genova E., Georgiev V., et al. Red List of Bulgarian Vascular Plants. Phytol. Balc. 2009;15:63–94.
Danova K., Motyka V., Dobrev P. Could evolutionary factors affect endogenous cytokinin pools in Hypericum species in vitro? Annual of Sofia Universiti “St. Kliment Ohridski”. Volume 106. Faculty of Biology, Sofia Universiti “St. Kliment Ohridski”; Sofia, Bulgaria: 2021. pp. 12–19.
Huang W., Ratkowsky D.A., Hui C., Wang P., Su J., Shi P. Leaf Fresh Weight Versus Dry Weight: Which is Better for Describing the Scaling Relationship between Leaf Biomass and Leaf Area for Broad-Leaved Plants? Forests. 2019;10:256. doi: 10.3390/f10030256. DOI
Ciccarelli D., Andreucci A.C., Pagni A.M. Translucent glands and secretory canals in Hypericum perforatum L. (Hyperiacaceae): Morphological, anatomical and histochemical studies during the course of ontogenesis. Ann. Bot. 2001;88:637–644. doi: 10.1006/anbo.2001.1514. DOI
Adam P., Arigoni D., Bacher A., Eisenreich W. Biosynthesis of hyperforin in Hypericum perforatum. J. Med. Chem. 2002;45:4786–4793. doi: 10.1021/jm0209782. PubMed DOI
Soelberg J., Jørgensen L.B., Jäger A.K. Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann. Bot. 2007;99:1097–1100. doi: 10.1093/aob/mcm057. PubMed DOI PMC
Pradeep M., Franklin G. Understanding the hypericin biosynthesis via reversible inhibition of dark gland development in Hypericum perforatum L. Ind. Crop. Prod. 2022;182:114876. doi: 10.1016/j.indcrop.2022.114876. DOI
Zdunek K., Alfermann A.W. Introduction of shoot organ cultures of Hypericum perforatum and formation of hypericin derivatives. Planta Med. 1992;58:621–622. doi: 10.1055/s-2006-961623. DOI
Čellárová E., Kimáková K., Brutovská R. Multiple shoot formation and phenotypic changes of R0 regenerants in Hypericum perforatum L. Acta Biotechnol. 1992;12:445–452. doi: 10.1002/abio.370120602. DOI
Shakya P., Marslin G., Siram K., Beerhues L., Franklin G. Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. J. Pharm. Pharmacol. 2019;71:70–82. doi: 10.1111/jphp.12743. PubMed DOI PMC
Coste A., Vlase L., Halmagyi A., Deliu C., Coldea G. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tissue Organ Cult. 2011;106:279–288. doi: 10.1007/s11240-011-9919-5. DOI
Tusevski O., Stanoeva J.P., Markoska E., Brndevska N., Stefova M., Gadzovska Simic S. Callus cultures of Hypericum perforatum L. a novel and efficient source for xanthone production. Plant Cell Tissue Organ Cult. 2016;125:309–319. doi: 10.1007/s11240-016-0951-3. DOI
Božin B., Kladar N., Grujić N., Anačkov G., Samojlik I., Gavarić N., Conić B.S. Impact of origin and biological source on chemical composition, anticholinesterase and antioxidant properties of some St. John’s wort species (Hypericum spp., Hypericaceae) from the Central Balkans. Molecules. 2013;18:11733–11750. doi: 10.3390/molecules181011733. PubMed DOI PMC
Christmann A., Hoffmann T., Teplova I., Grill E., Müller A. Generation of Active Pools of Abscisic Acid Revealed by In Vivo Imaging of Water-Stressed Arabidopsis. Plant Physiol. 2005;137:209–219. doi: 10.1104/pp.104.053082. PubMed DOI PMC
Tallman G. Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? J. Exp. Bot. 2004;55:1963–1976. doi: 10.1093/jxb/erh212. PubMed DOI
Ma Y., Cao J., He J., Chen Q., Li X., Yang Y. Molecular Mechanism for the Regulation of ABA Homeostasis During Plant Development and Stress Responses. Int. J. Mol. Sci. 2018;19:3643. doi: 10.3390/ijms19113643. PubMed DOI PMC
Xiong D.M., Liu Z., Chen H., Xue J.T., Yang Y., Chen C., Ye L.M. Profiling the dynamics of abscisic acid and ABA-glucose ester after using the glucosyltransferase UGT71C5 to mediate abscisic acid homeostasis in Arabidopsis thaliana by HPLC-ESI-MS/MS. J. Pharm. Anal. 2014;4:190–196. doi: 10.1016/j.jpha.2014.01.004. PubMed DOI PMC
Lehmann H., Schutte H.R. Abscisic acid metabolism in intact wheat seedlings under normal and stress conditions. J. Plant Physiol. 1984;117:201–209. doi: 10.1016/S0176-1617(84)80002-4. PubMed DOI
Sauter G., Simon R. Perspective-predictive molecular pathology. N. Engl. J. Med. 2002;347:1995–1996. doi: 10.1056/NEJMp020155. PubMed DOI
Widhalm J.R., Dudareva N. A familiar ring to it: Biosynthesis of plant benzoic acids. Mol. Plant. 2015;8:83–97. doi: 10.1016/j.molp.2014.12.001. PubMed DOI
Creelman R.A., Mullet J.E. Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA. 1995;92:4114–4119. doi: 10.1073/pnas.92.10.4114. PubMed DOI PMC
Bertini L., Palazzi L., Proietti S., Pollastri S., Arrigoni G., de Laureto P., Carusco C. Proteomic analysis of MeJa-induced defense responses in rice against wounding. Int. J. Mol. Sci. 2019;2020:2525. doi: 10.3390/ijms20102525. PubMed DOI PMC
Giri C.C., Zaheer M. Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: Recent trends and a sky eye view appraisal. Plant Cell Tissue Organ Cult. 2016;126:1–18. doi: 10.1007/s11240-016-0985-6. DOI
Ho T.-T., Murthy H.N., Park S.-Y. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. Int. J. Mol. Sci. 2020;21:716. doi: 10.3390/ijms21030716. PubMed DOI PMC
Böttcher C., Burbidge C.A., di Rienzo V., Boss P.K., Davies C. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles. J. Integr. Plant Biol. 2015;57:618–627. doi: 10.1111/jipb.12321. PubMed DOI
Gibb M., Kisiala A.B., Morrison E.N., Emery R.J.N. The origins and roles of methylthiolated cytokinins: Evidence from among life kingdoms. Front. Cell Dev. Biol. 2020;8:605672. doi: 10.3389/fcell.2020.605672. PubMed DOI PMC
Žižková E., Kubeš M., Dobrev P.I., Přibyl P., Šimura J., Zahajská L., Záveská Drábková L., Novák O., Motyka V. Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann. Bot. 2017;119:151–166. doi: 10.1093/aob/mcw194. PubMed DOI PMC
Záveská Drábková L., Dobrev P.I., Motyka V. Phytohormone profiling across the bryophytes. PLoS ONE. 2015;10:e0125411. PubMed PMC
Zemanová V., Pavlíková D., Dobrev P.I., Motyka V., Pavlík M. Endogenous phytohormone profiles in Pteris fern species differing in arsenic accumulating ability. Environ. Exp. Bot. 2019;166:103822. doi: 10.1016/j.envexpbot.2019.103822. DOI
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P.I., Galuszka P., Klíma P., Gaudinová A., Žižková E., et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI
Sugawara S., Mashiguchi K., Tanaka K., Hishiyama S., Sakai T., Hanada K., Kinoshita-Tsujimura K., Yu H., Dai X., Takebayashi Y., et al. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant Cell Physiol. 2015;56:1641–1654. doi: 10.1093/pcp/pcv088. PubMed DOI PMC
Sauer M., Robert S., Kleine-Vehn J. Auxin: Simply complicated. J. Exp. Bot. 2013;64:2565–2577. doi: 10.1093/jxb/ert139. PubMed DOI
Bondev I. Map of the Florostic Regions of Bulgaria. In: Yordanov D., editor. Flora of the Peoples Republic of BulgariaI. Volume 3. Publishing House of the Bulgarian Academy of Sciences; Sofia, Bulgaria: 1966. p. 638.
Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Gamborg O.L., Miller R.A., Ojima K. Nutreint requerments of suspension culture of soybean root cells. Exp. Cell Res. 1968;50:151–158. doi: 10.1016/0014-4827(68)90403-5. PubMed DOI
Danova K., Čellárová E., Macková A., Daxnerová Z., Kapchina-Toteva V. In vitro culture of Hypericum rumeliacum Boiss. and production of phenolics and flavonoids. In Vitr. Cell. Dev. Biol.-Plant. 2010;46:422–429. doi: 10.1007/s11627-010-9299-2. DOI
Treneva G., Markovska Y., Wolfram E., Danova K. Effect of plant growth regulators on growth patterns and enzymatic antioxidant activities in Hypericum calycinum shoot cultures. Bulg. J. Agric. Sci. 2014;20((Suppl. S1)):46–50.
EDQM . European Pharmacopoeia. 8th ed. Volume 7. Deutscher Apotheker Verlag; Stuttgart, Germany: 2013. p. 1438.
Dobrev P.I., Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI
Djilianov D.L., Dobrev P.I., Moyankova D.P., Vaňková R., Georgieva D.T., Gajdošová S., Motyka V. Dynamics of endogenous phytohormones during dessication and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 2013;32:564–574. doi: 10.1007/s00344-013-9323-y. DOI
Žižková E., Dobrev P.I., Muhovski Y., Hošek P., Hoyerová K., Haisel D., Procházková D., Lutts S., Motyka V., Hichri I. Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato. BMC Plant Biol. 2015;15:85. doi: 10.1186/s12870-015-0415-7. PubMed DOI PMC
Kamínek M., Březinová A., Gaudinová A., Motyka V., Vaňková R., Zažímalová E. Purine cytokinins: A proposal for abbreviations. Plant Growth Regul. 2000;32:253–256. doi: 10.1023/A:1010743522048. DOI