Design and Performance of Novel Self-Cleaning g-C3N4/PMMA/PUR Membranes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/16_018/0002708
Vysoká Škola Bánská - Technická Univerzita Ostrava
SP2019/39
Vysoká Škola Bánská - Technická Univerzita Ostrava
SP2020/15
Vysoká Škola Bánská - Technická Univerzita Ostrava
EF16_013/0001791
Vysoká Škola Bánská - Technická Univerzita Ostrava
PubMed
32272693
PubMed Central
PMC7240415
DOI
10.3390/polym12040850
PII: polym12040850
Knihovny.cz E-zdroje
- Klíčová slova
- exfoliated carbon nitride, immersion coating, membrane, photocatalysis, poly(methyl methacrylate), polymers, polyurethane nanofibers, self-cleaning surfaces,
- Publikační typ
- časopisecké články MeSH
In the majority of photocatalytic applications, the photocatalyst is dispersed as a suspension of nanoparticles. The suspension provides a higher surface for the photocatalytic reaction in respect to immobilized photocatalysts. However, this implies that recovery of the particles by filtration or centrifugation is needed to collect and regenerate the photocatalyst. This complicates the regeneration process and, at the same time, leads to material loss and potential toxicity. In this work, a new nanofibrous membrane, g-C3N4/PMMA/PUR, was prepared by the fixation of exfoliated g-C3N4 to polyurethane nanofibers using thin layers of poly(methyl methacrylate) (PMMA). The optimal amount of PMMA was determined by measuring the adsorption and photocatalytic properties of g-C3N4/PMMA/PUR membranes (with a different PMMA content) in an aqueous solution of methylene blue. It was found that the prepared membranes were able to effectively adsorb and decompose methylene blue. On top of that, the membranes evinced a self-cleaning behavior, showing no coloration on their surfaces after contact with methylene blue, unlike in the case of unmodified fabric. After further treatment with H2O2, no decrease in photocatalytic activity was observed, indicating that the prepared membrane can also be easily regenerated. This study promises possibilities for the production of photocatalytic membranes and fabrics for both chemical and biological contaminant control.
Zobrazit více v PubMed
Li W., Hua F., Yue J., Li J. Ag@AgCl plasmon-induced sensitized ZnO particle for high-efficiency photocatalytic property under visible light. Appl. Surf. Sci. 2013;285:490–497. doi: 10.1016/j.apsusc.2013.08.082. DOI
Athanasekou C.P., Moustakas N.G., Morales-Torres S., Pastrana-Martínez L.M., Figueiredo J.L., Faria J.L., Silva A.M.T., Dona-Rodriguez J.M., Romanos G.E., Falaras P. Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl. Catal. B Environ. 2015;178:12–19. doi: 10.1016/j.apcatb.2014.11.021. DOI
Chew C.M., Aroua M.K., Hussain M.A. Advanced process control for ultrafiltration membrane water treatment system. J. Clean. Prod. 2018;179:63–80. doi: 10.1016/j.jclepro.2018.01.075. DOI
Li X., Row K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 2016;39:3505–3520. doi: 10.1002/jssc.201600633. PubMed DOI
Kazadi Mbamba C., Batstone D.J., Flores-Alsina X., Tait S. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite. Water Res. 2015;68:342–353. doi: 10.1016/j.watres.2014.10.011. PubMed DOI
Särkkä H., Bhatnagar A., Sillanpää M. Recent developments of electro-oxidation in water treatment—A review. J. Electroanal. Chem. 2015;754:46–56. doi: 10.1016/j.jelechem.2015.06.016. DOI
Chong Y.T., Mohd Ariffin M., Mohd Tahir N., Loh S.H. A green solvent holder in electro-mediated microextraction for the extraction of phenols in water. Talanta. 2018;176:558–564. doi: 10.1016/j.talanta.2017.08.068. PubMed DOI
Phillips R.B., James R.R., Magnuson M.L. Electrolyte selection and microbial toxicity for electrochemical oxidative water treatment using a boron-doped diamond anode to support site specific contamination incident response. Chemosphere. 2018;197:135–141. doi: 10.1016/j.chemosphere.2018.01.007. PubMed DOI PMC
Subramani A., Jacangelo J.G. Emerging desalination technologies for water treatment: A critical review. Water Res. 2015;75:164–187. doi: 10.1016/j.watres.2015.02.032. PubMed DOI
Crini G., Lichtfouse E., Wilson L.D., Morin-Crini N. Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment. In: Crini G., Lichtfouse E., editors. Green Adsorbents for Pollutant Removal: Fundamentals and Design. Springer International Publishing; Cham, Germany: 2018. pp. 23–71.
Hasan Z., Jhung S.H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015;283:329–339. doi: 10.1016/j.jhazmat.2014.09.046. PubMed DOI
Abbasi Z., Shamsaei E., Leong S.K., Ladewig B., Zhang X., Wang H. Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. Microporous Mesoporous Mater. 2016;236:28–37. doi: 10.1016/j.micromeso.2016.08.022. DOI
Cui L., Wang Y., Gao L., Hu L., Yan L., Wei Q., Du B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015;281:1–10. doi: 10.1016/j.cej.2015.06.043. DOI
Burakov A.E., Galunin E.V., Burakova I.V., Kucherova A.E., Agarwal S., Tkachev A.G., Gupta V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018;148:702–712. doi: 10.1016/j.ecoenv.2017.11.034. PubMed DOI
Giannakoudakis D.A., Kyzas G.Z., Avranas A., Lazaridis N.K. Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. J. Mol. Liq. 2016;213:381–389. doi: 10.1016/j.molliq.2015.07.010. DOI
Suhas, Gupta V.K., Carrott P.J.M., Singh R., Chaudhary M., Kushwaha S. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresour. Technol. 2016;216:1066–1076. doi: 10.1016/j.biortech.2016.05.106. PubMed DOI
Robinson T., McMullan G., Marchant R., Nigam P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001;77:247–255. doi: 10.1016/S0960-8524(00)00080-8. PubMed DOI
Zhu B., Zhang L., Cheng B., Yu J. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl. Catal. B Environ. 2018;224:983–999. doi: 10.1016/j.apcatb.2017.11.025. DOI
Masih D., Ma Y., Rohani S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B Environ. 2017;206:556–588. doi: 10.1016/j.apcatb.2017.01.061. DOI
Wen J., Xie J., Chen X., Li X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017;391:72–123. doi: 10.1016/j.apsusc.2016.07.030. DOI
Lan Z.-A., Zhang G., Wang X. A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B Environ. 2016;192:116–125. doi: 10.1016/j.apcatb.2016.03.062. DOI
Qu D., Liu J., Miao X., Han M., Zhang H., Cui Z., Sun S., Kang Z., Fan H., Sun Z. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl. Catal. B Environ. 2018;227:418–424. doi: 10.1016/j.apcatb.2018.01.030. DOI
Sun Y., Xiong T., Ni Z., Liu J., Dong F., Zhang W., Ho W.-K. Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration. Appl. Surf. Sci. 2015;358:356–362. doi: 10.1016/j.apsusc.2015.07.071. DOI
Reli M., Svoboda L., Šihor M., Troppová I., Pavlovský J., Praus P., Kočí K. Photocatalytic decomposition of N2O over g-C3N4/WO3 photocatalysts. Environ. Sci. Pollut. Res. 2018;25:34839–34850. doi: 10.1007/s11356-017-0723-6. PubMed DOI
Yu Y., Wang C., Luo L., Wang J., Meng J. An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation. Chem. Eng. J. 2018;334:1869–1877. doi: 10.1016/j.cej.2017.11.133. DOI
Fang S., Lv K., Li Q., Ye H., Du D., Li M. Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4. Appl. Surf. Sci. 2015;358:336–342. doi: 10.1016/j.apsusc.2015.07.179. DOI
Praus P., Svoboda L., Dvorský R., Reli M. Nanocomposites of SnO2 and g-C3N4: Preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int. 2018;44:3837–3846. doi: 10.1016/j.ceramint.2017.11.170. DOI
Shan W., Hu Y., Bai Z., Zheng M., Wei C. In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B Environ. 2016;188:1–12. doi: 10.1016/j.apcatb.2016.01.058. DOI
Meng Y., Shen J., Chen D., Xin G. Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst. Rare Met. 2011;30:276–279. doi: 10.1007/s12598-011-0284-7. DOI
Wu F., Li X., Liu W., Zhang S. Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci. 2017;405:60–70. doi: 10.1016/j.apsusc.2017.01.285. DOI
Vadivel S., Maruthamani D., Habibi-Yangjeh A., Paul B., Dhar S.S., Selvam K. Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation. J. Colloid Interface Sci. 2016;480:126–136. doi: 10.1016/j.jcis.2016.07.012. PubMed DOI
Wang F., Feng Y., Chen P., Wang Y., Su Y., Zhang Q., Zeng Y., Xie Z., Liu H., Liu Y., et al. Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination. Appl. Catal. B Environ. 2018;227:114–122. doi: 10.1016/j.apcatb.2018.01.024. DOI
Zhang M., Jiang W., Liu D., Wang J., Liu Y., Zhu Y., Zhu Y. Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation. Appl. Catal. B Environ. 2016;183:263–268. doi: 10.1016/j.apcatb.2015.10.049. DOI
Li Y., Ruan Z., He Y., Li J., Li K., Yang Y., Xia D., Lin K., Yuan Y. Enhanced photocatalytic H2 evolution and phenol degradation over sulfur doped meso/macroporous g-C3N4 spheres with continuous channels. Int. J. Hydrogen Energy. 2019;44:707–719. doi: 10.1016/j.ijhydene.2018.10.124. DOI
Praus P., Svoboda L., Dvorský R., Reli M., Kormunda M., Mančík P. Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3N4. Ceram. Int. 2017;43:13581–13591. doi: 10.1016/j.ceramint.2017.07.067. DOI
Zhou C., Zeng Z., Zeng G., Huang D., Xiao R., Cheng M., Zhang C., Xiong W., Lai C., Yang Y., et al. Visible-light-driven photocatalytic degradation of sulfamethazine by surface engineering of carbon nitride: Properties, degradation pathway and mechanisms. J. Hazard. Mater. 2019;380:120815. doi: 10.1016/j.jhazmat.2019.120815. PubMed DOI
Pattnaik S.P., Behera A., Martha S., Acharya R., Parida K. Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic degradation of ciprofloxacin under solar irradiation. J. Mater. Sci. 2019;54:5726–5742. doi: 10.1007/s10853-018-03266-x. DOI
Svoboda L., Škuta R., Matějka V., Dvorský R., Matýsek D., Henych J., Mančík P., Praus P. Graphene oxide and graphitic carbon nitride nanocomposites assembled by electrostatic attraction forces: Synthesis and characterization. Mater. Chem. Phys. 2019;228:228–236. doi: 10.1016/j.matchemphys.2019.02.077. DOI
Svoboda L., Praus P., Lima M.J., Sampaio M.J., Matýsek D., Ritz M., Dvorský R., Faria J.L., Silva C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018;100:322–332. doi: 10.1016/j.materresbull.2017.12.049. DOI
Hu Z., Cai X., Wang Z., Li S., Wang Z., Xie X. Construction of carbon-doped supramolecule-based g-C3N4/TiO2 composites for removal of diclofenac and carbamazepine: A comparative study of operating parameters, mechanisms, degradation pathways. J. Hazard. Mater. 2019;380:120812. doi: 10.1016/j.jhazmat.2019.120812. PubMed DOI
Zhu Q., Qiu B., Duan H., Gong Y., Qin Z., Shen B., Xing M., Zhang J. Electron directed migration cooperated with thermodynamic regulation over bimetallic NiFeP/g-C3N4 for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019;259:118078. doi: 10.1016/j.apcatb.2019.118078. DOI
Wu B., Li Y., Su K., Tan L., Liu X., Cui Z., Yang X., Liang Y., Li Z., Zhu S., et al. The enhanced photocatalytic properties of MnO2/g-C3N4 heterostructure for rapid sterilization under visible light. J. Hazard. Mater. 2019;377:227–236. doi: 10.1016/j.jhazmat.2019.05.074. PubMed DOI
Cao L., Li Y.-F., Tong Y., Yang R., Sun L., Cao Q., Chen R. A novel Bi12TiO20/g-C3N4 hybrid catalyst with a bionic granum configuration for enhanced photocatalytic degradation of organic pollutants. J. Hazard. Mater. 2019;379:120808. doi: 10.1016/j.jhazmat.2019.120808. PubMed DOI
Olabarrieta J., Monzón O., Belaustegui Y., Alvarez J.-I., Zorita S. Removal of TiO2 nanoparticles from water by low pressure pilot plant filtration. Sci. Total Environ. 2018;618:551–560. doi: 10.1016/j.scitotenv.2017.11.003. PubMed DOI
McCullagh C., Robertson J.M.C., Bahnemann D.W., Robertson P.K.J. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: A review. Res. Chem. Intermed. 2007;33:359–375. doi: 10.1163/156856707779238775. DOI
Geyer F., D’Acunzi M., Sharifi-Aghili A., Saal A., Gao N., Kaltbeitzel A., Sloot T.-F., Berger R., Butt H.-J., Vollmer D. When and how self-cleaning of superhydrophobic surfaces works. Sci. Adv. 2020;6:eaaw9727. doi: 10.1126/sciadv.aaw9727. PubMed DOI PMC
Byun D., Hong J., Saputra, Ko J.H., Lee Y.J., Park H.C., Byun B.-K., Lukes J.R. Wetting characteristics of insect wing surfaces. J. Bionic Eng. 2009;6:63–70. doi: 10.1016/S1672-6529(08)60092-X. DOI
Ganesh V.A., Raut H.K., Nair A.S., Ramakrishna S. A review on self-cleaning coatings. J. Mater. Chem. 2011;21:16304–16322. doi: 10.1039/c1jm12523k. DOI
Wang S., Ajji A., Guo S., Xiong C. Preparation of microporous polypropylene/titanium dioxide composite membranes with enhanced electrolyte uptake capability via melt extruding and stretching. Polymers. 2017;9:110. doi: 10.3390/polym9030110. PubMed DOI PMC
Han H., Bai R. Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights. Sep. Purif. Technol. 2010;73:142–150. doi: 10.1016/j.seppur.2010.03.017. DOI
Dong P., Nie X., Jin Z., Huang Z., Wang X., Zhang X. Dual dielectric barrier discharge plasma treatments for synthesis of Ag–TiO2 functionalized polypropylene fabrics. Ind. Eng. Chem. Res. 2019;58:7734–7741. doi: 10.1021/acs.iecr.9b00047. DOI
Zhang H., Li X., Han B., Wu H., Mao N. Simultaneous reactive dyeing and surface modification of polyamide fabric with TiO2 precursor finish using a one-step hydrothermal process. Text. Res. J. 2018;88:2611–2623. doi: 10.1177/0040517517729382. DOI
Zhang H., Zhu H. Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric. Appl. Surf. Sci. 2012;258:10034–10041. doi: 10.1016/j.apsusc.2012.06.069. DOI
Ghaffari S., Mojtahedi M.R.M., Dastjerdi R. Comparison of the morphological, mechanical, and UV protection properties of TiO2/polyamide 6 (PA6), and ZnO/PA6 nanocomposite multifilament yarns. J. Macromol. Sci. Part B. 2015;54:783–798. doi: 10.1080/00222348.2015.1037385. DOI
Blanco M., Monteserín C., Angulo A., Pérez-Márquez A., Maudes J., Murillo N., Aranzabe E., Ruiz-Rubio L., Vilas J.L. TiO2-doped electrospun nanofibrous membrane for photocatalytic water treatment. Polymers. 2019;11:747. doi: 10.3390/polym11050747. PubMed DOI PMC
Khaled S.M., Sui R., Charpentier P.A., Rizkalla A.S. Synthesis of TiO 2—PMMA nanocomposite: Using methacrylic acid as a coupling agent. Langmuir. 2007;23:3988–3995. doi: 10.1021/la062879n. PubMed DOI
Teixeira S., Magalhães B., Martins P.M., Kühn K., Soler L., Lanceros-Méndez S., Cuniberti G. Reusable photocatalytic optical fibers for underground, deep-sea, and turbid water remediation. Glob. Chall. 2018;2:1700124. doi: 10.1002/gch2.201700124. PubMed DOI PMC
Galiano F., Song X., Marino T., Boerrigter M., Saoncella O., Simone S., Faccini M., Chaumette C., Drioli E., Figoli A. Novel photocatalytic PVDF/Nano-TiO2 hollow fibers for environmental remediation. Polymers. 2018;10:1134. doi: 10.3390/polym10101134. PubMed DOI PMC
Tan B., Gao B., Guo J., Guo X., Long M. A comparison of TiO2 coated self-cleaning cotton by the sols from peptizing and hydrothermal routes. Surf. Coat. Technol. 2013;232:26–32. doi: 10.1016/j.surfcoat.2013.04.048. DOI
Wu D., Wang H., Li C., Xia J., Song X., Huang W. Photocatalytic self-cleaning properties of cotton fabrics functionalized with p-BiOI/n-TiO 2 heterojunction. Surf. Coat. Technol. 2014;258:672–676. doi: 10.1016/j.surfcoat.2014.08.019. DOI
Xu B., Ding J., Feng L., Ding Y., Ge F., Cai Z. Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surf. Coat. Technol. 2015;262:70–76. doi: 10.1016/j.surfcoat.2014.12.017. DOI
Iavicoli I., Leso V., Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: A review of in vivo studies. J. Nanomater. 2012;2012:964381. doi: 10.1155/2012/964381. PubMed DOI
Ze Y., Sheng L., Zhao X., Hong J., Ze X., Yu X., Pan X., Lin A., Zhao Y., Zhang C., et al. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS ONE. 2014;9:e92230. doi: 10.1371/journal.pone.0092230. PubMed DOI PMC
Park E.-J., Yi J., Chung K.-H., Ryu D.-Y., Choi J., Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 2008;180:222–229. doi: 10.1016/j.toxlet.2008.06.869. PubMed DOI
Zhang X., Xie X., Wang H., Zhang J., Pan B., Xie Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013;135:18–21. doi: 10.1021/ja308249k. PubMed DOI
Yang Y., Ji T., Su W., Yang B., Zhang Y., Yang Z. Photocatalytic NOx abatement and self-cleaning performance of cementitious composites with g-C3N4 nanosheets under visible light. Constr. Build. Mater. 2019;225:120–131. doi: 10.1016/j.conbuildmat.2019.07.189. DOI
Dong Y., Ji X., Li F., Nguyen T.T., Huang Z., Guo M. A self-cleaning surface based on heat treatment of g-C3N4-coated wood prepared by a rapid and eco-friendly method. Holzforschung. 2019;73:393–399. doi: 10.1515/hf-2018-0118. DOI
Dong F., Wang Z., Li Y., Ho W.-K., Lee S.C. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. Environ. Sci. Technol. 2014;48:10345–10353. doi: 10.1021/es502290f. PubMed DOI
Wang X., Wang H., Yu K., Hu X. Immobilization of 2D/2D structured g-C3N4 nanosheet/reduced graphene oxide hybrids on 3D nickel foam and its photocatalytic performance. Mater. Res. Bull. 2018;97:306–313. doi: 10.1016/j.materresbull.2017.09.024. DOI
Hu X., Deng L., Ouyang H., Wang H. Immobilization of g-C3N4 nanosheets on diatomite via electrostatic adsorption and their photocatalytic activity. RSC Adv. 2018;8:28032–28040. doi: 10.1039/C8RA05408H. PubMed DOI PMC
Fan Y., Zhou J., Zhang J., Lou Y., Huang Z., Ye Y., Jia L., Tang B. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation. Chem. Phys. Lett. 2018;699:146–154. doi: 10.1016/j.cplett.2018.03.048. DOI
Lin H., Day D.E., Stoffer J.O. Optical and mechanical properties of optically transparent poly(methyl methacrylate) composites. Polym. Eng. Sci. 2004;32:344–350. doi: 10.1002/pen.760320507. DOI
Mahmood Raouf R., Abdul Wahab Z., Azowa Ibrahim N., Abidin Talib Z., Chieng B. Transparent blend of poly(methylmethacrylate)/cellulose acetate butyrate for the protection from ultraviolet. Polymers. 2016;8:128. doi: 10.3390/polym8040128. PubMed DOI PMC
Soumya S., Kumar S.N., Mohamed A.P., Ananthakumar S. Silanated nano ZnO hybrid embedded PMMA polymer coatings on cotton fabrics for near-IR reflective, antifungal cool-textiles. New J. Chem. 2016;40:7210–7221. doi: 10.1039/C6NJ00353B. DOI
Karim K.J.B.A., Buang N.A. A review of the properties and applications of poly (methyl methacrylate) (PMMA) Polym. Rev. 2015;55:678–705.
Zidan H.M., Abu-Elnader M. Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Phys. B Condens. Matter. 2005;355:308–317. doi: 10.1016/j.physb.2004.11.023. DOI
Wochnowski C., Metev S., Sepold G. UV–laser-assisted modification of the optical properties of polymethylmethacrylate. Appl. Surf. Sci. 2000;154–155:706–711. doi: 10.1016/S0169-4332(99)00435-3. DOI
Abd El-Ghani W.M.A. Cranioplasty with polymethyl methacrylate implant: Solutions of pitfalls. Egypt. J. Neurosurg. 2018;33:7. doi: 10.1186/s41984-018-0002-y. DOI
Kalteis T., Lüring C., Gugler G., Zysk S., Caro W., Handel M., Grifka J. Acute tissue toxicity of PMMA bone cements. Z. Orthop. Ihre Grenzgeb. 2004;142:666–672. doi: 10.1055/s-2004-832317. PubMed DOI
Frazer R.Q., Byron R.T., Osborne P.B., West K.P. PMMA: An essential material in medicine and dentistry. J. Long Term Eff. Med. Implants. 2005;15:629–639. doi: 10.1615/JLongTermEffMedImplants.v15.i6.60. PubMed DOI
Zhang Y., Zhuang S., Xu X., Hu J. Transparent and UV-shielding ZnO@PMMA nanocomposite films. Opt. Mater. (Amsterdam) 2013;36:169–172. doi: 10.1016/j.optmat.2013.08.021. DOI
Rafatullah M., Sulaiman O., Hashim R., Ahmad A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010;177:70–80. doi: 10.1016/j.jhazmat.2009.12.047. PubMed DOI
Chang F., Xie Y., Li C., Chen J., Luo J., Hu X., Shen J. A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue. Appl. Surf. Sci. 2013;280:967–974. doi: 10.1016/j.apsusc.2013.05.127. DOI
Svoboda L., Dvorský R., Praus P., Matýsek D., Bednář J. Synthesis of ZnO nanocoatings by decomposition of zinc acetate induced by electrons emitted by indium. Appl. Surf. Sci. 2016;388 doi: 10.1016/j.apsusc.2015.11.128. DOI
Liu X., Xu J., Ni Z., Wang R., You J., Guo R. Adsorption and visible-light-driven photocatalytic properties of Ag3PO4/WO3 composites: A discussion of the mechanism. Chem. Eng. J. 2019;356:22–33. doi: 10.1016/j.cej.2018.09.001. DOI
Lakshmi S., Renganathan R., Fujita S. Study on TiO2-mediated photocatalytic degradation of methylene blue. J. Photochem. Photobiol. A Chem. 1995;88:163–167. doi: 10.1016/1010-6030(94)04030-6. DOI
Dvorsky R., Svoboda L., Bednář J., Mančík P., Matýsek D., Pomiklová M. Deposition of sorption and photocatalytic material on nanofibers and fabric by controlled sublimation. Mater. Sci. Forum. 2018;936:63–67. doi: 10.4028/www.scientific.net/MSF.936.63. DOI
Miller-Chou B.A., Koenig J.L. A review of polymer dissolution. Prog. Polym. Sci. 2003;28:1223–1270. doi: 10.1016/S0079-6700(03)00045-5. DOI
Wang Z., Liang H., Yang H., Xiong L., Zhou J., Huang S., Zhao C., Zhong J., Fan X. UV-curable self-healing polyurethane coating based on thiol-ene and Diels-Alder double click reactions. Prog. Org. Coat. 2019;137:105282. doi: 10.1016/j.porgcoat.2019.105282. DOI
Yang S., Gong Y., Zhang J., Zhan L., Ma L., Fang Z., Vajtai R., Wang X., Ajayan P.M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013;25:2452–2456. doi: 10.1002/adma.201204453. PubMed DOI
Praus P., Svoboda L., Ritz M., Troppová I., Šihor M., Kočí K. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 2017;193:438–446. doi: 10.1016/j.matchemphys.2017.03.008. DOI
Kumar K.V., Porkodi K., Selvaganapathi A. Constrain in solving langmuir–hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst. Dye. Pigment. 2007;75:246–249.
Khademi M., Wang W., Reitinger W., Barz D.P.J. Zeta potential of poly(methyl methacrylate) (PMMA) in contact with aqueous electrolyte-surfactant solutions. Langmuir. 2017;33:10473–10482. doi: 10.1021/acs.langmuir.7b02487. PubMed DOI
Mamba G., Mishra A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016;198:347–377. doi: 10.1016/j.apcatb.2016.05.052. DOI
Zhen W., Ning X., Yang B., Wu Y., Li Z., Lu G. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl. Catal. B Environ. 2018;221:243–257. doi: 10.1016/j.apcatb.2017.09.024. DOI
Ma H., Han J., Fu Y., Song Y., Yu C., Dong X. Synthesis of visible light responsive ZnO–ZnS/C photocatalyst by simple carbothermal reduction. Appl. Catal. B Environ. 2011;102:417–423. doi: 10.1016/j.apcatb.2010.12.014. DOI