Design and Performance of Novel Self-Cleaning g-C3N4/PMMA/PUR Membranes

. 2020 Apr 07 ; 12 (4) : . [epub] 20200407

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32272693

Grantová podpora
CZ.02.2.69/0.0/0.0/16_018/0002708 Vysoká Škola Bánská - Technická Univerzita Ostrava
SP2019/39 Vysoká Škola Bánská - Technická Univerzita Ostrava
SP2020/15 Vysoká Škola Bánská - Technická Univerzita Ostrava
EF16_013/0001791 Vysoká Škola Bánská - Technická Univerzita Ostrava

In the majority of photocatalytic applications, the photocatalyst is dispersed as a suspension of nanoparticles. The suspension provides a higher surface for the photocatalytic reaction in respect to immobilized photocatalysts. However, this implies that recovery of the particles by filtration or centrifugation is needed to collect and regenerate the photocatalyst. This complicates the regeneration process and, at the same time, leads to material loss and potential toxicity. In this work, a new nanofibrous membrane, g-C3N4/PMMA/PUR, was prepared by the fixation of exfoliated g-C3N4 to polyurethane nanofibers using thin layers of poly(methyl methacrylate) (PMMA). The optimal amount of PMMA was determined by measuring the adsorption and photocatalytic properties of g-C3N4/PMMA/PUR membranes (with a different PMMA content) in an aqueous solution of methylene blue. It was found that the prepared membranes were able to effectively adsorb and decompose methylene blue. On top of that, the membranes evinced a self-cleaning behavior, showing no coloration on their surfaces after contact with methylene blue, unlike in the case of unmodified fabric. After further treatment with H2O2, no decrease in photocatalytic activity was observed, indicating that the prepared membrane can also be easily regenerated. This study promises possibilities for the production of photocatalytic membranes and fabrics for both chemical and biological contaminant control.

Zobrazit více v PubMed

Li W., Hua F., Yue J., Li J. Ag@AgCl plasmon-induced sensitized ZnO particle for high-efficiency photocatalytic property under visible light. Appl. Surf. Sci. 2013;285:490–497. doi: 10.1016/j.apsusc.2013.08.082. DOI

Athanasekou C.P., Moustakas N.G., Morales-Torres S., Pastrana-Martínez L.M., Figueiredo J.L., Faria J.L., Silva A.M.T., Dona-Rodriguez J.M., Romanos G.E., Falaras P. Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl. Catal. B Environ. 2015;178:12–19. doi: 10.1016/j.apcatb.2014.11.021. DOI

Chew C.M., Aroua M.K., Hussain M.A. Advanced process control for ultrafiltration membrane water treatment system. J. Clean. Prod. 2018;179:63–80. doi: 10.1016/j.jclepro.2018.01.075. DOI

Li X., Row K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 2016;39:3505–3520. doi: 10.1002/jssc.201600633. PubMed DOI

Kazadi Mbamba C., Batstone D.J., Flores-Alsina X., Tait S. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite. Water Res. 2015;68:342–353. doi: 10.1016/j.watres.2014.10.011. PubMed DOI

Särkkä H., Bhatnagar A., Sillanpää M. Recent developments of electro-oxidation in water treatment—A review. J. Electroanal. Chem. 2015;754:46–56. doi: 10.1016/j.jelechem.2015.06.016. DOI

Chong Y.T., Mohd Ariffin M., Mohd Tahir N., Loh S.H. A green solvent holder in electro-mediated microextraction for the extraction of phenols in water. Talanta. 2018;176:558–564. doi: 10.1016/j.talanta.2017.08.068. PubMed DOI

Phillips R.B., James R.R., Magnuson M.L. Electrolyte selection and microbial toxicity for electrochemical oxidative water treatment using a boron-doped diamond anode to support site specific contamination incident response. Chemosphere. 2018;197:135–141. doi: 10.1016/j.chemosphere.2018.01.007. PubMed DOI PMC

Subramani A., Jacangelo J.G. Emerging desalination technologies for water treatment: A critical review. Water Res. 2015;75:164–187. doi: 10.1016/j.watres.2015.02.032. PubMed DOI

Crini G., Lichtfouse E., Wilson L.D., Morin-Crini N. Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment. In: Crini G., Lichtfouse E., editors. Green Adsorbents for Pollutant Removal: Fundamentals and Design. Springer International Publishing; Cham, Germany: 2018. pp. 23–71.

Hasan Z., Jhung S.H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015;283:329–339. doi: 10.1016/j.jhazmat.2014.09.046. PubMed DOI

Abbasi Z., Shamsaei E., Leong S.K., Ladewig B., Zhang X., Wang H. Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. Microporous Mesoporous Mater. 2016;236:28–37. doi: 10.1016/j.micromeso.2016.08.022. DOI

Cui L., Wang Y., Gao L., Hu L., Yan L., Wei Q., Du B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015;281:1–10. doi: 10.1016/j.cej.2015.06.043. DOI

Burakov A.E., Galunin E.V., Burakova I.V., Kucherova A.E., Agarwal S., Tkachev A.G., Gupta V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018;148:702–712. doi: 10.1016/j.ecoenv.2017.11.034. PubMed DOI

Giannakoudakis D.A., Kyzas G.Z., Avranas A., Lazaridis N.K. Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. J. Mol. Liq. 2016;213:381–389. doi: 10.1016/j.molliq.2015.07.010. DOI

Suhas, Gupta V.K., Carrott P.J.M., Singh R., Chaudhary M., Kushwaha S. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresour. Technol. 2016;216:1066–1076. doi: 10.1016/j.biortech.2016.05.106. PubMed DOI

Robinson T., McMullan G., Marchant R., Nigam P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001;77:247–255. doi: 10.1016/S0960-8524(00)00080-8. PubMed DOI

Zhu B., Zhang L., Cheng B., Yu J. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl. Catal. B Environ. 2018;224:983–999. doi: 10.1016/j.apcatb.2017.11.025. DOI

Masih D., Ma Y., Rohani S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B Environ. 2017;206:556–588. doi: 10.1016/j.apcatb.2017.01.061. DOI

Wen J., Xie J., Chen X., Li X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017;391:72–123. doi: 10.1016/j.apsusc.2016.07.030. DOI

Lan Z.-A., Zhang G., Wang X. A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B Environ. 2016;192:116–125. doi: 10.1016/j.apcatb.2016.03.062. DOI

Qu D., Liu J., Miao X., Han M., Zhang H., Cui Z., Sun S., Kang Z., Fan H., Sun Z. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl. Catal. B Environ. 2018;227:418–424. doi: 10.1016/j.apcatb.2018.01.030. DOI

Sun Y., Xiong T., Ni Z., Liu J., Dong F., Zhang W., Ho W.-K. Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration. Appl. Surf. Sci. 2015;358:356–362. doi: 10.1016/j.apsusc.2015.07.071. DOI

Reli M., Svoboda L., Šihor M., Troppová I., Pavlovský J., Praus P., Kočí K. Photocatalytic decomposition of N2O over g-C3N4/WO3 photocatalysts. Environ. Sci. Pollut. Res. 2018;25:34839–34850. doi: 10.1007/s11356-017-0723-6. PubMed DOI

Yu Y., Wang C., Luo L., Wang J., Meng J. An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation. Chem. Eng. J. 2018;334:1869–1877. doi: 10.1016/j.cej.2017.11.133. DOI

Fang S., Lv K., Li Q., Ye H., Du D., Li M. Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4. Appl. Surf. Sci. 2015;358:336–342. doi: 10.1016/j.apsusc.2015.07.179. DOI

Praus P., Svoboda L., Dvorský R., Reli M. Nanocomposites of SnO2 and g-C3N4: Preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int. 2018;44:3837–3846. doi: 10.1016/j.ceramint.2017.11.170. DOI

Shan W., Hu Y., Bai Z., Zheng M., Wei C. In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B Environ. 2016;188:1–12. doi: 10.1016/j.apcatb.2016.01.058. DOI

Meng Y., Shen J., Chen D., Xin G. Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst. Rare Met. 2011;30:276–279. doi: 10.1007/s12598-011-0284-7. DOI

Wu F., Li X., Liu W., Zhang S. Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci. 2017;405:60–70. doi: 10.1016/j.apsusc.2017.01.285. DOI

Vadivel S., Maruthamani D., Habibi-Yangjeh A., Paul B., Dhar S.S., Selvam K. Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation. J. Colloid Interface Sci. 2016;480:126–136. doi: 10.1016/j.jcis.2016.07.012. PubMed DOI

Wang F., Feng Y., Chen P., Wang Y., Su Y., Zhang Q., Zeng Y., Xie Z., Liu H., Liu Y., et al. Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination. Appl. Catal. B Environ. 2018;227:114–122. doi: 10.1016/j.apcatb.2018.01.024. DOI

Zhang M., Jiang W., Liu D., Wang J., Liu Y., Zhu Y., Zhu Y. Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation. Appl. Catal. B Environ. 2016;183:263–268. doi: 10.1016/j.apcatb.2015.10.049. DOI

Li Y., Ruan Z., He Y., Li J., Li K., Yang Y., Xia D., Lin K., Yuan Y. Enhanced photocatalytic H2 evolution and phenol degradation over sulfur doped meso/macroporous g-C3N4 spheres with continuous channels. Int. J. Hydrogen Energy. 2019;44:707–719. doi: 10.1016/j.ijhydene.2018.10.124. DOI

Praus P., Svoboda L., Dvorský R., Reli M., Kormunda M., Mančík P. Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3N4. Ceram. Int. 2017;43:13581–13591. doi: 10.1016/j.ceramint.2017.07.067. DOI

Zhou C., Zeng Z., Zeng G., Huang D., Xiao R., Cheng M., Zhang C., Xiong W., Lai C., Yang Y., et al. Visible-light-driven photocatalytic degradation of sulfamethazine by surface engineering of carbon nitride: Properties, degradation pathway and mechanisms. J. Hazard. Mater. 2019;380:120815. doi: 10.1016/j.jhazmat.2019.120815. PubMed DOI

Pattnaik S.P., Behera A., Martha S., Acharya R., Parida K. Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic degradation of ciprofloxacin under solar irradiation. J. Mater. Sci. 2019;54:5726–5742. doi: 10.1007/s10853-018-03266-x. DOI

Svoboda L., Škuta R., Matějka V., Dvorský R., Matýsek D., Henych J., Mančík P., Praus P. Graphene oxide and graphitic carbon nitride nanocomposites assembled by electrostatic attraction forces: Synthesis and characterization. Mater. Chem. Phys. 2019;228:228–236. doi: 10.1016/j.matchemphys.2019.02.077. DOI

Svoboda L., Praus P., Lima M.J., Sampaio M.J., Matýsek D., Ritz M., Dvorský R., Faria J.L., Silva C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018;100:322–332. doi: 10.1016/j.materresbull.2017.12.049. DOI

Hu Z., Cai X., Wang Z., Li S., Wang Z., Xie X. Construction of carbon-doped supramolecule-based g-C3N4/TiO2 composites for removal of diclofenac and carbamazepine: A comparative study of operating parameters, mechanisms, degradation pathways. J. Hazard. Mater. 2019;380:120812. doi: 10.1016/j.jhazmat.2019.120812. PubMed DOI

Zhu Q., Qiu B., Duan H., Gong Y., Qin Z., Shen B., Xing M., Zhang J. Electron directed migration cooperated with thermodynamic regulation over bimetallic NiFeP/g-C3N4 for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019;259:118078. doi: 10.1016/j.apcatb.2019.118078. DOI

Wu B., Li Y., Su K., Tan L., Liu X., Cui Z., Yang X., Liang Y., Li Z., Zhu S., et al. The enhanced photocatalytic properties of MnO2/g-C3N4 heterostructure for rapid sterilization under visible light. J. Hazard. Mater. 2019;377:227–236. doi: 10.1016/j.jhazmat.2019.05.074. PubMed DOI

Cao L., Li Y.-F., Tong Y., Yang R., Sun L., Cao Q., Chen R. A novel Bi12TiO20/g-C3N4 hybrid catalyst with a bionic granum configuration for enhanced photocatalytic degradation of organic pollutants. J. Hazard. Mater. 2019;379:120808. doi: 10.1016/j.jhazmat.2019.120808. PubMed DOI

Olabarrieta J., Monzón O., Belaustegui Y., Alvarez J.-I., Zorita S. Removal of TiO2 nanoparticles from water by low pressure pilot plant filtration. Sci. Total Environ. 2018;618:551–560. doi: 10.1016/j.scitotenv.2017.11.003. PubMed DOI

McCullagh C., Robertson J.M.C., Bahnemann D.W., Robertson P.K.J. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: A review. Res. Chem. Intermed. 2007;33:359–375. doi: 10.1163/156856707779238775. DOI

Geyer F., D’Acunzi M., Sharifi-Aghili A., Saal A., Gao N., Kaltbeitzel A., Sloot T.-F., Berger R., Butt H.-J., Vollmer D. When and how self-cleaning of superhydrophobic surfaces works. Sci. Adv. 2020;6:eaaw9727. doi: 10.1126/sciadv.aaw9727. PubMed DOI PMC

Byun D., Hong J., Saputra, Ko J.H., Lee Y.J., Park H.C., Byun B.-K., Lukes J.R. Wetting characteristics of insect wing surfaces. J. Bionic Eng. 2009;6:63–70. doi: 10.1016/S1672-6529(08)60092-X. DOI

Ganesh V.A., Raut H.K., Nair A.S., Ramakrishna S. A review on self-cleaning coatings. J. Mater. Chem. 2011;21:16304–16322. doi: 10.1039/c1jm12523k. DOI

Wang S., Ajji A., Guo S., Xiong C. Preparation of microporous polypropylene/titanium dioxide composite membranes with enhanced electrolyte uptake capability via melt extruding and stretching. Polymers. 2017;9:110. doi: 10.3390/polym9030110. PubMed DOI PMC

Han H., Bai R. Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights. Sep. Purif. Technol. 2010;73:142–150. doi: 10.1016/j.seppur.2010.03.017. DOI

Dong P., Nie X., Jin Z., Huang Z., Wang X., Zhang X. Dual dielectric barrier discharge plasma treatments for synthesis of Ag–TiO2 functionalized polypropylene fabrics. Ind. Eng. Chem. Res. 2019;58:7734–7741. doi: 10.1021/acs.iecr.9b00047. DOI

Zhang H., Li X., Han B., Wu H., Mao N. Simultaneous reactive dyeing and surface modification of polyamide fabric with TiO2 precursor finish using a one-step hydrothermal process. Text. Res. J. 2018;88:2611–2623. doi: 10.1177/0040517517729382. DOI

Zhang H., Zhu H. Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric. Appl. Surf. Sci. 2012;258:10034–10041. doi: 10.1016/j.apsusc.2012.06.069. DOI

Ghaffari S., Mojtahedi M.R.M., Dastjerdi R. Comparison of the morphological, mechanical, and UV protection properties of TiO2/polyamide 6 (PA6), and ZnO/PA6 nanocomposite multifilament yarns. J. Macromol. Sci. Part B. 2015;54:783–798. doi: 10.1080/00222348.2015.1037385. DOI

Blanco M., Monteserín C., Angulo A., Pérez-Márquez A., Maudes J., Murillo N., Aranzabe E., Ruiz-Rubio L., Vilas J.L. TiO2-doped electrospun nanofibrous membrane for photocatalytic water treatment. Polymers. 2019;11:747. doi: 10.3390/polym11050747. PubMed DOI PMC

Khaled S.M., Sui R., Charpentier P.A., Rizkalla A.S. Synthesis of TiO 2—PMMA nanocomposite: Using methacrylic acid as a coupling agent. Langmuir. 2007;23:3988–3995. doi: 10.1021/la062879n. PubMed DOI

Teixeira S., Magalhães B., Martins P.M., Kühn K., Soler L., Lanceros-Méndez S., Cuniberti G. Reusable photocatalytic optical fibers for underground, deep-sea, and turbid water remediation. Glob. Chall. 2018;2:1700124. doi: 10.1002/gch2.201700124. PubMed DOI PMC

Galiano F., Song X., Marino T., Boerrigter M., Saoncella O., Simone S., Faccini M., Chaumette C., Drioli E., Figoli A. Novel photocatalytic PVDF/Nano-TiO2 hollow fibers for environmental remediation. Polymers. 2018;10:1134. doi: 10.3390/polym10101134. PubMed DOI PMC

Tan B., Gao B., Guo J., Guo X., Long M. A comparison of TiO2 coated self-cleaning cotton by the sols from peptizing and hydrothermal routes. Surf. Coat. Technol. 2013;232:26–32. doi: 10.1016/j.surfcoat.2013.04.048. DOI

Wu D., Wang H., Li C., Xia J., Song X., Huang W. Photocatalytic self-cleaning properties of cotton fabrics functionalized with p-BiOI/n-TiO 2 heterojunction. Surf. Coat. Technol. 2014;258:672–676. doi: 10.1016/j.surfcoat.2014.08.019. DOI

Xu B., Ding J., Feng L., Ding Y., Ge F., Cai Z. Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surf. Coat. Technol. 2015;262:70–76. doi: 10.1016/j.surfcoat.2014.12.017. DOI

Iavicoli I., Leso V., Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: A review of in vivo studies. J. Nanomater. 2012;2012:964381. doi: 10.1155/2012/964381. PubMed DOI

Ze Y., Sheng L., Zhao X., Hong J., Ze X., Yu X., Pan X., Lin A., Zhao Y., Zhang C., et al. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS ONE. 2014;9:e92230. doi: 10.1371/journal.pone.0092230. PubMed DOI PMC

Park E.-J., Yi J., Chung K.-H., Ryu D.-Y., Choi J., Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 2008;180:222–229. doi: 10.1016/j.toxlet.2008.06.869. PubMed DOI

Zhang X., Xie X., Wang H., Zhang J., Pan B., Xie Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013;135:18–21. doi: 10.1021/ja308249k. PubMed DOI

Yang Y., Ji T., Su W., Yang B., Zhang Y., Yang Z. Photocatalytic NOx abatement and self-cleaning performance of cementitious composites with g-C3N4 nanosheets under visible light. Constr. Build. Mater. 2019;225:120–131. doi: 10.1016/j.conbuildmat.2019.07.189. DOI

Dong Y., Ji X., Li F., Nguyen T.T., Huang Z., Guo M. A self-cleaning surface based on heat treatment of g-C3N4-coated wood prepared by a rapid and eco-friendly method. Holzforschung. 2019;73:393–399. doi: 10.1515/hf-2018-0118. DOI

Dong F., Wang Z., Li Y., Ho W.-K., Lee S.C. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. Environ. Sci. Technol. 2014;48:10345–10353. doi: 10.1021/es502290f. PubMed DOI

Wang X., Wang H., Yu K., Hu X. Immobilization of 2D/2D structured g-C3N4 nanosheet/reduced graphene oxide hybrids on 3D nickel foam and its photocatalytic performance. Mater. Res. Bull. 2018;97:306–313. doi: 10.1016/j.materresbull.2017.09.024. DOI

Hu X., Deng L., Ouyang H., Wang H. Immobilization of g-C3N4 nanosheets on diatomite via electrostatic adsorption and their photocatalytic activity. RSC Adv. 2018;8:28032–28040. doi: 10.1039/C8RA05408H. PubMed DOI PMC

Fan Y., Zhou J., Zhang J., Lou Y., Huang Z., Ye Y., Jia L., Tang B. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation. Chem. Phys. Lett. 2018;699:146–154. doi: 10.1016/j.cplett.2018.03.048. DOI

Lin H., Day D.E., Stoffer J.O. Optical and mechanical properties of optically transparent poly(methyl methacrylate) composites. Polym. Eng. Sci. 2004;32:344–350. doi: 10.1002/pen.760320507. DOI

Mahmood Raouf R., Abdul Wahab Z., Azowa Ibrahim N., Abidin Talib Z., Chieng B. Transparent blend of poly(methylmethacrylate)/cellulose acetate butyrate for the protection from ultraviolet. Polymers. 2016;8:128. doi: 10.3390/polym8040128. PubMed DOI PMC

Soumya S., Kumar S.N., Mohamed A.P., Ananthakumar S. Silanated nano ZnO hybrid embedded PMMA polymer coatings on cotton fabrics for near-IR reflective, antifungal cool-textiles. New J. Chem. 2016;40:7210–7221. doi: 10.1039/C6NJ00353B. DOI

Karim K.J.B.A., Buang N.A. A review of the properties and applications of poly (methyl methacrylate) (PMMA) Polym. Rev. 2015;55:678–705.

Zidan H.M., Abu-Elnader M. Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Phys. B Condens. Matter. 2005;355:308–317. doi: 10.1016/j.physb.2004.11.023. DOI

Wochnowski C., Metev S., Sepold G. UV–laser-assisted modification of the optical properties of polymethylmethacrylate. Appl. Surf. Sci. 2000;154–155:706–711. doi: 10.1016/S0169-4332(99)00435-3. DOI

Abd El-Ghani W.M.A. Cranioplasty with polymethyl methacrylate implant: Solutions of pitfalls. Egypt. J. Neurosurg. 2018;33:7. doi: 10.1186/s41984-018-0002-y. DOI

Kalteis T., Lüring C., Gugler G., Zysk S., Caro W., Handel M., Grifka J. Acute tissue toxicity of PMMA bone cements. Z. Orthop. Ihre Grenzgeb. 2004;142:666–672. doi: 10.1055/s-2004-832317. PubMed DOI

Frazer R.Q., Byron R.T., Osborne P.B., West K.P. PMMA: An essential material in medicine and dentistry. J. Long Term Eff. Med. Implants. 2005;15:629–639. doi: 10.1615/JLongTermEffMedImplants.v15.i6.60. PubMed DOI

Zhang Y., Zhuang S., Xu X., Hu J. Transparent and UV-shielding ZnO@PMMA nanocomposite films. Opt. Mater. (Amsterdam) 2013;36:169–172. doi: 10.1016/j.optmat.2013.08.021. DOI

Rafatullah M., Sulaiman O., Hashim R., Ahmad A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010;177:70–80. doi: 10.1016/j.jhazmat.2009.12.047. PubMed DOI

Chang F., Xie Y., Li C., Chen J., Luo J., Hu X., Shen J. A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue. Appl. Surf. Sci. 2013;280:967–974. doi: 10.1016/j.apsusc.2013.05.127. DOI

Svoboda L., Dvorský R., Praus P., Matýsek D., Bednář J. Synthesis of ZnO nanocoatings by decomposition of zinc acetate induced by electrons emitted by indium. Appl. Surf. Sci. 2016;388 doi: 10.1016/j.apsusc.2015.11.128. DOI

Liu X., Xu J., Ni Z., Wang R., You J., Guo R. Adsorption and visible-light-driven photocatalytic properties of Ag3PO4/WO3 composites: A discussion of the mechanism. Chem. Eng. J. 2019;356:22–33. doi: 10.1016/j.cej.2018.09.001. DOI

Lakshmi S., Renganathan R., Fujita S. Study on TiO2-mediated photocatalytic degradation of methylene blue. J. Photochem. Photobiol. A Chem. 1995;88:163–167. doi: 10.1016/1010-6030(94)04030-6. DOI

Dvorsky R., Svoboda L., Bednář J., Mančík P., Matýsek D., Pomiklová M. Deposition of sorption and photocatalytic material on nanofibers and fabric by controlled sublimation. Mater. Sci. Forum. 2018;936:63–67. doi: 10.4028/www.scientific.net/MSF.936.63. DOI

Miller-Chou B.A., Koenig J.L. A review of polymer dissolution. Prog. Polym. Sci. 2003;28:1223–1270. doi: 10.1016/S0079-6700(03)00045-5. DOI

Wang Z., Liang H., Yang H., Xiong L., Zhou J., Huang S., Zhao C., Zhong J., Fan X. UV-curable self-healing polyurethane coating based on thiol-ene and Diels-Alder double click reactions. Prog. Org. Coat. 2019;137:105282. doi: 10.1016/j.porgcoat.2019.105282. DOI

Yang S., Gong Y., Zhang J., Zhan L., Ma L., Fang Z., Vajtai R., Wang X., Ajayan P.M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013;25:2452–2456. doi: 10.1002/adma.201204453. PubMed DOI

Praus P., Svoboda L., Ritz M., Troppová I., Šihor M., Kočí K. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 2017;193:438–446. doi: 10.1016/j.matchemphys.2017.03.008. DOI

Kumar K.V., Porkodi K., Selvaganapathi A. Constrain in solving langmuir–hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst. Dye. Pigment. 2007;75:246–249.

Khademi M., Wang W., Reitinger W., Barz D.P.J. Zeta potential of poly(methyl methacrylate) (PMMA) in contact with aqueous electrolyte-surfactant solutions. Langmuir. 2017;33:10473–10482. doi: 10.1021/acs.langmuir.7b02487. PubMed DOI

Mamba G., Mishra A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016;198:347–377. doi: 10.1016/j.apcatb.2016.05.052. DOI

Zhen W., Ning X., Yang B., Wu Y., Li Z., Lu G. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl. Catal. B Environ. 2018;221:243–257. doi: 10.1016/j.apcatb.2017.09.024. DOI

Ma H., Han J., Fu Y., Song Y., Yu C., Dong X. Synthesis of visible light responsive ZnO–ZnS/C photocatalyst by simple carbothermal reduction. Appl. Catal. B Environ. 2011;102:417–423. doi: 10.1016/j.apcatb.2010.12.014. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace