Purification of Maize Nucleotide Pyrophosphatase/Phosphodiesterase Casts Doubt on the Existence of Zeatin Cis-Trans Isomerase in Plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28878803
PubMed Central
PMC5572937
DOI
10.3389/fpls.2017.01473
Knihovny.cz E-zdroje
- Klíčová slova
- flavins, isomerization, maize, nucleotide pyrophosphatase/phosphodiesterase, zeatin,
- Publikační typ
- časopisecké články MeSH
Almost 25 years ago, an enzyme named zeatin cis-trans isomerase from common bean has been described by Bassil et al. (1993). The partially purified enzyme required an external addition of FAD and dithiothreitol for the conversion of cis-zeatin to its trans- isomer that occurred only under light. Although an existence of this important enzyme involved in the metabolism of plant hormones cytokinins was generally accepted by plant biologists, the corresponding protein and encoding gene have not been identified to date. Based on the original paper, we purified and identified an enzyme from maize, which shows the described zeatin cis-trans isomerase activity. The enzyme belongs to nucleotide pyrophosphatase/phosphodiesterase family, which is well characterized in mammals, but less known in plants. Further experiments with the recombinant maize enzyme obtained from yeast expression system showed that rather than the catalytic activity of the enzyme itself, a non-enzymatic flavin induced photoisomerization is responsible for the observed zeatin cis-trans interconversion in vitro. An overexpression of the maize nucleotide pyrophosphatase/phosphodiesterase gene led to decreased FAD and increased FMN and riboflavin contents in transgenic Arabidopsis plants. However, neither contents nor the ratio of zeatin isomers was altered suggesting that the enzyme is unlikely to catalyze the interconversion of zeatin isomers in vivo. Using enhanced expression of a homologous gene, functional nucleotide pyrophosphatase/phosphodiesterase was also identified in rice.
Zobrazit více v PubMed
Azami-Sardooei Z., França S. C., De Vleesschauwer D., Höfte M. (2010). Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response. Physiol. Mol. Plant Pathol. 75 23–29. 10.1016/j.pmpp.2010.08.001 DOI
Bassil N. V., Mok D. W. S., Mok M. C. (1993). Partial purification of a cis-trans-isomerase of zeatin from immature seed of Phaseolus vulgaris L. Plant Physiol. 102 867–872. 10.1104/pp.102.3.867 PubMed DOI PMC
Belli S. I., van Driel I. R., Goding J. W. (1993). Identification and characterization of a soluble form of the plasma cell membrane glycoprotein PC-1 (5′-nucleotide phosphodiesterase). Eur. J. Biochem. 217 421–428. 10.1111/j.1432-1033.1993.tb18261.x PubMed DOI
Bjellqvist B., Hughes G. J., Pasquali C., Paquet N., Ravier F., Sanchez J. C., et al. (1993). The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14 1023–1031. 10.1002/elps.11501401163 PubMed DOI
Chatnaparat T., Li Z., Korban S. S., Zhao Y. (2015). The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environ. Microbiol. 17 4253–4270. 10.1111/1462-2920.12744 PubMed DOI PMC
Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. Cell. Mol. Biol. 16 735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI
Collier R., Fuchs B., Walter N., Kevin Lutke W., Taylor C. G. (2005). Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J Cell. Mol. Biol. 43 449–457. 10.1111/j.1365-313X.2005.02454.x PubMed DOI
Emanuelsson O., Brunak S., von Heijne G., Nielsen H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2 953–971. 10.1038/nprot.2007.131 PubMed DOI
Ernst O., Zor T. (1996). Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem. 236 302–308. 10.1006/abio.1996.0171 PubMed DOI
Farré E. M., Geigenberger P., Willmitzer L., Trethewey R. N. (2000). A possible role for pyrophosphate in the coordination of cytosolic and plastidial carbon metabolism within the potato tuber. Plant Physiol. 123 681–688. 10.1104/pp.123.2.681 PubMed DOI PMC
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62 2827–2840. 10.1093/jxb/erq457 PubMed DOI
Galuszka P., Frébort I., Šebela M., Sauer P., Jacobsen S., Peč P. (2001). Cytokinin oxidase or dehydrogenase? Mechanism of the cytokinin degradation in plants. Eur. J. Biochem. 268 450–461. 10.1046/j.1432-1033.2001.01910.x PubMed DOI
Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., et al. (2007). Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 26 255–267. 10.1007/s00344-007-9008-5 DOI
Giancaspero T. A., Busco G., Panebianco C., Carmone C., Miccolis A., Liuzzi G. M., et al. (2013). FAD synthesis and degradation in the nucleus create a local flavin cofactor pool. J. Biol. Chem. 288 29069–29080. 10.1074/jbc.M113.500066 PubMed DOI PMC
Gupta R., Brunak S. (2002). Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 7 310–322. 10.1142/9789812799623_0029 PubMed DOI
Hedtke B., Alawady A., Albacete A., Kobayashi K., Melzer M., Roitsch T., et al. (2011). Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue. Plant Mol. Biol. 78 77–93. 10.1007/s11103-011-9846-1 PubMed DOI
Heelis P. F. (1982). The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 11 15–39. 10.1039/cs9821100015 DOI
Hiltunen H.-M., Illarionov B., Hedtke B., Fischer M., Grimm B. (2012). Arabidopsis RIBA proteins: two out of three isoforms have lost their bifunctional activity in riboflavin biosynthesis. Int. J. Mol. Sci. 13 14086–14105. 10.3390/ijms131114086 PubMed DOI PMC
Hluska T., Dobrev P. I., Tarkowská D., Frébortová J., Zalabák D., Kopečný D., et al. (2016). Cytokinin metabolism in maize: novel evidence of cytokinin abundance, interconversions and formation of a new trans-zeatin metabolic product with a weak anticytokinin activity. Plant Sci. 247 127–137. 10.1016/j.plantsci.2016.03.014 PubMed DOI
Hou B., Lim E.-K., Higgins G. S., Bowles D. J. (2004). N-Glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem. 279 47822–47832. 10.1074/jbc.M409569200 PubMed DOI
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. (2008). Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 2008:420747 10.1155/2008/420747 PubMed DOI PMC
Jiskrová E., Novák O., Pospíšilová H., Holubová K., Karády M., Galuszka P., et al. (2016). Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. New Biotechnol. 33 735–742. 10.1016/j.nbt.2015.12.010 PubMed DOI
Joye I. J., Beliën T., Brijs K., Proost P., Soetaert W., Delcour J. A. (2010). Characterization of the first wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase resembling mammalian counterparts. J. Cereal Sci. 51 326–336. 10.1016/j.jcs.2010.01.009 DOI
Kakimoto T. (2001). Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 42 677–685. 10.1093/pcp/pce112 PubMed DOI
Kaneko K., Inomata T., Masui T., Koshu T., Umezawa Y., Itoh K., et al. (2014). Nucleotide pyrophosphatase/phosphodiesterase 1 exerts a negative effect on starch accumulation and growth in rice seedlings under high temperature and CO2 concentration conditions. Plant Cell Physiol. 55 320–332. 10.1093/pcp/pct139 PubMed DOI PMC
Kato K., Nishimasu H., Okudaira S., Mihara E., Ishitani R., Takagi J., et al. (2012). Crystal structure of Enpp1 an extracellular glycoprotein involved in bone mineralization and insulin signaling. Proc. Natl. Acad. Sci. U.S.A. 109 16876–16881. 10.1073/pnas.1208017109 PubMed DOI PMC
Knobloch E., Mandys F., Hodr R., Hujer R., Mader R. (1991). Study of the mechanism of the photoisomerization and photooxidation of bilirubin using a model for the phototherapy of hyperbilirubinemia. J. Chromatogr. B 566 89–99. 10.1016/0378-4347(91)80113-Q PubMed DOI
Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305 567–580. 10.1006/jmbi.2000.4315 PubMed DOI
Li D., Zhu H., Liu K., Liu X., Leggewie G., Udvardi M., et al. (2002). Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation. J. Biol. Chem. 277 27772–27781. 10.1074/jbc.M204183200 PubMed DOI
Lindner A.-C., Lang D., Seifert M., Podlešáková K., Novák O., Strnad M., et al. (2014). Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis. J. Exp. Bot. 65 2533–2543. 10.1093/jxb/eru142 PubMed DOI PMC
Maruta T., Yoshimoto T., Ito D., Ogawa T., Tamoi M., Yoshimura K., et al. (2012). An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. Plant Cell Physiol. 53 1106–1116. 10.1093/pcp/pcs054 PubMed DOI
Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowská D., et al. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 103 16598–16603. 10.1073/pnas.0603522103 PubMed DOI PMC
Nanjo Y., Oka H., Ikarashi N., Kaneko K., Kitajima A., Mitsui T., et al. (2006). Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-Golgi to the chloroplast through the secretory pathway. Plant Cell 18 2582–2592. 10.1105/tpc.105.039891 PubMed DOI PMC
Olczak M., Morawiecka B., Watorek W. (2003). Plant purple acid phosphatases - genes, structures and biological function. Acta Biochim. Pol. 50 1245–1256. doi0350041245 PubMed
Ouyang M., Ma J., Zou M., Guo J., Wang L., Lu C., et al. (2010). The photosensitive phs1 mutant is impaired in the riboflavin biogenesis pathway. J. Plant Physiol. 167 1466–1476. 10.1016/j.jplph.2010.05.005 PubMed DOI
Persson B. C., Björk G. R. (1993). Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio-cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. J. Bacteriol. 175 7776–7785. 10.1128/jb.175.24.7776-7785.1993 PubMed DOI PMC
Porra R. J., Thompson W. A., Kriedemann P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975 384–394. 10.1016/S0005-2728(89)80347-0 DOI
Rodríguez-López M., Baroja-Fernández E., Zandueta-Criado A., Pozueta-Romero J. (2000). Adenosine diphosphate glucose pyrophosphatase: a plastidial phosphodiesterase that prevents starch biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 97 8705–8710. 10.1073/pnas.120168097 PubMed DOI PMC
Sakagami H., Aoki J., Natori Y., Nishikawa K., Kakehi Y., Natori Y., et al. (2005). Biochemical and molecular characterization of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family. J. Biol. Chem. 280 23084–23093. 10.1074/jbc.M413438200 PubMed DOI
Šebela M., Brauner F., Radová A., Jacobsen S., Havliš J., Galuszka P., et al. (2000). Characterisation of a homogeneous plant aminoaldehyde dehydrogenase. Biochim. Biophys. Acta 1480 329–341. 10.1016/S0167-4838(00)00086-8 PubMed DOI
Šebela M., Štosová T., Havliš J., Wielsch N., Thomas H., Zdráhal Z., et al. (2006). Thermostable trypsin conjugates for high-throughput proteomics: synthesis and performance evaluation. Proteomics 6 2959–2963. 10.1002/pmic.200500576 PubMed DOI
Shine W. E., Loomis W. D. (1974). Isomerization of geraniol and geranyl phosphate by enzymes from carrot and peppermint. Phytochemistry 13 2095–2101. 10.1016/0031-9422(74)85009-0 DOI
Šmehilová M., Galuszka P., Bilyeu K. D., Jaworek P., Kowalska M., Šebela M., et al. (2009). Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. J. Exp. Bot. 60 2701–2712. 10.1093/jxb/erp126 PubMed DOI
Spanò D., Pintus F., Pes R., Medda R., Floris G. (2011). Purification and characterisation of a soluble nucleotide pyrophosphatase/phosphodiesterase from prickly pear (Opuntia ficus indica) fruits. Food Res. Int. 44 2264–2270. 10.1016/j.foodres.2010.09.005 DOI
Stefan C., Jansen S., Bollen M. (2005). NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem. Sci. 30 542–550. 10.1016/j.tibs.2005.08.005 PubMed DOI
Suttle J. C., Banowetz G. M. (2000). Changes in cis-zeatin and cis-zeatin riboside levels and biological activity during potato tuber dormancy. Physiol. Plant. 109 68–74. 10.1034/j.1399-3054.2000.100110.x DOI
Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., et al. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8 17 10.1186/1746-4811-8-17 PubMed DOI PMC
Takei K., Yamaya T., Sakakibara H. (2004). Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J. Biol. Chem. 279 41866–41872. 10.1074/jbc.M406337200 PubMed DOI
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 2725–2729. 10.1093/molbev/mst197 PubMed DOI PMC
Thompson J., Higgins D., Gibson T. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 4673–4680. 10.1093/nar/22.22.4673 PubMed DOI PMC
Trdá L., Barešová M., Šašek V., Nováková M., Zahajská L., Dobrev P. I., et al. (2017). Cytokinin metabolism of pathogenic fungus Leptosphaeria maculans involves isopentenyltransferase, adenosine kinase and cytokinin oxidase/dehydrogenase. Front. Microbiol. 8:1374 10.3389/fmicb.2017.01374 PubMed DOI PMC
Veach Y. K., Martin R. C., Mok D. W. S., Malbeck J., Vaňková R., Mok M. C. (2003). O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol. 131 1374–1380. 10.1104/pp.017210 PubMed DOI PMC
Werner T., Schmülling T. (2009). Cytokinin action in plant development. Curr. Opin. Plant Biol. 12 527–538. 10.1016/j.pbi.2009.07.002 PubMed DOI
Wu J., Liu F., Nilsson Å., Duan R.-D. (2004). Pancreatic trypsin cleaves intestinal alkaline sphingomyelinase from mucosa and enhances the sphingomyelinase activity. Am. J. Physiol. Gastrointest. Liver Physiol. 287 G967–G973. 10.1152/ajpgi.00190.2004 PubMed DOI
Yonekura-Sakakibara K., Kojima M., Yamaya T., Sakakibara H. (2004). Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 134 1654–1661. 10.1104/pp.103.037176 PubMed DOI PMC
Zimmermann H., Zebisch M., Sträter N. (2012). Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 8 437–502. 10.1007/s11302-012-9309-4 PubMed DOI PMC