Differential Subcellular Distribution of Cytokinins: How Does Membrane Transport Fit into the Big Picture?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33810428
PubMed Central
PMC8037549
DOI
10.3390/ijms22073428
PII: ijms22073428
Knihovny.cz E-zdroje
- Klíčová slova
- ABCG14, AZG1, AZG2, PUP14, cytokinin distribution, cytokinin hydrophobicity, cytokinin transport, membrane transport,
- MeSH
- Arabidopsis metabolismus MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- cytokininy metabolismus MeSH
- homeostáza MeSH
- hydrofobní a hydrofilní interakce MeSH
- kinetika MeSH
- kořeny rostlin metabolismus MeSH
- membránové transportní proteiny metabolismus MeSH
- proteiny huseníčku genetika MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- signální transdukce fyziologie MeSH
- termodynamika MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokininy MeSH
- membránové transportní proteiny MeSH
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH
Cytokinins are a class of phytohormones, signalling molecules specific to plants. They act as regulators of diverse physiological processes in complex signalling pathways. It is necessary for plants to continuously regulate cytokinin distribution among different organs, tissues, cells, and compartments. Such regulatory mechanisms include cytokinin biosynthesis, metabolic conversions and degradation, as well as cytokinin membrane transport. In our review, we aim to provide a thorough picture of the latter. We begin by summarizing cytokinin structures and physicochemical properties. Then, we revise the elementary thermodynamic and kinetic aspects of cytokinin membrane transport. Next, we review which membrane-bound carrier proteins and protein families recognize cytokinins as their substrates. Namely, we discuss the families of "equilibrative nucleoside transporters" and "purine permeases", which translocate diverse purine-related compounds, and proteins AtPUP14, AtABCG14, AtAZG1, and AtAZG2, which are specific to cytokinins. We also address long-distance cytokinin transport. Putting all these pieces together, we finally discuss cytokinin distribution as a net result of these processes, diverse in their physicochemical nature but acting together to promote plant fitness.
Department of Biochemistry Faculty of Science Charles University 128 00 Prague Czech Republic
The Czech Academy of Sciences Institute of Experimental Botany 165 02 Prague Czech Republic
Zobrazit více v PubMed
Schaller G.E., Bishopp A., Kieber J.J. The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. Plant Cell. 2015;27:44–63. doi: 10.1105/tpc.114.133595. PubMed DOI PMC
Kieber J.J., Schaller G.E. Cytokinin Signaling in Plant Development. Development. 2018;145:dev149344. doi: 10.1242/dev.149344. PubMed DOI
Skalický V., Kubeš M., Napier R., Novák O. Auxins and Cytokinins—The Role of Subcellular Organization on Homeostasis. Int. J. Mol. Sci. 2018;19:3115. doi: 10.3390/ijms19103115. PubMed DOI PMC
Akiyoshi D.E., Klee H., Amasino R.M., Nester E.W., Gordon M.P. T-DNA of Agrobacterium Tumefaciens Encodes an Enzyme of Cytokinin Biosynthesis. Proc. Natl. Acad. Sci. USA. 1984;81:5994–5998. doi: 10.1073/pnas.81.19.5994. PubMed DOI PMC
Kieber J.J., Schaller G.E. Cytokinins. Arab. Book. 2014;12:e0168. doi: 10.1199/tab.0168. PubMed DOI PMC
Takei K., Yamaya T., Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 Encode Cytokinin Hydroxylases That Catalyze the Biosynthesis of Trans-Zeatin. J. Biol. Chem. 2004;279:41866–41872. doi: 10.1074/jbc.M406337200. PubMed DOI
Lomin S.N., Krivosheev D.M., Steklov M.Y., Arkhipov D.V., Osolodkin D.I., Schmülling T., Romanov G.A. Plant Membrane Assays with Cytokinin Receptors Underpin the Unique Role of Free Cytokinin Bases as Biologically Active Ligands. J. Exp. Bot. 2015;66:1851–1863. doi: 10.1093/jxb/eru522. PubMed DOI PMC
Chen C.-M., Kristopeit S.M. Metabolism of Cytokinin: Dephosphorylation of Cytokinin Ribonucleotide by 5′-Nucleotidases from Wheat Germ Cytosol. Plant Physiol. 1981;67:494–498. doi: 10.1104/pp.67.3.494. PubMed DOI PMC
Chen C.-M., Kristopeit S.M. Metabolism of Cytokinin: Deribosylation of Cytokinin Ribonucleoside by Adenosine Nucleosidase from Wheat Germ Cells. Plant Physiol. 1981;68:1020–1023. doi: 10.1104/pp.68.5.1020. PubMed DOI PMC
Kurakawa T., Ueda N., Maekawa M., Kobayashi K., Kojima M., Nagato Y., Sakakibara H., Kyozuka J. Direct Control of Shoot Meristem Activity by a Cytokinin-Activating Enzyme. Nature. 2007;445:652–655. doi: 10.1038/nature05504. PubMed DOI
Kuroha T., Tokunaga H., Kojima M., Ueda N., Ishida T., Nagawa S., Fukuda H., Sugimoto K., Sakakibara H. Functional Analyses of LONELY GUY Cytokinin-Activating Enzymes Reveal the Importance of the Direct Activation Pathway in Arabidopsis. Plant Cell. 2009;21:3152–3169. doi: 10.1105/tpc.109.068676. PubMed DOI PMC
Tokunaga H., Kojima M., Kuroha T., Ishida T., Sugimoto K., Kiba T., Sakakibara H. Arabidopsis Lonely Guy (LOG) Multiple Mutants Reveal a Central Role of the LOG-Dependent Pathway in Cytokinin Activation. Plant J. 2012;69:355–365. doi: 10.1111/j.1365-313X.2011.04795.x. PubMed DOI
Galuszka P., Frébort I., Šebela M., Sauer P., Jacobsen S., Peč P. Cytokinin Oxidase or Dehydrogenase? Eur. J. Biochem. 2001;268:450–461. doi: 10.1046/j.1432-1033.2001.01910.x. PubMed DOI
Schmülling T., Werner T., Riefler M., Krupková E., Bartrina y Manns I. Structure and Function of Cytokinin Oxidase/Dehydrogenase Genes of Maize, Rice, Arabidopsis and Other Species. J. Plant Res. 2003;116:241–252. doi: 10.1007/s10265-003-0096-4. PubMed DOI
Hou B., Lim E.-K., Higgins G.S., Bowles D.J. N-Glucosylation of Cytokinins by Glycosyltransferases of Arabidopsis Thaliana. J. Biol. Chem. 2004;279:47822–47832. doi: 10.1074/jbc.M409569200. PubMed DOI
Brzobohatý B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J., Palme K. Release of Active Cytokinin by a Beta-Glucosidase Localized to the Maize Root Meristem. Science. 1993;262:1051–1054. doi: 10.1126/science.8235622. PubMed DOI
Hošek P., Hoyerová K., Kiran N.S., Dobrev P.I., Zahajská L., Filepová R., Motyka V., Müller K., Kamínek M. Distinct Metabolism of N-Glucosides of Isopentenyladenine and Trans-Zeatin Determines Cytokinin Metabolic Spectrum in Arabidopsis. New Phytol. 2020;225:2423–2438. doi: 10.1111/nph.16310. PubMed DOI
Vylíčilová H., Bryksová M., Matušková V., Doležal K., Plíhalová L., Strnad M. Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back. Biomolecules. 2020;10:832. doi: 10.3390/biom10060832. PubMed DOI PMC
Romanov G.A., Lomin S.N., Schmülling T. Cytokinin Signaling: From the ER or from the PM? That is the Question! New Phytol. 2018;218:41–53. doi: 10.1111/nph.14991. PubMed DOI
Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi M., Kato T., Tabata S., Shinozaki K., Kakimoto T. Identification of CRE1 as a Cytokinin Receptor from Arabidopsis. Nature. 2001;409:1060–1063. doi: 10.1038/35059117. PubMed DOI
Ueguchi C., Koizumi H., Suzuki T., Mizuno T. Novel Family of Sensor Histidine Kinase Genes in Arabidopsis Thaliana. Plant Cell Physiol. 2001;42:231–235. doi: 10.1093/pcp/pce015. PubMed DOI
Kim H.J., Ryu H., Hong S.H., Woo H.R., Lim P.O., Lee I.C., Sheen J., Nam H.G., Hwang I. Cytokinin-Mediated Control of Leaf Longevity by AHK3 through Phosphorylation of ARR2 in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2006;103:814–819. doi: 10.1073/pnas.0505150103. PubMed DOI PMC
Caesar K., Thamm A.M.K., Witthöft J., Elgass K., Huppenberger P., Grefen C., Horak J., Harter K. Evidence for the Localization of the Arabidopsis Cytokinin Receptors AHK3 and AHK4 in the Endoplasmic Reticulum. J. Exp. Bot. 2011;62:5571–5580. doi: 10.1093/jxb/err238. PubMed DOI PMC
Wulfetange K., Lomin S.N., Romanov G.A., Stolz A., Heyl A., Schmülling T. The Cytokinin Receptors of Arabidopsis are Located Mainly to the Endoplasmic Reticulum. Plant Physiol. 2011;156:1808–1818. doi: 10.1104/pp.111.180539. PubMed DOI PMC
Lomin S.N., Myakushina Y.A., Arkhipov D.V., Leonova O.G., Popenko V.I., Schmülling T., Romanov G.A. Studies of Cytokinin Receptor-Phosphotransmitter Interaction Provide Evidences for the Initiation of Cytokinin Signalling in the Endoplasmic Reticulum. Funct. Plant Biol. 2018;45:192–202. doi: 10.1071/FP16292. PubMed DOI
Antoniadi I., Novák O., Gelová Z., Johnson A., Plíhal O., Simerský R., Mik V., Vain T., Mateo-Bonmatí E., Karady M., et al. Cell-Surface Receptors Enable Perception of Extracellular Cytokinins. Nat. Commun. 2020;11:4284. doi: 10.1038/s41467-020-17700-9. PubMed DOI PMC
Kubiasová K., Montesinos J.C., Šamajová O., Nisler J., Mik V., Semerádová H., Plíhalová L., Novák O., Marhavý P., Cavallari N., et al. Cytokinin Fluoroprobe Reveals Multiple Sites of Cytokinin Perception at Plasma Membrane and Endoplasmic Reticulum. Nat. Commun. 2020;11:4285. doi: 10.1038/s41467-020-17949-0. PubMed DOI PMC
Zürcher E., Liu J., di Donato M., Geisler M., Müller B. Plant Development Regulated by Cytokinin Sinks. Science. 2016;353:1027–1030. doi: 10.1126/science.aaf7254. PubMed DOI
Hluska T., Hlusková L., Emery R.J. The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules. 2021;11:209. doi: 10.3390/biom11020209. PubMed DOI PMC
Kieber J.J. Cytokinins: Regulators of Cell Division. In: Taiz L., Zeiger E., editors. Plant Physiology. Sinauer Associates, Inc.; Sunderland, MA, USA: 2002. pp. 493–517.
Spíchal L. Cytokinins—Recent News and Views of Evolutionally Old Molecules. Funct. Plant Biol. 2012;39:267–284. doi: 10.1071/FP11276. PubMed DOI
Nedvěd D. Master’s Thesis. Charles University; Prague, Czech Republic: 2020. Transport and Metabolism of Radio-Labelled Cytokinins in Plant Cells and Tissues.
Vickers C.E., Bongers M., Liu Q., Delatte T., Bouwmeester H. Metabolic Engineering of Volatile Isoprenoids in Plants and Microbes. Plant Cell Environ. 2014;37:1753–1775. doi: 10.1111/pce.12316. PubMed DOI
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P.I., Galuszka P., Klíma P., Gaudinová A., Žižková E., et al. Distribution, Biological Activities, Metabolism, and the Conceivable Function of Cis-Zeatin-Type Cytokinins in Plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI
Heyl A., Riefler M., Romanov G.A., Schmülling T. Properties, Functions and Evolution of Cytokinin Receptors. Eur. J. Cell Biol. 2012;91:246–256. doi: 10.1016/j.ejcb.2011.02.009. PubMed DOI
Bassil N.V., Mok D.W.S., Mok M.C. Partial Purification of a Cis-Trans-Isomerase of Zeatin from Immature Seed of Phaseolus Vulgaris L. Plant Physiol. 1993;102:867–872. doi: 10.1104/pp.102.3.867. PubMed DOI PMC
Hluska T., Šebela M., Lenobel R., Frébort I., Galuszka P. Purification of Maize Nucleotide Pyrophosphatase/Phosphodiesterase Casts Doubt on the Existence of Zeatin Cis–Trans Isomerase in Plants. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.01473. PubMed DOI PMC
Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., Tabata S., Sandberg G., Kakimoto T. Roles of Arabidopsis ATP/ADP Isopentenyltransferases and TRNA Isopentenyltransferases in Cytokinin Biosynthesis. Proc. Natl. Acad. Sci. USA. 2006;103:16598–16603. doi: 10.1073/pnas.0603522103. PubMed DOI PMC
Martin R.C., Mok M.C., Shaw G., Mok D.W.S. An Enzyme Mediating the Conversion of Zeatin to Dihydrozeatin in Phaseolus Embryos. Plant Physiol. 1989;90:1630–1635. doi: 10.1104/pp.90.4.1630. PubMed DOI PMC
Gaudinová A., Dobrev P.I., Šolcová B., Novák O., Strnad M., Friedecký D., Motyka V. The Involvement of Cytokinin Oxidase/Dehydrogenase and Zeatin Reductase in Regulation of Cytokinin Levels in Pea (Pisum Sativum L.) Leaves. J. Plant Growth Regul. 2005;24:188–200. doi: 10.1007/s00344-005-0043-9. DOI
Kolachevskaya O.O., Sergeeva L.I., Floková K., Getman I.A., Lomin S.N., Alekseeva V.V., Rukavtsova E.B., Buryanov Y.I., Romanov G.A. Auxin Synthesis Gene Tms1 Driven by Tuber-Specific Promoter Alters Hormonal Status of Transgenic Potato Plants and Their Responses to Exogenous Phytohormones. Plant Cell Rep. 2017;36:419–435. doi: 10.1007/s00299-016-2091-y. PubMed DOI
Tarkowská D., Doležal K., Tarkowski P., Åstot C., Holub J., Fuksová K., Schmülling T., Sandberg G., Strnad M. Identification of New Aromatic Cytokinins in Arabidopsis Thaliana and Populus × Canadensis Leaves by LC-(+)ESI-MS and Capillary Liquid Chromatography/Frit–Fast Atom Bombardment Mass Spectrometry. Physiol. Plant. 2003;117:579–590. doi: 10.1034/j.1399-3054.2003.00071.x. PubMed DOI
Strnad M. The Aromatic Cytokinins. Physiol. Plant. 1997;101:674–688. doi: 10.1111/j.1399-3054.1997.tb01052.x. DOI
Hluska T., Dobrev P.I., Tarkowská D., Frébortová J., Zalabák D., Kopečný D., Plíhal O., Kokáš F., Briozzo P., Zatloukal M., et al. Cytokinin Metabolism in Maize: Novel Evidence of Cytokinin Abundance, Interconversions and Formation of a New Trans-Zeatin Metabolic Product with a Weak Anticytokinin Activity. Plant Sci. 2016;247:127–137. doi: 10.1016/j.plantsci.2016.03.014. PubMed DOI
Sørensen J.L., Benfield A.H., Wollenberg R.D., Westphal K., Wimmer R., Nielsen M.R., Nielsen K.F., Carere J., Covarelli L., Beccari G., et al. The Cereal Pathogen Fusarium Pseudograminearum Produces a New Class of Active Cytokinins during Infection. Mol. Plant Pathol. 2017;19:1140–1154. doi: 10.1111/mpp.12593. PubMed DOI PMC
Haidoune M., Mornet R., Laloue M. Synthesis of 6-(3-Methylpyrrol-1-Yl)-9-β-D-Ribofuranosyl Purine, a Novel Metabolite of Zeatin Riboside. Tetrahedron Lett. 1990;31:1419–1422. doi: 10.1016/S0040-4039(00)88821-8. DOI
Mok M.C., Martin R.C., Dobrev P.I., Vanková R., Ho P.S., Yonekura-Sakakibara K., Sakakibara H., Mok D.W.S. Topolins and Hydroxylated Thidiazuron Derivatives are Substrates of Cytokinin O-Glucosyltransferase with Position Specificity Related to Receptor Recognition. Plant Physiol. 2005;137:1057–1066. doi: 10.1104/pp.104.057174. PubMed DOI PMC
Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., Köllmer I., Schmülling T., Frébort I. Biochemical Characterization of Cytokinin Oxidases/Dehydrogenases from Arabidopsis Thaliana Expressed in Nicotiana Tabacum L. J. Plant Growth Regul. 2007;26:255–267. doi: 10.1007/s00344-007-9008-5. DOI
Evidente A., Fujii T., Iacobellis N.S., Riva S., Sisto A., Surico G. Structure-Activity Relationships of Zeatin Cytokinins Produced by Plant PathogenicPseudomonades. Phytochemistry. 1991;30:3505–3510. doi: 10.1016/0031-9422(91)80055-6. DOI
Pertry I., Václavíková K., Depuydt S., Galuszka P., Spíchal L., Temmerman W., Stes E., Schmülling T., Kakimoto T., Montagu M.C.E.V., et al. Identification of Rhodococcus Fascians Cytokinins and Their Modus Operandi to Reshape the Plant. Proc. Natl. Acad. Sci. USA. 2009;106:929–934. doi: 10.1073/pnas.0811683106. PubMed DOI PMC
Radhika V., Ueda N., Tsuboi Y., Kojima M., Kikuchi J., Kudo T., Sakakibara H. Methylated Cytokinins from the Phytopathogen Rhodococcus Fascians Mimic Plant Hormone Activity. Plant Physiol. 2015;169:1118–1126. doi: 10.1104/pp.15.00787. PubMed DOI PMC
Gibb M., Kisiala A.B., Morrison E.N., Emery R.J.N. The Origins and Roles of Methylthiolated Cytokinins: Evidence from Among Life Kingdoms. Front. Cell Dev. Biol. 2020;8:605672. doi: 10.3389/fcell.2020.605672. PubMed DOI PMC
Oshchepkov M.S., Kalistratova A.V., Savelieva E.M., Romanov G.A., Bystrova N.A., Kochetkov K.A. Natural and Synthetic Cytokinins and Their Applications in Biotechnology, Agrochemistry and Medicine. Russ. Chem. Rev. 2020;89:787. doi: 10.1070/RCR4921. DOI
Wildman S.A., Crippen G.M. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999;39:868–873. doi: 10.1021/ci990307l. DOI
Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., Novák O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC
Buchanan B.B., Gruissem W., Jones R.L., editors. Biochemistry & Molecular Biology of Plants. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2015.
Chen W., Gai Y., Liu S., Wang R., Jiang X. Quantitative Analysis of Cytokinins in Plants by High Performance Liquid Chromatography: Electronspray Ionization Ion Trap Mass Spectrometry. J. Integr. Plant Biol. 2010;52:925–932. doi: 10.1111/j.1744-7909.2010.00989.x. PubMed DOI
Dobrev P.I., Hoyerová K., Petrášek J. Analytical Determination of Auxins and Cytokinins. In: Dandekar T., Naseem M., editors. Auxins and Cytokinins in Plant Biology. Volume 1569. Methods in Molecular Biology; Springer; New York, NY, USA: 2017. pp. 31–39. PubMed
Hoyerová K., Gaudinová A., Malbeck J., Dobrev P.I., Kocábek T., Šolcová B., Trávníčková A., Kamínek M. Efficiency of Different Methods of Extraction and Purification of Cytokinins. Phytochemistry. 2006;67:1151–1159. doi: 10.1016/j.phytochem.2006.03.010. PubMed DOI
Gillissen B., Bürkle L., André B., Kühn C., Rentsch D., Brandl B., Frommer W.B. A New Family of High-Affinity Transporters for Adenine, Cytosine, and Purine Derivatives in Arabidopsis. Plant Cell. 2000;12:291–300. doi: 10.1105/tpc.12.2.291. PubMed DOI PMC
Bürkle L., Cedzich A., Döpke C., Stransky H., Okumoto S., Gillissen B., Kühn C., Frommer W.B. Transport of Cytokinins Mediated by Purine Transporters of the PUP Family Expressed in Phloem, Hydathodes, and Pollen of Arabidopsis. Plant J. 2003;34:13–26. doi: 10.1046/j.1365-313X.2003.01700.x. PubMed DOI
Sun J., Hirose N., Wang X., Wen P., Xue L., Sakakibara H., Zuo J. Arabidopsis SOI33/AtENT8 Gene Encodes a Putative Equilibrative Nucleoside Transporter That is Involved in Cytokinin Transport In Planta. J. Integr. Plant Biol. 2005;47:588–603. doi: 10.1111/j.1744-7909.2005.00104.x. DOI
Spíchal L., Rakova N.Y., Riefler M., Mizuno T., Romanov G.A., Strnad M., Schmülling T. Two Cytokinin Receptors of Arabidopsis Thaliana, CRE1/AHK4 and AHK3, Differ in Their Ligand Specificity in a Bacterial Assay. Plant Cell Physiol. 2004;45:1299–1305. doi: 10.1093/pcp/pch132. PubMed DOI
Yonekura-Sakakibara K., Kojima M., Yamaya T., Sakakibara H. Molecular Characterization of Cytokinin-Responsive Histidine Kinases in Maize. Differential Ligand Preferences and Response to Cis-Zeatin. Plant Physiol. 2004;134:1654–1661. doi: 10.1104/pp.103.037176. PubMed DOI PMC
Lomin S.N., Krivosheev D.M., Steklov M.Y., Osolodkin D.I., Romanov G.A. Receptor Properties and Features of Cytokinin Signaling. Acta Nat. 2012;4:31–45. doi: 10.32607/20758251-2012-4-3-31-45. PubMed DOI PMC
Hirose N., Makita N., Yamaya T., Sakakibara H. Functional Characterization and Expression Analysis of a Gene, OsENT2, Encoding an Equilibrative Nucleoside Transporter in Rice Suggest a Function in Cytokinin Transport. Plant Physiol. 2005;138:196–206. doi: 10.1104/pp.105.060137. PubMed DOI PMC
Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. Regulation of Cytokinin Biosynthesis, Compartmentalization and Translocation. J. Exp. Bot. 2008;59:75–83. doi: 10.1093/jxb/erm157. PubMed DOI
Qi Z., Xiong L. Characterization of a Purine Permease Family Gene OsPUP7 Involved in Growth and Development Control in Rice. J. Integr. Plant Biol. 2013;55:1119–1135. doi: 10.1111/jipb.12101. PubMed DOI
Dobrev P.I., Kamínek M. Fast and Efficient Separation of Cytokinins from Auxin and Abscisic Acid and Their Purification Using Mixed-Mode Solid-Phase Extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI
Jiskrová E., Novák O., Pospíšilová H., Holubová K., Karády M., Galuszka P., Robert S., Frébort I. Extra- and Intracellular Distribution of Cytokinins in the Leaves of Monocots and Dicots. New Biotechnol. 2016;33:735–742. doi: 10.1016/j.nbt.2015.12.010. PubMed DOI
Beveridge C.A., Murfet I.C., Kerhoas L., Sotta B., Miginiac E., Rameau C. The Shoot Controls Zeatin Riboside Export from Pea Roots. Evidence from the Branching Mutant Rms4. Plant J. 1997;11:339–345. doi: 10.1046/j.1365-313X.1997.11020339.x. DOI
Kuroha T., Kato H., Asami T., Yoshida S., Kamada H., Satoh S. A Trans-zeatin Riboside in Root Xylem Sap Negatively Regulates Adventitious Root Formation on Cucumber Hypocotyls. J. Exp. Bot. 2002;53:2193–2200. doi: 10.1093/jxb/erf077. PubMed DOI
Takei K., Sakakibara H., Taniguchi M., Sugiyama T. Nitrogen-Dependent Accumulation of Cytokinins in Root and TheTranslocation to Leaf: Implication of Cytokinin Species That Induces GeneExpression of Maize ResponseRegulator. Plant Cell Physiol. 2001;42:85–93. doi: 10.1093/pcp/pce009. PubMed DOI
Corbesier L., Prinsen E., Jacqmard A., Lejeune P., van Onckelen H., Périlleux C., Bernier G. Cytokinin Levels in Leaves, Leaf Exudate and Shoot Apical Meristem of Arabidopsis Thaliana during Floral Transition. J. Exp. Bot. 2003;54:2511–2517. doi: 10.1093/jxb/erg276. PubMed DOI
Jin S.-H., Ma X.-M., Kojima M., Sakakibara H., Wang Y.-W., Hou B.-K. Overexpression of Glucosyltransferase UGT85A1 Influences Trans-Zeatin Homeostasis and Trans-Zeatin Responses Likely through O-Glucosylation. Planta. 2013;237:991–999. doi: 10.1007/s00425-012-1818-4. PubMed DOI
Šmehilová M., Dobrůšková J., Novák O., Takáč T., Galuszka P. Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.01264. PubMed DOI PMC
Benková E., Witters E., Dongen W.V., Kolar J., Motyka V., Brzobohatý B., Onckelen H.A.V., Machácková I. Cytokinins in Tobacco and Wheat Chloroplasts. Occurrence and Changes Due to Light/Dark Treatment. Plant Physiol. 1999;121:245–252. doi: 10.1104/pp.121.1.245. PubMed DOI PMC
Galbraith D., Loureiro J., Antoniadi I., Bainard J., Bureš P., Cápal P., Castro M., Castro S., Čertner M., Čertnerová D., et al. Best Practices in Plant Cytometry. Cytom. Part. A. 2021:1–7. doi: 10.1002/cyto.a.24295. PubMed DOI
Wilkens S. Structure and Mechanism of ABC Transporters. F1000Prime Rep. 2015;7 doi: 10.12703/P7-14. PubMed DOI PMC
Kang J., Park J., Choi H., Burla B., Kretzschmar T., Lee Y., Martinoia E. Plant ABC Transporters. Arab. Book. 2011;9 doi: 10.1199/tab.0153. PubMed DOI PMC
Girke C., Daumann M., Niopek-Witz S., Möhlmann T. Nucleobase and Nucleoside Transport and Integration into Plant Metabolism. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00443. PubMed DOI PMC
Paul A., Laurila T., Vuorinen V., Divinski S.V. Fick’s Laws of Diffusion. In: Paul A., Laurila T., Vuorinen V., Divinski S.V., editors. Thermodynamics, Diffusion and the Kirkendall Effect in Solids. Springer International Publishing; Cham, Switzerland: 2014. pp. 115–139.
El-Showk S., Help-Rinta-Rahko H., Blomster T., Siligato R., Marée A.F.M., Mähönen A.P., Grieneisen V.A. Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, While Cytokinin Levels Out. PLoS Comput. Biol. 2015;11:e1004450. doi: 10.1371/journal.pcbi.1004450. PubMed DOI PMC
Hošek P., Kubeš M., Laňková M., Dobrev P.I., Klíma P., Kohoutová M., Petrášek J., Hoyerová K., Jiřina M., Zažímalová E. Auxin Transport at Cellular Level: New Insights Supported by Mathematical Modelling. J. Exp. Bot. 2012;63:3815–3827. doi: 10.1093/jxb/ers074. PubMed DOI PMC
Moore S., Zhang X., Mudge A., Rowe J.H., Topping J.F., Liu J., Lindsey K. Spatiotemporal Modelling of Hormonal Crosstalk Explains the Level and Patterning of Hormones and Gene Expression in Arabidopsis Thaliana Wild-Type and Mutant Roots. New Phytol. 2015;207:1110–1122. doi: 10.1111/nph.13421. PubMed DOI PMC
Zažímalová E., Murphy A.S., Yang H., Hoyerová K., Hošek P. Auxin Transporters—Why So Many? Cold Spring Harb. Perspect. Biol. 2010;2:a001552. doi: 10.1101/cshperspect.a001552. PubMed DOI PMC
Kramer E.M. How Far Can a Molecule of Weak Acid Travel in the Apoplast or Xylem? Plant Physiol. 2006;141:1233–1236. doi: 10.1104/pp.106.083790. PubMed DOI PMC
Wormit A., Traub M., Flörchinger M., Neuhaus H.E., Möhlmann T. Characterization of Three Novel Members of the Arabidopsis Thaliana Equilibrative Nucleoside Transporter (ENT) Family. Biochem. J. 2004;383:19–26. doi: 10.1042/BJ20040389. PubMed DOI PMC
Michaelis L., Menten M.L. Die Kinetik Der Invertinwirkung. Biochemische Zeitschrift. 1913;49:333–369.
Johnson K.A., Goody R.S. The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper. Biochemistry. 2011;50:8264–8269. doi: 10.1021/bi201284u. PubMed DOI PMC
Li J., Wang D. Cloning and in Vitro Expression of the CDNA Encoding a Putative Nucleoside Transporter from Arabidopsis Thaliana. Plant Sci. 2000;157:23–32. doi: 10.1016/S0168-9452(00)00261-2. PubMed DOI
Möhlmann T., Mezher Z., Schwerdtfeger G., Neuhaus H.E. Characterisation of a Concentrative Type of Adenosine Transporter from Arabidopsis Thaliana (ENT1,At) FEBS Lett. 2001;509:370–374. doi: 10.1016/S0014-5793(01)03195-7. PubMed DOI
Bernard C., Traub M., Kunz H.-H., Hach S., Trentmann O., Möhlmann T. Equilibrative Nucleoside Transporter 1 (ENT1) is Critical for Pollen Germination and Vegetative Growth in Arabidopsis. J. Exp. Bot. 2011;62:4627–4637. doi: 10.1093/jxb/err183. PubMed DOI PMC
Girke C., Arutyunova E., Syed M., Traub M., Möhlmann T., Lemieux M.J. High Yield Expression and Purification of Equilibrative Nucleoside Transporter 7 (ENT7) from Arabidopsis Thaliana. Biochim. Biophys. Acta BBA Gen. Subj. 2015;1850:1921–1929. doi: 10.1016/j.bbagen.2015.06.003. PubMed DOI
Li G., Liu K., Baldwin S.A., Wang D. Equilibrative Nucleoside Transporters of Arabidopsis Thaliana: CDNA Cloning, Expression Pattern, and Analysis of Transport Activities. J. Biol. Chem. 2003;278:35732–35742. doi: 10.1074/jbc.M304768200. PubMed DOI
Traub M., Flörchinger M., Piecuch J., Kunz H., Weise-Steinmetz A., Deitmer Joachim W., Ekkehard Neuhaus H., Möhlmann T. The Fluorouridine Insensitive 1 (Fur1) Mutant is Defective in Equilibrative Nucleoside Transporter 3 (ENT3), and Thus Represents an Important Pyrimidine Nucleoside Uptake System in Arabidopsis Thaliana. Plant J. 2007;49:855–864. doi: 10.1111/j.1365-313X.2006.02998.x. PubMed DOI
Boswell-Casteel R.C., Hays F.A. Equilibrative Nucleoside Transporters—A Review. Nucleosides Nucleotides Nucleic Acids. 2017;36:7–30. doi: 10.1080/15257770.2016.1210805. PubMed DOI PMC
Young J.D., Yao S.Y.M., Baldwin J.M., Cass C.E., Baldwin S.A. The Human Concentrative and Equilibrative Nucleoside Transporter Families, SLC28 and SLC29. Mol. Asp. Med. 2013;34:529–547. doi: 10.1016/j.mam.2012.05.007. PubMed DOI
Hildreth S.B., Gehman E.A., Yang H., Lu R.-H., Ritech C.K., Harich K.C., Yu S., Lin J., Sandoe J.L., Okumoto S., et al. Tobacco Nicotine Uptake Permease (NUP1) Affects Alkaloid Metabolism. Proc. Natl. Acad. Sci. USA. 2011;108:18179–18184. doi: 10.1073/pnas.1108620108. PubMed DOI PMC
Cedzich A., Stransky H., Schulz B., Frommer W.B. Characterization of Cytokinin and Adenine Transport in Arabidopsis Cell Cultures. Plant Physiol. 2008;148:1857–1867. doi: 10.1104/pp.108.128454. PubMed DOI PMC
Durán-Medina Y., Díaz-Ramírez D., Marsch-Martínez N. Cytokinins on the Move. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00146. PubMed DOI PMC
Liu C.-J., Zhao Y., Zhang K. Cytokinin Transporters: Multisite Players in Cytokinin Homeostasis and Signal Distribution. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.00693. PubMed DOI PMC
Szydlowski N., Bürkle L., Pourcel L., Moulin M., Stolz J., Fitzpatrick T.B. Recycling of Pyridoxine (Vitamin B6) by PUP1 in Arabidopsis. Plant J. 2013;75:40–52. doi: 10.1111/tpj.12195. PubMed DOI
Xiao Y., Liu D., Zhang G., Gao S., Liu L., Xu F., Che R., Wang Y., Tong H., Chu C. Big Grain3, Encoding a Purine Permease, Regulates Grain Size via Modulating Cytokinin Transport in Rice. J. Integr. Plant Biol. 2019;61:581–597. doi: 10.1111/jipb.12727. PubMed DOI
Xiao Y., Zhang J., Yu G., Lu X., Mei W., Deng H., Zhang G., Chen G., Chu C., Tong H., et al. Endoplasmic Reticulum-Localized PURINE PERMEASE1 Regulates Plant Height and Grain Weight by Modulating Cytokinin Distribution in Rice. Front. Plant Sci. 2020;11 doi: 10.3389/fpls.2020.618560. PubMed DOI PMC
Zürcher E., Tavor-Deslex D., Lituiev D., Enkerli K., Tarr P.T., Müller B. A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin Signaling Network in Planta. Plant Physiol. 2013;161:1066–1075. doi: 10.1104/pp.112.211763. PubMed DOI PMC
Ko D., Kang J., Kiba T., Park J., Kojima M., Do J., Kim K.Y., Kwon M., Endler A., Song W.-Y., et al. Arabidopsis ABCG14 Is Essential for the Root-to-Shoot Translocation of Cytokinin. Proc. Natl. Acad. Sci. USA. 2014;111:7150–7155. doi: 10.1073/pnas.1321519111. PubMed DOI PMC
Le Hir R., Sorin C., Chakraborti D., Moritz T., Schaller H., Tellier F., Robert S., Morin H., Bako L., Bellini C. ABCG9, ABCG11 and ABCG14 ABC Transporters are Required for Vascular Development in Arabidopsis. Plant J. 2013;76:811–824. doi: 10.1111/tpj.12334. PubMed DOI
Zhang K., Novak O., Wei Z., Gou M., Zhang X., Yu Y., Yang H., Cai Y., Strnad M., Liu C.-J. Arabidopsis ABCG14 Protein Controls the Acropetal Translocation of Root-Synthesized Cytokinins. Nat. Commun. 2014;5:1–12. doi: 10.1038/ncomms4274. PubMed DOI
Zhao J., Yu N., Ju M., Fan B., Zhang Y., Zhu E., Zhang M., Zhang K. ABC Transporter OsABCG18 Controls the Shootward Transport of Cytokinins and Grain Yield in Rice. J. Exp. Bot. 2019;70:6277–6291. doi: 10.1093/jxb/erz382. PubMed DOI PMC
Mansfield T.A., Schultes N.P., Mourad G.S. AtAzg1 and AtAzg2 Comprise a Novel Family of Purine Transporters in Arabidopsis. FEBS Lett. 2009;583:481–486. doi: 10.1016/j.febslet.2008.12.048. PubMed DOI
Tessi T.M., Brumm S., Winklbauer E., Schumacher B., Pettinari G., Lescano I., González C.A., Wanke D., Maurino V.G., Harter K., et al. Arabidopsis AZG2 Transports Cytokinins in vivo and Regulates Lateral Root Emergence. New Phytol. 2020;229:979–993. doi: 10.1111/nph.16943. PubMed DOI
Tessi T.M., Shahriari M., Maurino V.G., Meissner E., Novak O., Pasternak T., Schumacher B.S., Flubacher N.S., Nautscher M., Williams A., et al. The Auxin Transporter PIN1 and the Cytokinin Transporter AZG1 Interact to Regulate the Root Stress Response. bioRxiv. 2020 doi: 10.1101/2020.10.22.350363. DOI
Faiss M., Zalubilová J., Strnad M., Schmülling T. Conditional Transgenic Expression of the Ipt Gene Indicates a Function for Cytokinins in Paracrine Signaling in Whole Tobacco Plants. Plant J. 1997;12:401–415. doi: 10.1046/j.1365-313X.1997.12020401.x. PubMed DOI
De Rybel B., Adibi M., Breda A.S., Wendrich J.R., Smit M.E., Novák O., Yamaguchi N., Yoshida S., Isterdael G.V., Palovaara J., et al. Integration of Growth and Patterning during Vascular Tissue Formation in Arabidopsis. Science. 2014;345 doi: 10.1126/science.1255215. PubMed DOI
Badenoch-Jones J., Letham D.S., Parker C.W., Rolfe B.G. Quantitation of Cytokinins in Biological Samples Using Antibodies Against Zeatin Riboside. Plant Physiol. 1984;75:1117–1125. doi: 10.1104/pp.75.4.1117. PubMed DOI PMC
Abo-Hamed S., Collin H.A., Hardwick K. Biochemical and Physiological Aspects of Leaf Development in Cocoa (Theobroma Cacao L.) New Phytol. 1984;97:219–225. doi: 10.1111/j.1469-8137.1984.tb04125.x. DOI
Kudoyarova G.R., Korobova A.V., Akhiyarova G.R., Arkhipova T.N., Zaytsev D.Y., Prinsen E., Egutkin N.L., Medvedev S.S., Veselov S.Y. Accumulation of Cytokinins in Roots and Their Export to the Shoots of Durum Wheat Plants Treated with the Protonophore Carbonyl Cyanide M-Chlorophenylhydrazone (CCCP) J. Exp. Bot. 2014;65:2287–2294. doi: 10.1093/jxb/eru113. PubMed DOI PMC
Osugi A., Kojima M., Takebayashi Y., Ueda N., Kiba T., Sakakibara H. Systemic Transport of Trans-Zeatin and Its Precursor Have Differing Roles in Arabidopsis Shoots. Nat. Plants. 2017;3:17112. doi: 10.1038/nplants.2017.112. PubMed DOI
Matsumoto-Kitano M., Kusumoto T., Tarkowski P., Kinoshita-Tsujimura K., Václavíková K., Miyawaki K., Kakimoto T. Cytokinins are Central Regulators of Cambial Activity. Proc. Natl. Acad. Sci. USA. 2008;105:20027–20031. doi: 10.1073/pnas.0805619105. PubMed DOI PMC