Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back

. 2020 May 29 ; 10 (6) : . [epub] 20200529

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32485963

Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007323 European Regional Development Fund - International
IGA_PrF_2020_010 Development of Pre-Applied Research in Nanotechnology and Biotechnology - International

Cytokinins and their sugar or non-sugar conjugates are very active growth-promoting factors in plants, although they occur at very low concentrations. These compounds have been identified in numerous plant species. This review predominantly focuses on 9-substituted adenine-based cytokinin conjugates, both artificial and endogenous, sugar and non-sugar, and their roles in plants. Acquired information about their biological activities, interconversions, and metabolism improves understanding of their mechanisms of action and functions in planta. Although a number of 9-substituted cytokinins occur endogenously, many have also been prepared in laboratories to facilitate the clarification of their physiological roles and the determination of their biological properties. Here, we chart advances in knowledge of 9-substituted cytokinin conjugates from their discovery to current understanding and reciprocal interactions between biological properties and associated structural motifs. Current organic chemistry enables preparation of derivatives with better biological properties, such as improved anti-senescence, strong cell division stimulation, shoot forming, or more persistent stress tolerance compared to endogenous or canonical cytokinins. Many artificial cytokinin conjugates stimulate higher mass production than naturally occurring cytokinins, improve rooting, or simply have high stability or bioavailability. Thus, knowledge of the biosynthesis, metabolism, and activity of 9-substituted cytokinins in various plant species extends the scope for exploiting both natural and artificially prepared cytokinins in plant biotechnology, tissue culture, and agriculture.

Zobrazit více v PubMed

Peleg Z., Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 2011;14:290–295. doi: 10.1016/j.pbi.2011.02.001. PubMed DOI

Liu J., Moore S., Chen C., Lindsey K. Crosstalk Complexities between Auxin, Cytokinin, and Ethylene in Arabidopsis Root Development: From Experiments to Systems Modeling, and Back Again. Mol. Plant. 2017;10:1480–1496. doi: 10.1016/j.molp.2017.11.002. PubMed DOI

Miller C.O., Skoog F., Von Saltza M.H., Strong F.M. Kinetin, a Cell Division Factor from Deoxyribonucleic Acid. J. Am. Chem. Soc. 1955;77:1392. doi: 10.1021/ja01610a105. DOI

Miller C.O., Skoog F., Okumura F.S., Von Saltza M.H., Strong F.M. Isolation, Structure and Synthesis of Kinetin, a Substance Promoting Cell Division. J. Am. Chem. Soc. 1956;78:1375–1380. doi: 10.1021/ja01588a032. DOI

Moyo M., Bairu M.W., Amoo S.O., Van Staden J. Plant biotechnology in South Africa: Micropropagation research endeavours, prospects and challenges. S. Afr. J. Bot. 2011;77:996–1011. doi: 10.1016/j.sajb.2011.06.003. DOI

Barciüewski J., Rattan S.I.S., Siboska G., Clark B.F.C. Kinetin—45 years on. Plant Sci. 1999;148:37–45. doi: 10.1016/S0168-9452(99)00116-8. DOI

Davies P. Plant Hormones: Biosynthesis, Signal Transduction, Action! 3rd ed. Springer; Maastricht, The Netherlands: 2010.

Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 2018;19:4045. doi: 10.3390/ijms19124045. PubMed DOI PMC

Cortleven A., Schmülling T. Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 2015;66:4999–5013. doi: 10.1093/jxb/erv132. PubMed DOI

Werner T., Motyka V., Strnad M., Schmülling T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA. 2001;98:10487–10492. doi: 10.1073/pnas.171304098. PubMed DOI PMC

D’Aloia M., Bonhomme D., Bouché F., Tamseddak K., Ormenese S., Torti S., Coupland G., Périlleux C. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J. 2011;65:972–979. doi: 10.1111/j.1365-313X.2011.04482.x. PubMed DOI

Brandes H., Kende H. Studies on Cytokinin-Controlled Bud Formation in Moss Protonemata. Plant Physiol. 1968;43:827–837. doi: 10.1104/pp.43.5.827. PubMed DOI PMC

Takei K., Sakakibara H., Taniguchi M., Sugiyama T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol. 2001;42:85–93. doi: 10.1093/pcp/pce009. PubMed DOI

Roitsch T., Ehneß R. Regulation of source/sink relations by cytokinins. Plant Growth Regul. 2000;32:359–367. doi: 10.1023/A:1010781500705. DOI

Argueso C.T., Ferreira F.J., Kieber J.J. Environmental perception avenues: The interaction of cytokinin and environmental response pathways. Plant Cell Environ. 2009;32:1147–1160. doi: 10.1111/j.1365-3040.2009.01940.x. PubMed DOI

Sakakibara H. Cytokinins: Activity, Biosynthesis, and Translocation. Annu. Rev. Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI

Osugi A., Sakakibara H. Q and A: How do plants respond to cytokinins and what is their importance? BMC Biol. 2015;13:102. doi: 10.1186/s12915-015-0214-5. PubMed DOI PMC

Schoor S., Farrow S., Blaschke H., Lee S., Perry G., von Schwartzenberg K., Emery N., Moffatt B. Adenosine kinase contributes to cytokinin interconversion in arabidopsis. Plant Physiol. 2011;157:659–672. doi: 10.1104/pp.111.181560. PubMed DOI PMC

Hill K., Schaller G.E. Enhancing plant regeneration in tissue culture. Plant Signal. Behav. 2013;8:e25709. doi: 10.4161/psb.25709. PubMed DOI PMC

Ikeuchi M., Ogawa Y., Iwase A., Sugimoto K. Plant regeneration: Cellular origins and molecular mechanisms. Development. 2006;143:1442–1451. doi: 10.1242/dev.134668. PubMed DOI

Mok D.W.S., Mok M.C. Cytokinin Metabolism and Action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI

Bastos de Almeida W.A., Silva Santana G., Pinheiro Martinelli Rodriguez A., Pereira de Carvalho Costa M.A. Optimization of a protocol for the micropropagation of pineapple. Rev. Bras. Frutic. 2002;24:296–300. doi: 10.1590/S0100-29452002000200005. DOI

Boudabous M., Mars M., Marzougui N., Ferchichi A. Micropropagation of apple (Malus domestica L. cultivar Douce de Djerba) through in vitro culture of axillary buds. Acta Bot. Gall. 2010;157:513–524. doi: 10.1080/12538078.2010.10516227. DOI

Goswami K., Sharma R., Singh P.K., Singh G. Micropropagation of seedless lemon (Citrus limon L. cv. Kaghzi Kalan) and assessment of genetic fidelity of micropropagated plants using RAPD markers. Physiol. Mol. Biol. Plants. 2013;19:137–145. doi: 10.1007/s12298-012-0148-0. PubMed DOI PMC

Peixe A., Raposo A., Lourenço R., Cardoso H., Macedo E. Coconut water and BAP successfully replaced zeatin in olive (Olea europaea L.) micropropagation. Sci. Hortic. 2007;113:1–7. doi: 10.1016/j.scienta.2007.01.011. DOI

Hristova L., Damyanova E., Doichinova Z., Kapchina-Toteva V. Effect Of 6-benzylaminopurine on micropropagation of artemisia chamaemelifolia Vill. (asteraceae) Bulg. J. Agric. Sci. 2013;19:57–60.

Ružić D.V., Vujović T.I. The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.) Hortic. Sci. 2008;35:12–21. doi: 10.17221/646-HORTSCI. DOI

Grendysz J., Danuta K., Jacek W. Influence of micropropagation with addition of kinetin on development of a willow (Salix viminalis L.) World Sci. J. 2017;70:201–215.

Hesar A.A., Kaviani B., Tarang A., Zanjani S.B. Effect of different concentrations of kinetin on regeneration of ten weeks (Matthiola incana) Plant Omics. 2011;4:236–238.

Hanur V.S. In-Vitro Organogenesis in Tomato (Solanum Lycopersicum) Using Kinetin. Adv. Plants Agric. Res. 2016;4:397–401. doi: 10.15406/apar.2016.04.00158. DOI

Lameira O.A., Pinto J. In vitro propagation of Cordia verbenacea (Boraginaceae) Rev. Bras. Plant Med. Botucatu. 2006;8:102–104.

Naing A.H., Kim S.H., Chung M.Y., Park S.K., Kim C.K. In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant Methods. 2019;15:1–10. doi: 10.1186/s13007-019-0421-0. PubMed DOI PMC

Amer A., Omar H. In-vitro propagation of the multipurpose Egyptian medicinal plant Pimpinella anisum. Egypt Pharm. J. 2019;18:254–262. doi: 10.4103/epj.epj_12_19. DOI

Shekhawat M.S., Manokari M., Ravindran C.P. Micropropagation, Micromorphological Studies, and in Vitro Flowering in Rungia pectinata L. Scientifica. 2016 doi: 10.1155/2016/5813851. PubMed DOI PMC

Kelta A., Hajare S.T., Banjaw A. Studies on in vitro Micropropagation in Banana. Int. J. Curr. Microbiol. Appl. Sci. 2018;7:3366–3375. doi: 10.20546/ijcmas.2018.707.392. DOI

Melyan G., Sahakyan A., Harutyunyan A. Micropropagation of grapevine (Vitis vinifera L.) seedless cultivar “Parvana” through lateral bud development. Vitis—J. Grapevine Res. 2015;54:253–255.

Balajaru K., Agastian P., Preetamraj J.P., Arokiyaraj S., Ignacimuthu S. Micropropagation of Vitex agnus-castus, (Verbenaceae)—A valuable medicinal plant. In Vitro Cell. Dev. Biol.—Plant. 2008;44:436–441. doi: 10.1007/sI. DOI

Pelegrini L.L., Ribas L.L.F., Zanette F., Koehler H.S. Micropropagation of Ocotea porosa (Nees & Martius) Barroso. Afr. J. Biotechnol. 2011;10:1527–1533. doi: 10.5897/AJB09.976. DOI

Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., Köllmer I., Schmülling T., Frébort I. Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 2007;26:255–267. doi: 10.1007/s00344-007-9008-5. DOI

Werbrouck S., Strnad M., Onckelen H., Debergh P. Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol. Plant. 1996;98:291–297. doi: 10.1034/j.1399-3054.1996.980210.x. DOI

Podlešáková K., Zalabák D., Čudejková M., Plíhal O., Szüčová L., Doležal K., Spíchal L., Strnad M., Galuszka P. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS ONE. 2012;7:e39293. doi: 10.1371/journal.pone.0039293. PubMed DOI PMC

Bairu M.W., Jain N., Stirk W.A., Doležal K., Van Staden J. Solving the problem of shoot-tip necrosis in Harpagophytum procumbens by changing the cytokinin types, calcium and boron concentrations in the medium. S. Afr. J. Bot. 2009;75:122–127. doi: 10.1016/j.sajb.2008.08.006. DOI

Werbrouck S.P.O., van der Jeugt B., Dewitte W., Prinsen E., Van Onckelen H.A., Debergh P.C. The metabolism of benzyladenine in Spathiphyllum floribundum “Schott Petite” in relation to acclimatisation problems. Plant Cell Rep. 1995;14:662–665. doi: 10.1007/BF00232734. PubMed DOI

Cary A.J., Liu W., Howell S.H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995;107:1075–1082. doi: 10.1104/pp.107.4.1075. PubMed DOI PMC

Doležal K., Popa I., Hauserová E., Spíchal L., Chakrabarty K., Novák O., Kryštof V., Voller J., Holub J., Strnad M. Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorgan. Med. Chem. 2007;15:3737–3747. doi: 10.1016/j.bmc.2007.03.038. PubMed DOI

Vylíčilová H., Husičková A., Spíchal L., Srovnal J., Doležal K., Plíhal O., Plíhalová L. C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. Phytochemistry. 2016;122:22–33. doi: 10.1016/j.phytochem.2015.12.001. PubMed DOI

Plíhalová L., Vylíčilová H., Doležal K., Zahajská L., Zatloukal M., Strnad M. Synthesis of aromatic cytokinins for plant biotechnology. Biotechnol. 2016;33:614–624. doi: 10.1016/j.nbt.2015.11.009. PubMed DOI

Plíhal O., Szüčová L., Galuszka P. N9-substituted aromatic cytokinins with negligible side effects on root development are an emerging tool for in vitro culturing. Plant Signal. Behav. 2013;8:e24392. doi: 10.4161/psb.24392. PubMed DOI PMC

Kieber J.J. Cytokinins. Arabidopsis Book. 2002;1:e0063. doi: 10.1199/tab.0063. PubMed DOI PMC

Letham D.S., Gollnow B. Regulators of cell division in plant tissues. XXX. Cytokinin metabolism in relation to radish cotyledon expansion and senescence. J. Plant Growth Regul. 1985;4:129–145. doi: 10.1007/BF02266951. DOI

Holub J., Hanuš J., Hanke D.E., Strnad M. Biological activity of cytokinins derived from Ortho- and Meta-hydroxybenzyladenine. Plant Growth Regul. 1998;26:109–115. doi: 10.1023/A:1006192619432. DOI

Palni L.M., Summons R., Letham D. Mass Spectrometric Analysis of Cytokinins in Plant Tissues: V. Identification of the Cytokinin Complex of Datura Innoxia Crown Gall Tissue. Plant Physiol. 1983;72:858–863. doi: 10.1104/pp.72.3.858. PubMed DOI PMC

Spíchal L., Rakova N.Y., Riefler M., Mizuno T., Romanov G.A., Strnad M., Schmülling T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004;45:1299–1305. doi: 10.1093/pcp/pch132. PubMed DOI

Hošek P., Hoyerová K., Kiran N.S., Dobrev P.I., Zahajská L., Filepová R., Motyka V., Müller K., Kamínek M. Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol. 2020;225:2423–2438. doi: 10.1111/nph.16310. PubMed DOI

Sayavedra-Soto L.A., Durley R.C., Trione E.J., Morris R.O. Identification of cytokinins in young wheat spikes (Triticum aestivum cv. Chinese Spring) J. Plant Growth Regul. 1988;7:169–178. doi: 10.1007/BF02024680. DOI

Werner T., Hanuš J., Holub J., Schmülling T., Van Onckelen H., Strnad M. New cytokinin metabolites in IPT transgenic Arabidopsis thaliana plants. Physiol. Plant. 2003;118:127–137. doi: 10.1034/j.1399-3054.2003.00094.x. PubMed DOI

Hou B., Lim E.K., Higgins G.S., Bowles D.J. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem. 2004;279:47822–47832. doi: 10.1074/jbc.M409569200. PubMed DOI

Entsch B., Letham D.S. Enzymic glucosylation of the cytokinin, 6-benzylaminopurine. Plant Sci. Lett. 1979;14:205–212. doi: 10.1016/0304-4211(79)90061-0. DOI

Šmehilová M., Dobrůšková J., Novák O., Takáč T., Galuszka P. Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance. Front. Plant Sci. 2016;7:1264. doi: 10.3389/fpls.2016.01264. PubMed DOI PMC

Li Y.J., Wang B., Dong R.R., Hou B.K. AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation. Plant Sci. 2015;236:157–167. doi: 10.1016/j.plantsci.2015.04.002. PubMed DOI

Lao J., Oikawa A., Bromley J.R., McInerney P., Suttangkakul A., Smith-Moritz A.M., Plahar H., Chiu T.Y., González Fernández-Niño S.M., Ebert B., et al. The plant glycosyltransferase clone collection for functional genomics. Plant J. 2014;79:517–529. doi: 10.1111/tpj.12577. PubMed DOI

Wang J., Ma X.M., Kojima M., Sakakibara H., Hou B.K. N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol. 2011;52:2200–2213. doi: 10.1093/pcp/pcr152. PubMed DOI

Wang J., Ma X.M., Kojima M., Sakakibara H., Hou B.K. Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in Arabidopsis thaliana. Plant Physiol. Biochem. 2013;65:9–16. doi: 10.1016/j.plaphy.2013.01.012. PubMed DOI

Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P.I., Galuszka P., Klíma P., Gaudinová A., Žižková E., et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI

Albrecht T., Argueso C.T. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. Ann. Bot. 2017;119:725–735. doi: 10.1093/aob/mcw211. PubMed DOI PMC

Skoog F., Hamzi H.Q., Szweykowska A.M., Leonard N.J., Carraway K.L., Fujii T., Helgeson J.P., Loeppky R.N. Cytokinins: Structure/activity relationships. Phytochemistry. 1967;6:1169–1192. doi: 10.1016/S0031-9422(00)86080-X. DOI

Leonard N.J., Hecht S.M., Skoog F., Schmitz R.Y. Cytokinins: Synthesis, mass spectra, and biological activity of compounds related to zeatin. Biochemistry. 1969;63:175–182. doi: 10.1073/pnas.63.1.175. PubMed DOI PMC

Fleysher M.H. N6-Substituted Adenosines: Synthesis, Biological Activity, and Some Structure-Activity Relationships. J. Med. Chem. 1972;15:187–191. doi: 10.1021/jm00272a015. PubMed DOI

Schmitz R.Y., Skoog F., Playtis A.J., Leonard N.J. Cytokinins: Synthesis and Biological Activity of Geometric and Position Isomers of Zeatin. Plant Physiol. 1972;50:702–705. doi: 10.1104/pp.50.6.702. PubMed DOI PMC

Laloue M., Terrine C., Guern J. Cytokinins: Metabolism and Biological Activity of N6-(Δ2-Isopentenyl)adenosine and N6-(Δ2-Isopentenyl)adenine in Tobacco Cells and Callus. Plant Physiol. 1977;59:478–483. doi: 10.1104/pp.59.3.478. PubMed DOI PMC

Yonekura-Sakakibara K., Kojima M., Yamaya T., Sakakibara H. Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 2004;134:1654–1661. doi: 10.1104/pp.103.037176. PubMed DOI PMC

Kamínek M., Pačes V., Corse J., Challice J. Effect of Stereospecifîc Hydroxylation of N6-(Δ2-Isopentenyl)adenosine on Cytokinin Activity. Planta. 1979;145:239–243. doi: 10.1007/BF00454447. PubMed DOI

Van Staden J., Bayley A.D., Upfold S.J., Drewes F.E. Cytokinins in Cut Carnation Flowers. VIII. Uptake, Transport and Metabolism of Benzyladenine and the Effect of Benzyladenine Derivatives on Flower Longevity. J. Plant Physiol. 1990;135:703–707. doi: 10.1016/S0176-1617(11)80883-7. DOI

Radhika V., Ueda N., Tsuboi Y., Kojima M., Kikuchi J., Kudo T., Sakakibara H. Methylated Cytokinins from the Phytopathogen Rhodococcus fascians Mimic Plant Hormone Activity. Plant Physiol. 2015;169:1118–1126. doi: 10.1104/pp.15.00787. PubMed DOI PMC

Pertry I., Vaclavikova K., Depuydt S., Galuszka P., Spichal L., Temmerman W., Stes E., Schmulling T., Kakimoto T., Van Montagu M.C.E., et al. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc. Natl. Acad. Sci. USA. 2009;106:929–934. doi: 10.1073/pnas.0811683106. PubMed DOI PMC

Pertry I., Vaclavikova K., Gemrotova M., Spichal L., Galuszka P., Depuydt S., Temmerman W., Stes E., De Keyser A., Riefler M., et al. Rhodococcus fascians impacts plant development through the dynamic fas-mediated production of a cytokinin mix. Mol. Plant Microbe Interact. 2010;23:1164–1174. doi: 10.1094/MPMI-23-9-1164. PubMed DOI

Evidente A., Fujii T., Iacobellis N., Riva I.S., Sisto A., Surico G. Structure-activity relationship of zeatin cytokinins produced by plant pathogenic Pseudomonades. Phytochemistry. 1991;30:3505–3510. doi: 10.1016/0031-9422(91)80055-6. DOI

Fujii T., Ohba M., Kawamura H., Nakashio Y., Honda K., Matsubara S. Purines. LXII. Both enantiomers of N6-(1,3-dimethyl-2-butenyl)adenine and their 9-β-D-ribofuranosides: Synthesis and cytokinin activity. Chem. Pharm. Bull. 1994;42:1045–1049. doi: 10.1248/cpb.42.1045. PubMed DOI

Kieber J.J., Schaller G.E. Cytokinin signaling in plant development. Development. 2018;145:1–7. doi: 10.1242/dev.149344. PubMed DOI

Lomin S.N., Krivosheev D.M., Steklov M.Y., Osolodkin D.I., Romanov G.A. Receptor Properties and Features of Cytokinin Signaling. Acta Nat. 2012;4:31–45. doi: 10.32607/20758251-2012-4-3-31-45. PubMed DOI PMC

Osugi A., Kojima M., Takebayashi Y., Ueda N., Kiba T., Sakakibara H. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat. Plants. 2017;3:17112. doi: 10.1038/nplants.2017.112. PubMed DOI

Silva-Navas J., Conesa C.M., Saez A., Navarro-Neila S., Garcia-Mina J.M., Zamarreño A.M., Baigorri R., Swarup R., del Pozo J.C. Role of cis-zeatin in root responses to phosphate starvation. New Phytol. 2019;224:242–257. doi: 10.1111/nph.16020. PubMed DOI

Turner J.E., Mok M.C., Mok D.W.S. Zeatin Metabolism in Fruits of Phaseolus. Plant Physiol. 1985;79:321–322. doi: 10.1104/pp.79.1.321. PubMed DOI PMC

Letham D.S. The biosynthesis and metabolism of cytokinins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1983;34:163–197. doi: 10.1146/annurev.pp.34.060183.001115. DOI

Singh S., Palni L.M.S., Letham D.S. Cytokinin Biochemistry in Relation to Leaf Senescence V. Endogenous Cytokinin Levels and Metabolism of Zeatin Riboside in Leaf Discs from Green and Senescent Tobacco (Nicotiana rustica) Leaves. J. Plant Physiol. 1992;139:279–283. doi: 10.1016/S0176-1617(11)80337-8. DOI

Scott I.M., Martin G.C., Horgan R., Heald J. Mass spectrometric measurement of zeatin glycoside levels in Vinca rosea L. crown gall tissue. Planta. 1982;154:273–276. doi: 10.1007/BF00387874. PubMed DOI

Duke C.C., Letham D.S., Parker C.W., MacLeod J.K., Summons R.E. The complex of O-glucosylzeatin derivatives formed in Populus species. Phytochemistry. 1979;18:819–824. doi: 10.1016/0031-9422(79)80021-7. DOI

Aremu A.O., Plačková L., Gruz J., Bíba O., Šubrtová M., Novák O., Doležal K., Van Staden J. Accumulation pattern of endogenous cytokinins and phenolics in different organs of 1-year-old cytokinin pre-incubated plants: Implications for conservation. Plant Biol. 2015;17:1146–1155. doi: 10.1111/plb.12367. PubMed DOI

Von Schwartzenberg K., Núñez M.F., Blaschke H., Dobrev P.I., Novák O., Motyka V., Strnad M. Cytokinins in the bryophyte Physcomitrella patens: Analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol. 2007;145:786–800. doi: 10.1104/pp.107.103176. PubMed DOI PMC

Kiran N.S., Benková E., Reková A., Dubová J., Malbeck J., Palme K., Brzobohatý B. Retargeting a maize β-glucosidase to the vacuole—Evidence from intact plants that zeatin-O-glucoside is stored in the vacuole. Phytochemistry. 2012;79:67–77. doi: 10.1016/j.phytochem.2012.03.012. PubMed DOI

Fusseder A., Ziegler P. Metabolism and compartmentation of dihydrozeatin exogenously supplied to photoautotrophic suspension cultures of Chenopodium rubrum. Planta. 1988;173:104–109. doi: 10.1007/BF00394494. PubMed DOI

Horgan R., Hewett E.W., Horgan J.M., Purse J., Wareing P.F. A new cytokinin from Populus x robusta. Phytochemistry. 1975;14:1005–1008. doi: 10.1016/0031-9422(75)85176-4. DOI

Chaves das Neves A new cytokinin from fruits of Zantedeschia-Aethiopica. Tetrahedron. 1980;21:4387–4390. doi: 10.1016/S0040-4039(00)77865-8. DOI

Ge L., Yong J.W.H., Goh N.K., Chia L.S., Tan S.N., Ong E.S. Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography-tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005;829:26–34. doi: 10.1016/j.jchromb.2005.09.026. PubMed DOI

Sáenz L., Jones L.H., Oropeza C., Vláčil D., Strnad M. Endogenous isoprenoid and aromatic cytokinins in different plant parts of Cocos nucifera (L.) Plant Growth Regul. 2003;39:205–215. doi: 10.1023/A:1022851012878. DOI

Kamínek M., Vaněk T. Cytokinin activities of N6-benzyladenosine derivatives hydroxylated on the side-chain phenyl ring. J. Plant Growth Regul. 1987:113–120. doi: 10.1007/BF02026460. DOI

Aremu A.O., Bairu M.W., Doležal K., Finnie J.F., Van Staden J. Topolins: A panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult. 2012;108:1–16. doi: 10.1007/s11240-011-0007-7. DOI

Baroja-Fernández E., Aguirreolea J., Martínková H., Hanuš J., Strnad M. Aromatic cytokinins in micropropagated potato plants. Plant Physiol. Biochem. 2002;40:217–224. doi: 10.1016/S0981-9428(02)01362-1. DOI

Vasudevan R., van Staden J. Cytokinin and explant types influence in vitro plant regeneration of Leopard Orchid (Ansellia africana Lindl.) Plant Cell Tissue Organ Cult. 2011;107:123–129. doi: 10.1007/s11240-011-9964-0. DOI

Podwyszynska M., Wegrzynowicz-Lesiak E., Dolezal K., Krekule J., Strnad M., Saniewski M. New cytokinins—Meta-methoytopolins in micropropagation of Cotinus Coggygria Scop. ‘Royal Purple’. Propag. Ornam. PLANTS. 2012;12:220–228.

Ördög V., Stirk W.A., Van Staden J., Novák O., Strnad M. Endogenous cytokinins in three genera of microalgae from the chlorophyta. J. Phycol. 2004;40:88–95. doi: 10.1046/j.1529-8817.2004.03046.x. DOI

Ivanova M., Novák O., Strnad M., Van Staden J. Endogenous cytokinins in shoots of Aloe polyphylla cultured in vitro in relation to hyperhydricity, exogenous cytokinins and gelling agents. Plant Growth Regul. 2006;50:219–230. doi: 10.1007/s10725-006-9139-x. DOI

Tarkowská D., Doležal K., Tarkowski P., Åstot C., Holub J., Fuksová K., Schmülling T., Sandberg G., Strnad M. Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus x canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. Physiol. Plant. 2003;117:579–590. doi: 10.1034/j.1399-3054.2003.00071.x. PubMed DOI

Bogaert I., Van Cauter S., Werbrouck S.P.O., Doležal K. New aromatic cytokinins can make the difference. Acta Hortic. 2006;725 I:265–270. doi: 10.17660/ActaHortic.2006.725.33. DOI

Bairu M.W., Stirk W.A., Dolezal K., Van Staden J. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell. Tissue Organ Cult. 2007;90:15–23. doi: 10.1007/s11240-007-9233-4. DOI

Amoo S.O., Finnie J.F., van Staden J. The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regul. 2011;63:197–206. doi: 10.1007/s10725-010-9504-7. DOI

Aremu A.O., Bairu M.W., Szüčová L., Finnie J.F., Van Staden J. The role of meta-topolins on the photosynthetic pigment profiles and foliar structures of micropropagated “Williams” bananas. J. Plant Physiol. 2012;169:1530–1541. doi: 10.1016/j.jplph.2012.06.006. PubMed DOI

Matsubara S. Structure-activity relationships of cytokinins. Phytochemistry. 1980;19:2239–2253. doi: 10.1016/S0031-9422(00)91006-9. DOI

Murvanidze N., Doležal K., Werbrouck S.P.O. Fluorine containing topolin cytokinins for Phalaenopsis Amabilis (L.) blume micropropagation. Propag. Ornam. Plants. 2019;19:48–51.

Durán-Medina Y., Díaz-Ramírez D., Marsch-Martínez N. Cytokinins on the move. Front. Plant Sci. 2017;8:146. doi: 10.3389/fpls.2017.00146. PubMed DOI PMC

Bryksová M. Ph.D. Thesis. Palacký University Olomouc; Olomouc, Czech republic: Preparation and biological activity of the new cytokinin derivatives.

Wan Z.K., Binnun E., Wilson D.P., Lee J. A highly facile and efficient one-step synthesis of N6-adenosine and N6-2′-deoxyadenosine derivatives. Org. Lett. 2005;7:5877–5880. doi: 10.1021/ol052424+. PubMed DOI

Kobayashi H., Morisaki N., Tago Y., Hashimoto Y., Iwasaki S., Kawachi E., Nagata R., Shudo K. Identification of a major cytokinin in coconut milk. Experientia. 1995;51:1081–1084. doi: 10.1007/BF01946921. PubMed DOI

Miernyk J.A., Blaydes D.F. Short-Term Metabolism of Radioactive Kinetin during Lettuce Seed Germination. Physiol. Plant. 1977;39:4–8. doi: 10.1111/j.1399-3054.1977.tb09276.x. DOI

Pietraface W.J., Blaydes D.F. Activity and metabolism of 9-substituted cytokinins during lettuce seed germination. Physiol. Planetarum. 1981;53:249–254. doi: 10.1111/j.1399-3054.1981.tb04495.x. DOI

Zatloukal M., Dolezal K., Voller J., Spichal L., Strnad M. Substitution Derivatives of N-Benzyladenosine-5′-monophosphate, Methods of Preparation Thereof, Use Thereof as Medicaments, and Therapeutic Preparations Containing these Compounds. WO 2011134444, EP2563801 (24.9.2014)

Voller J., Zatloukal M., Lenobel R., Doležal K., Béreš T., Kryštof V., Spíchal L., Niemann P., Džubák P., Hajdúch M., et al. Anticancer activity of natural cytokinins: A structure-activity relationship study. Phytochemistry. 2010;71:1350–1359. doi: 10.1016/j.phytochem.2010.04.018. PubMed DOI

Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. 4th ed. Garland Science; New York, NY, USA: 2002. pp. 120–121.

Inoue Y., Ling F., Kimura A. 2′-Deoxyribosylzeatin: A Novel Inhibitor for DNA Polymerase I of Escherichia coli. Agric. Biol. Chem. 1991;55:629–631. doi: 10.1271/bbb1961.55.629. DOI

Matušková V., Zatloukal M., Voller J., Grúz J., Pěkná Z., Briestenská K., Mistríková J., Spíchal L., Doležal K., Strnad M. New aromatic 6-substituted 2′-deoxy-9-(β)-D-ribofuranosylpurine derivatives as potential plant growth regulators. Bioorgan. Med. Chem. 2020 doi: 10.1016/j.bmc.2019.115230. in press. PubMed DOI

Pohjala L., Barai V., Azhayev A., Lapinjoki S., Ahola T. A luciferase-based screening method for inhibitors of alphavirus replication applied to nucleoside analogues. Antivir. Res. 2008;78:215–222. doi: 10.1016/j.antiviral.2008.01.001. PubMed DOI

Tararov V.I., Tijsma A., Kolyachkina S.V., Oslovsky V.E., Neyts J., Drenichev M.S., Leyssen P., Mikhailov S.N. Chemical modification of the plant isoprenoid cytokinin N 6-isopentenyladenosine yields a selective inhibitor of human enterovirus 71 replication. Eur. J. Med. Chem. 2015;90:406–413. doi: 10.1016/j.ejmech.2014.11.048. PubMed DOI

Drenichev M.S., Oslovsky V.E., Sun L., Tijsma A., Kurochkin N.N., Tararov V.I., Chizhov A.O., Neyts J., Pannecouque C., Leyssen P., et al. Modification of the length and structure of the linker of N6-benzyladenosine modulates its selective antiviral activity against enterovirus 71. Eur. J. Med. Chem. 2016;111:84–94. doi: 10.1016/j.ejmech.2016.01.036. PubMed DOI

Dutta S.P., Mittelman A., Chen C.M., Chheda G.B. Synthesis and biological-activities of some analogs of N-6-(Δ2-isopentenyl)adenosine. J. Carbohydrates Nucleosides Nucleotides. 1978;5:47–57.

Hansske F., Madej D., Robins M.J. 2′ And 3′-ketonucleosides and their arabino and xylo reduction products. Tetrahedron. 1984;40:125–135. doi: 10.1016/0040-4020(84)85111-X. DOI

Reist E.J., Benitez A., Goodman L., Baker B.R., Lee W.W. Potential Anticancer Agents.1 LXXVI. Synthesis of Purine Nucleosides of β-D-Arabinofuranose. J. Org. Chem. 1962;27:3274–3279. doi: 10.1021/jo01056a071. DOI

Secrist III J.A., Shortnacy A.T., Montgomery J.A. Synthesis and Biological Evaluations of Certain 2-Halo-2′-Substituted Derivatives of 9-β-D-Arabinofuranosyladenine. J. Med. Chem. 1988;31:405–410. doi: 10.1021/jm00397a024. PubMed DOI

Gosselin G., Bergogne M.C., Imbach J.L. Obtaining of arabinofurannonucleosides using the chemical transformation of certain xylofurannonucleosides. Nucleosides Nucleotides. 1984;3:265–275. doi: 10.1080/07328318408081263. DOI

Krenitsky T.A., Koszalka G.W., Tuttle J.V., Rideout J.L., Elion G.B. An enzymic synthesis of purine D-Arabinonucleosides. Carbohydr. Res. 1981;97:139–146. doi: 10.1016/S0008-6215(00)80531-5. DOI

Koszalka G.W., Averett D.R., Fyfe J.A., Roberts G.B., Spector T., Biron K., Krenitsky T.A. 6-N-substituted derivatives of adenine arabinoside as selective inhibitors of varicella-zoster virus. Antimicrob. Agents Chemother. 1991;35:1437–1443. doi: 10.1128/AAC.35.7.1437. PubMed DOI PMC

Kaneko M., Kimura M., Nishimura T.S.B. Synthesis of N6-substituted or 8-substituted 9-(β-D-arabinofuranosyl)-adenines and their anti-viral activities against Herpes-Simplex and Vaccinia viruses. Chem. Pharm. Bull. 1977;25:2482–2489. doi: 10.1248/cpb.25.2482. PubMed DOI

Ikehara M., Kaneko M., Ogiso Y. Cleavage of 8,2′-anhydro-8-oxy-9-β-D-arabinofuranosyladenine with hydrogen sulfide and its interconversion with 8,5′-cyclonucleoside. Tetrahedron Lett. 1970;11:4673–4676. doi: 10.1016/S0040-4039(00)89405-8. DOI

Ikehara M., Ogiso Y. Studies of nucleosides and nucleotides-LIV. Purine cyclonucleosides. 19. Further investigations on the cleavage of the 8,2′-O-anhydro linkage. A new synthesis of 9-β-D-arabinofuranosyladenine. Tetrahedron. 1972;28:3695–3704. doi: 10.1016/S0040-4020(01)93816-5. DOI

Bryksová M., Dabravolski S., Kučerová Z., Zavadil Kokáš F., Špundová M., Plíhalová L., Takáč T., Grúz J., Hudeček M., Hloušková V., et al. Aromatic cytokinin arabinosides promote PAMP-like responses and positively regulate leaf longevity. ACS Chem. Biol. 2020 Submitted. PubMed

Taylor J.S., Koshioka M., Pharis R.P., Sweet G.B. Changes in Cytokinins and Gibberellin-Like Substances in Pinus radiata Buds during Lateral Shoot Initiation and the Characterization of Ribosyl Zeatin and a Novel Ribosyl Zeatin Glycoside. Plant Physiol. 1984;74:626–631. doi: 10.1104/pp.74.3.626. PubMed DOI PMC

Morris J.W., Doumas P., Morris R.O., Zaerr J.B. Cytokinins in vegetative and reproductive buds of Pseudotsuga menziesii. Plant Physiol. 1990;93:67–71. doi: 10.1104/pp.93.1.67. PubMed DOI PMC

Zhang H., Horgan K.J., Reynolds P.H.S., Norris G.E., Jameson P.E. Novel cytokinins: The predominant forms in mature buds of Pinus radiata. Physiol. Plant. 2001;112:127–134. doi: 10.1034/j.1399-3054.2001.1120117.x. PubMed DOI

Zhang H., Horgan K.J., Reynolds P.H.S., Jameson P.E. Cytokinins and bud morphology in Pinus radiata. Physiol. Plant. 2003;117:264–269. doi: 10.1034/j.1399-3054.2003.00026.x. DOI

Blakesley D., Lenton J.R., Horgan R. Benzyladenine ribosylglucoside: A metabolite of benzyladenine in Gerbera jamesonii. Phytochemistry. 1991;30:387–388. doi: 10.1016/0031-9422(91)83689-I. DOI

Auer C.A., Cohen J.D. Identification of a benzyladenine disaccharide conjugate produced during shoot organogenesis in Petunia leaf explant. Plant Physiol. 1993;102:541–545. doi: 10.1104/pp.102.2.541. PubMed DOI PMC

Cortizo M., Cuesta C., Centeno M.L., Rodríguez A., Fernández B., Ordás R. Benzyladenine metabolism and temporal competence of Pinus pinea cotyledons to form buds in vitro. J. Plant Physiol. 2009;166:1069–1076. doi: 10.1016/j.jplph.2008.12.013. PubMed DOI

Zhang H., Horgan K.J., Reynolds P.H.S., Jameson P.E. 6-Benzyladenine metabolism during reinvigoration of mature Pinus radiata buds in vitro. Tree Physiol. 2010;30:514–526. doi: 10.1093/treephys/tpp130. PubMed DOI

Tahir M., Banyal R. Clonal forestry: An effective technique for increasing the productivity of plantations. SKUAST J. Res. 2017;19:22–28.

Fox J.E., Sood C.K., Buckwalter B., McChesney J.D. The metabolism and biological activity of a 9-substituted cytokinin. Plant Physiol. 1971;47:275–281. doi: 10.1104/pp.47.2.275. PubMed DOI PMC

Zhang R., Letham D.S. Cytokinin biochemistry in relation to leaf senescence. III. The senescence-retarding activity and metabolism of 9-substituted 6-benzylaminopurines in soybean leaves. J. Plant Growth Regul. 1989;8:181–197. doi: 10.1007/BF02308087. DOI

Corse J., Pacovsky R.S., Lyman M.L., Brandon D.L. Biological activity of several 9-nonglycosidic-substituted natural cytokinins. J. Plant Growth Regul. 1989;8:211–223. doi: 10.1007/BF02308090. DOI

Szüčová L., Spíchal L., Doležal K., Zatloukal M., Greplová J., Galuszka P., Kryštof V., Voller J., Popa I., Massino F.J., et al. Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorganic Med. Chem. 2009;17:1938–1947. doi: 10.1016/j.bmc.2009.01.041. PubMed DOI

Duke C., Macleod J., Summons R., Letham D., Parker C. The Structure and Synthesis of Cytokinin Metabolites. II. Lupinic Acid and O-β-d-Glucopyranosylzeatin From Lupinus angustifolius. Aust. J. Chem. 1978;31:1291–1301. doi: 10.1071/CH9781291. DOI

Entsch B., Parker C.W., Letham D.S. An enzyme from lupin seeds forming alanine derivatives of cytokinins. Phytochemistry. 1983;22:375–381. doi: 10.1016/0031-9422(83)83008-8. DOI

Palni L.M.S., Palmer M.V., Letham D.S. The stability and biological activity of cytokinin metabolites in soybean callus tissue. Planta. 1984;160:242–249. doi: 10.1007/BF00402861. PubMed DOI

Mok D.W.S., Mok M.C. Cytokinins: Chemistry, Activity, and Function. CRC Press; Boca Raton, FL, USA: 1994.

Kuhnle J.A., Fuller G., Corse J., Mackey B.E. Antisenescent Activity of Natural Cytokinins. Physiol. Plant. 1977;41:14–21. doi: 10.1111/j.1399-3054.1977.tb01514.x. DOI

Kuroda M., Oaiawa T., Imagawa H. Changes in chloroplast peroxidase activities in relation to chlorophyll loss in barley leaf segments. Physiol. Plant. 1990;80:555–560. doi: 10.1111/j.1399-3054.1990.tb05678.x. DOI

Kar M., Mishra D. Catalase, Peroxidase, and Polyphenoloxidase Activities during Rice Leaf Senescence. Plant Physiol. 1976;57:315–319. doi: 10.1104/pp.57.2.315. PubMed DOI PMC

Varga A., Bruinsma J. Effects of different cytokinins on the senescence of detached oat leaves. Planta. 1973;111:91–93. doi: 10.1007/BF00386739. PubMed DOI

Eisinger W. Role of Cytokinins in Carnation Flower Senescence. Plant Physiol. 1977;59:707–709. doi: 10.1104/pp.59.4.707. PubMed DOI PMC

Mik V., Szüčová L., Šmehilová M., Zatloukal M., Doležal K., Nisler J., Grúz J., Galuszka P., Strnad M., Spíchal L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. Phytochemistry. 2011;72:821–831. doi: 10.1016/j.phytochem.2011.02.002. PubMed DOI

Mik V., Szüčová L., Spíchal L., Plíhal O., Nisler J., Zahajská L., Doležal K., Strnad M. N9-Substituted N6-[(3-methylbut-2-en-1-yl)amino]purine derivatives and their biological activity in selected cytokinin bioassays. Bioorg. Med. Chem. 2011;19:7244–7251. doi: 10.1016/j.bmc.2011.09.052. PubMed DOI

Robins M.J., Hall R.H., Thedford R. N6-(Δ2-Isopenteny1) adenosine. A Component of the Transfer Ribonucleic Acid of Yeast and of Mammalian Tissue, Methods of Isolation, and Characterization. Biochemistry. 1967;6:1837–1848. doi: 10.1021/bi00858a035. PubMed DOI

Nisler J., Zatloukal M., Popa I., Doležal K., Strnad M., Spíchal L. Cytokinin receptor antagonists derived from 6-benzylaminopurine. Phytochemistry. 2010;71:823–830. doi: 10.1016/j.phytochem.2010.01.018. PubMed DOI

Spíchal L., Werner T., Popa I., Riefler M., Schmülling T., Strnad M. The purine derivative PI-55 blocks cytokinin action via receptor inhibition. FEBS J. 2009;276:244–253. doi: 10.1111/j.1742-4658.2008.06777.x. PubMed DOI

Johnston G.F.S., Jeffcoat B. Effects of some growth regulators on tiller bud elongation in cereals. New Phytol. 1977;79:239–245. doi: 10.1111/j.1469-8137.1977.tb02201.x. DOI

Letham D.S. Regulators of Cell Division in Plant Tissues: VI. The effects of zeatin and other stimulants of cell division on apple fruit development. N. Z. J. Agric. Res. 1969;12:1–20. doi: 10.1080/00288233.1969.10427073. DOI

Weaver R.J., van Overbeek J., Pool R.M. Induction of Fruit Set in Vitis vinifera L. by a Kinin. Nature. 1965;206:952–953. doi: 10.1038/206952b0. DOI

Arena M.E., Pastur G.J.M. Adventitious shoot induction from leaf explants of Ribes magellanicum cultured in vitro. Sci. Hortic. 1997;72:73–79. doi: 10.1016/S0304-4238(96)00940-5. DOI

Falck J.R., Li D.R., Bejot R., Mioskowski C. An economic and practical synthesis of the 2-tetrahydrofuranyl ether protective group. Tetrahedron Lett. 2006;47:5111–5113. doi: 10.1016/j.tetlet.2006.05.081. PubMed DOI PMC

Amoo S.O., Aremu A.O., Moyo M., Szüčová L., Doležal K., Van Staden J. Physiological effects of a novel aromatic cytokinin analogue in micropropagated Aloe arborescens and Harpagophytum procumbens. Plant Cell. Tissue Organ Cult. 2014;116:17–26. doi: 10.1007/s11240-013-0377-0. DOI

Amoo S.O., Aremu A.O., Moyo M., Sunmonu T.O., Plíhalová L., Doležal K., Van Staden J. Physiological and biochemical effects of a tetrahydropyranyl-substituted meta-topolin in micropropagated Merwilla plumbea. Plant Cell. Tissue Organ Cult. 2015;121:579–590. doi: 10.1007/s11240-015-0728-0. DOI

Masondo N.A., Aremu A.O., Finnie J.F., Van Staden J. Plant growth regulator induced phytochemical and antioxidant variations in micropropagated and acclimatized Eucomis autumnalis subspecies autumnalis (Asparagaceae) Acta Physiol. Plant. 2014;36:2467–2479. doi: 10.1007/s11738-014-1619-4. DOI

Aremu A.O., Bairu M.W., Szüčová L., Doležal K., Finnie J.F., Van Staden J. Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated “Williams” banana. Acta Physiol. Plant. 2012;36:2265–2273. doi: 10.1007/s11738-012-1027-6. DOI

Aremu A.O., Plačková L., Bairu M.W., Novák O., Szüčová L., Doležal K., Finnie J.F., Van Staden J. Endogenous cytokinin profiles of tissue-cultured and acclimatized “Williams” bananas subjected to different aromatic cytokinin treatments. Plant Sci. 2014;214:88–98. doi: 10.1016/j.plantsci.2013.09.012. PubMed DOI

Zahajská L., Nisler J., Voller J., Gucký T., Pospíšil T., Spíchal L., Strnad M. Preparation, characterization and biological activity of C8-substituted cytokinins. Phytochemistry. 2017;135:115–127. doi: 10.1016/j.phytochem.2016.12.005. PubMed DOI

Taddei D., Kilian P., Slawin A.M.Z., Woollins J.D. Synthesis and full characterisation of 6-chloro-2-iodopurine, a template for the functionalisation of purines. Org. Biomol. Chem. 2004;2:665–670. doi: 10.1039/b312629c. PubMed DOI

Robins R.K., Godefroi E.F., Taylor E.C., Lewis L.R., Jackson A. Purine Nucleosides. I. The Synthesis of Certain 6-Substituted-9-(tetrahydro-2-pyxanyl)- purines as Models of Purine Deoxynucleosides. J. Am. Chem. Soc. 1961;83:2574–2579. doi: 10.1021/ja01472a034. DOI

MJNolsoee J., Gundersen L.-L., Rise F. Synthesis of 8-Halopurines by Reaction of Lithiated Purines with Appropriate Halogen Donors. Synth. Commun. 1998;28:4303–4315. doi: 10.1080/00397919808004464. DOI

Hönig M., Plíhalová L., Spíchal L., Grúz J., Kadlecová A., Voller J., Svobodová A.R., Vostálová J., Ulrichová J., Doležal K., et al. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. Eur. J. Med. Chem. 2018;150:946–957. doi: 10.1016/j.ejmech.2018.03.043. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...