Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007323
European Regional Development Fund - International
IGA_PrF_2020_010
Development of Pre-Applied Research in Nanotechnology and Biotechnology - International
PubMed
32485963
PubMed Central
PMC7356397
DOI
10.3390/biom10060832
PII: biom10060832
Knihovny.cz E-zdroje
- Klíčová slova
- D-arabinoside, cytokinin nucleosides, cytokinin sugar conjugates, disaccharides, glucoside, meta-topolin, plant biotechnology, plant tissue culture, riboside, zeatin,
- MeSH
- adenin chemie metabolismus MeSH
- cytokininy biosyntéza chemie metabolismus MeSH
- molekulární struktura MeSH
- rostliny chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- adenin MeSH
- cytokininy MeSH
Cytokinins and their sugar or non-sugar conjugates are very active growth-promoting factors in plants, although they occur at very low concentrations. These compounds have been identified in numerous plant species. This review predominantly focuses on 9-substituted adenine-based cytokinin conjugates, both artificial and endogenous, sugar and non-sugar, and their roles in plants. Acquired information about their biological activities, interconversions, and metabolism improves understanding of their mechanisms of action and functions in planta. Although a number of 9-substituted cytokinins occur endogenously, many have also been prepared in laboratories to facilitate the clarification of their physiological roles and the determination of their biological properties. Here, we chart advances in knowledge of 9-substituted cytokinin conjugates from their discovery to current understanding and reciprocal interactions between biological properties and associated structural motifs. Current organic chemistry enables preparation of derivatives with better biological properties, such as improved anti-senescence, strong cell division stimulation, shoot forming, or more persistent stress tolerance compared to endogenous or canonical cytokinins. Many artificial cytokinin conjugates stimulate higher mass production than naturally occurring cytokinins, improve rooting, or simply have high stability or bioavailability. Thus, knowledge of the biosynthesis, metabolism, and activity of 9-substituted cytokinins in various plant species extends the scope for exploiting both natural and artificially prepared cytokinins in plant biotechnology, tissue culture, and agriculture.
Zobrazit více v PubMed
Peleg Z., Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 2011;14:290–295. doi: 10.1016/j.pbi.2011.02.001. PubMed DOI
Liu J., Moore S., Chen C., Lindsey K. Crosstalk Complexities between Auxin, Cytokinin, and Ethylene in Arabidopsis Root Development: From Experiments to Systems Modeling, and Back Again. Mol. Plant. 2017;10:1480–1496. doi: 10.1016/j.molp.2017.11.002. PubMed DOI
Miller C.O., Skoog F., Von Saltza M.H., Strong F.M. Kinetin, a Cell Division Factor from Deoxyribonucleic Acid. J. Am. Chem. Soc. 1955;77:1392. doi: 10.1021/ja01610a105. DOI
Miller C.O., Skoog F., Okumura F.S., Von Saltza M.H., Strong F.M. Isolation, Structure and Synthesis of Kinetin, a Substance Promoting Cell Division. J. Am. Chem. Soc. 1956;78:1375–1380. doi: 10.1021/ja01588a032. DOI
Moyo M., Bairu M.W., Amoo S.O., Van Staden J. Plant biotechnology in South Africa: Micropropagation research endeavours, prospects and challenges. S. Afr. J. Bot. 2011;77:996–1011. doi: 10.1016/j.sajb.2011.06.003. DOI
Barciüewski J., Rattan S.I.S., Siboska G., Clark B.F.C. Kinetin—45 years on. Plant Sci. 1999;148:37–45. doi: 10.1016/S0168-9452(99)00116-8. DOI
Davies P. Plant Hormones: Biosynthesis, Signal Transduction, Action! 3rd ed. Springer; Maastricht, The Netherlands: 2010.
Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 2018;19:4045. doi: 10.3390/ijms19124045. PubMed DOI PMC
Cortleven A., Schmülling T. Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 2015;66:4999–5013. doi: 10.1093/jxb/erv132. PubMed DOI
Werner T., Motyka V., Strnad M., Schmülling T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA. 2001;98:10487–10492. doi: 10.1073/pnas.171304098. PubMed DOI PMC
D’Aloia M., Bonhomme D., Bouché F., Tamseddak K., Ormenese S., Torti S., Coupland G., Périlleux C. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J. 2011;65:972–979. doi: 10.1111/j.1365-313X.2011.04482.x. PubMed DOI
Brandes H., Kende H. Studies on Cytokinin-Controlled Bud Formation in Moss Protonemata. Plant Physiol. 1968;43:827–837. doi: 10.1104/pp.43.5.827. PubMed DOI PMC
Takei K., Sakakibara H., Taniguchi M., Sugiyama T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol. 2001;42:85–93. doi: 10.1093/pcp/pce009. PubMed DOI
Roitsch T., Ehneß R. Regulation of source/sink relations by cytokinins. Plant Growth Regul. 2000;32:359–367. doi: 10.1023/A:1010781500705. DOI
Argueso C.T., Ferreira F.J., Kieber J.J. Environmental perception avenues: The interaction of cytokinin and environmental response pathways. Plant Cell Environ. 2009;32:1147–1160. doi: 10.1111/j.1365-3040.2009.01940.x. PubMed DOI
Sakakibara H. Cytokinins: Activity, Biosynthesis, and Translocation. Annu. Rev. Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI
Osugi A., Sakakibara H. Q and A: How do plants respond to cytokinins and what is their importance? BMC Biol. 2015;13:102. doi: 10.1186/s12915-015-0214-5. PubMed DOI PMC
Schoor S., Farrow S., Blaschke H., Lee S., Perry G., von Schwartzenberg K., Emery N., Moffatt B. Adenosine kinase contributes to cytokinin interconversion in arabidopsis. Plant Physiol. 2011;157:659–672. doi: 10.1104/pp.111.181560. PubMed DOI PMC
Hill K., Schaller G.E. Enhancing plant regeneration in tissue culture. Plant Signal. Behav. 2013;8:e25709. doi: 10.4161/psb.25709. PubMed DOI PMC
Ikeuchi M., Ogawa Y., Iwase A., Sugimoto K. Plant regeneration: Cellular origins and molecular mechanisms. Development. 2006;143:1442–1451. doi: 10.1242/dev.134668. PubMed DOI
Mok D.W.S., Mok M.C. Cytokinin Metabolism and Action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI
Bastos de Almeida W.A., Silva Santana G., Pinheiro Martinelli Rodriguez A., Pereira de Carvalho Costa M.A. Optimization of a protocol for the micropropagation of pineapple. Rev. Bras. Frutic. 2002;24:296–300. doi: 10.1590/S0100-29452002000200005. DOI
Boudabous M., Mars M., Marzougui N., Ferchichi A. Micropropagation of apple (Malus domestica L. cultivar Douce de Djerba) through in vitro culture of axillary buds. Acta Bot. Gall. 2010;157:513–524. doi: 10.1080/12538078.2010.10516227. DOI
Goswami K., Sharma R., Singh P.K., Singh G. Micropropagation of seedless lemon (Citrus limon L. cv. Kaghzi Kalan) and assessment of genetic fidelity of micropropagated plants using RAPD markers. Physiol. Mol. Biol. Plants. 2013;19:137–145. doi: 10.1007/s12298-012-0148-0. PubMed DOI PMC
Peixe A., Raposo A., Lourenço R., Cardoso H., Macedo E. Coconut water and BAP successfully replaced zeatin in olive (Olea europaea L.) micropropagation. Sci. Hortic. 2007;113:1–7. doi: 10.1016/j.scienta.2007.01.011. DOI
Hristova L., Damyanova E., Doichinova Z., Kapchina-Toteva V. Effect Of 6-benzylaminopurine on micropropagation of artemisia chamaemelifolia Vill. (asteraceae) Bulg. J. Agric. Sci. 2013;19:57–60.
Ružić D.V., Vujović T.I. The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.) Hortic. Sci. 2008;35:12–21. doi: 10.17221/646-HORTSCI. DOI
Grendysz J., Danuta K., Jacek W. Influence of micropropagation with addition of kinetin on development of a willow (Salix viminalis L.) World Sci. J. 2017;70:201–215.
Hesar A.A., Kaviani B., Tarang A., Zanjani S.B. Effect of different concentrations of kinetin on regeneration of ten weeks (Matthiola incana) Plant Omics. 2011;4:236–238.
Hanur V.S. In-Vitro Organogenesis in Tomato (Solanum Lycopersicum) Using Kinetin. Adv. Plants Agric. Res. 2016;4:397–401. doi: 10.15406/apar.2016.04.00158. DOI
Lameira O.A., Pinto J. In vitro propagation of Cordia verbenacea (Boraginaceae) Rev. Bras. Plant Med. Botucatu. 2006;8:102–104.
Naing A.H., Kim S.H., Chung M.Y., Park S.K., Kim C.K. In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant Methods. 2019;15:1–10. doi: 10.1186/s13007-019-0421-0. PubMed DOI PMC
Amer A., Omar H. In-vitro propagation of the multipurpose Egyptian medicinal plant Pimpinella anisum. Egypt Pharm. J. 2019;18:254–262. doi: 10.4103/epj.epj_12_19. DOI
Shekhawat M.S., Manokari M., Ravindran C.P. Micropropagation, Micromorphological Studies, and in Vitro Flowering in Rungia pectinata L. Scientifica. 2016 doi: 10.1155/2016/5813851. PubMed DOI PMC
Kelta A., Hajare S.T., Banjaw A. Studies on in vitro Micropropagation in Banana. Int. J. Curr. Microbiol. Appl. Sci. 2018;7:3366–3375. doi: 10.20546/ijcmas.2018.707.392. DOI
Melyan G., Sahakyan A., Harutyunyan A. Micropropagation of grapevine (Vitis vinifera L.) seedless cultivar “Parvana” through lateral bud development. Vitis—J. Grapevine Res. 2015;54:253–255.
Balajaru K., Agastian P., Preetamraj J.P., Arokiyaraj S., Ignacimuthu S. Micropropagation of Vitex agnus-castus, (Verbenaceae)—A valuable medicinal plant. In Vitro Cell. Dev. Biol.—Plant. 2008;44:436–441. doi: 10.1007/sI. DOI
Pelegrini L.L., Ribas L.L.F., Zanette F., Koehler H.S. Micropropagation of Ocotea porosa (Nees & Martius) Barroso. Afr. J. Biotechnol. 2011;10:1527–1533. doi: 10.5897/AJB09.976. DOI
Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., Köllmer I., Schmülling T., Frébort I. Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 2007;26:255–267. doi: 10.1007/s00344-007-9008-5. DOI
Werbrouck S., Strnad M., Onckelen H., Debergh P. Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol. Plant. 1996;98:291–297. doi: 10.1034/j.1399-3054.1996.980210.x. DOI
Podlešáková K., Zalabák D., Čudejková M., Plíhal O., Szüčová L., Doležal K., Spíchal L., Strnad M., Galuszka P. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS ONE. 2012;7:e39293. doi: 10.1371/journal.pone.0039293. PubMed DOI PMC
Bairu M.W., Jain N., Stirk W.A., Doležal K., Van Staden J. Solving the problem of shoot-tip necrosis in Harpagophytum procumbens by changing the cytokinin types, calcium and boron concentrations in the medium. S. Afr. J. Bot. 2009;75:122–127. doi: 10.1016/j.sajb.2008.08.006. DOI
Werbrouck S.P.O., van der Jeugt B., Dewitte W., Prinsen E., Van Onckelen H.A., Debergh P.C. The metabolism of benzyladenine in Spathiphyllum floribundum “Schott Petite” in relation to acclimatisation problems. Plant Cell Rep. 1995;14:662–665. doi: 10.1007/BF00232734. PubMed DOI
Cary A.J., Liu W., Howell S.H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995;107:1075–1082. doi: 10.1104/pp.107.4.1075. PubMed DOI PMC
Doležal K., Popa I., Hauserová E., Spíchal L., Chakrabarty K., Novák O., Kryštof V., Voller J., Holub J., Strnad M. Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorgan. Med. Chem. 2007;15:3737–3747. doi: 10.1016/j.bmc.2007.03.038. PubMed DOI
Vylíčilová H., Husičková A., Spíchal L., Srovnal J., Doležal K., Plíhal O., Plíhalová L. C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. Phytochemistry. 2016;122:22–33. doi: 10.1016/j.phytochem.2015.12.001. PubMed DOI
Plíhalová L., Vylíčilová H., Doležal K., Zahajská L., Zatloukal M., Strnad M. Synthesis of aromatic cytokinins for plant biotechnology. Biotechnol. 2016;33:614–624. doi: 10.1016/j.nbt.2015.11.009. PubMed DOI
Plíhal O., Szüčová L., Galuszka P. N9-substituted aromatic cytokinins with negligible side effects on root development are an emerging tool for in vitro culturing. Plant Signal. Behav. 2013;8:e24392. doi: 10.4161/psb.24392. PubMed DOI PMC
Kieber J.J. Cytokinins. Arabidopsis Book. 2002;1:e0063. doi: 10.1199/tab.0063. PubMed DOI PMC
Letham D.S., Gollnow B. Regulators of cell division in plant tissues. XXX. Cytokinin metabolism in relation to radish cotyledon expansion and senescence. J. Plant Growth Regul. 1985;4:129–145. doi: 10.1007/BF02266951. DOI
Holub J., Hanuš J., Hanke D.E., Strnad M. Biological activity of cytokinins derived from Ortho- and Meta-hydroxybenzyladenine. Plant Growth Regul. 1998;26:109–115. doi: 10.1023/A:1006192619432. DOI
Palni L.M., Summons R., Letham D. Mass Spectrometric Analysis of Cytokinins in Plant Tissues: V. Identification of the Cytokinin Complex of Datura Innoxia Crown Gall Tissue. Plant Physiol. 1983;72:858–863. doi: 10.1104/pp.72.3.858. PubMed DOI PMC
Spíchal L., Rakova N.Y., Riefler M., Mizuno T., Romanov G.A., Strnad M., Schmülling T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004;45:1299–1305. doi: 10.1093/pcp/pch132. PubMed DOI
Hošek P., Hoyerová K., Kiran N.S., Dobrev P.I., Zahajská L., Filepová R., Motyka V., Müller K., Kamínek M. Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol. 2020;225:2423–2438. doi: 10.1111/nph.16310. PubMed DOI
Sayavedra-Soto L.A., Durley R.C., Trione E.J., Morris R.O. Identification of cytokinins in young wheat spikes (Triticum aestivum cv. Chinese Spring) J. Plant Growth Regul. 1988;7:169–178. doi: 10.1007/BF02024680. DOI
Werner T., Hanuš J., Holub J., Schmülling T., Van Onckelen H., Strnad M. New cytokinin metabolites in IPT transgenic Arabidopsis thaliana plants. Physiol. Plant. 2003;118:127–137. doi: 10.1034/j.1399-3054.2003.00094.x. PubMed DOI
Hou B., Lim E.K., Higgins G.S., Bowles D.J. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem. 2004;279:47822–47832. doi: 10.1074/jbc.M409569200. PubMed DOI
Entsch B., Letham D.S. Enzymic glucosylation of the cytokinin, 6-benzylaminopurine. Plant Sci. Lett. 1979;14:205–212. doi: 10.1016/0304-4211(79)90061-0. DOI
Šmehilová M., Dobrůšková J., Novák O., Takáč T., Galuszka P. Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance. Front. Plant Sci. 2016;7:1264. doi: 10.3389/fpls.2016.01264. PubMed DOI PMC
Li Y.J., Wang B., Dong R.R., Hou B.K. AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation. Plant Sci. 2015;236:157–167. doi: 10.1016/j.plantsci.2015.04.002. PubMed DOI
Lao J., Oikawa A., Bromley J.R., McInerney P., Suttangkakul A., Smith-Moritz A.M., Plahar H., Chiu T.Y., González Fernández-Niño S.M., Ebert B., et al. The plant glycosyltransferase clone collection for functional genomics. Plant J. 2014;79:517–529. doi: 10.1111/tpj.12577. PubMed DOI
Wang J., Ma X.M., Kojima M., Sakakibara H., Hou B.K. N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol. 2011;52:2200–2213. doi: 10.1093/pcp/pcr152. PubMed DOI
Wang J., Ma X.M., Kojima M., Sakakibara H., Hou B.K. Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in Arabidopsis thaliana. Plant Physiol. Biochem. 2013;65:9–16. doi: 10.1016/j.plaphy.2013.01.012. PubMed DOI
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P.I., Galuszka P., Klíma P., Gaudinová A., Žižková E., et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI
Albrecht T., Argueso C.T. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. Ann. Bot. 2017;119:725–735. doi: 10.1093/aob/mcw211. PubMed DOI PMC
Skoog F., Hamzi H.Q., Szweykowska A.M., Leonard N.J., Carraway K.L., Fujii T., Helgeson J.P., Loeppky R.N. Cytokinins: Structure/activity relationships. Phytochemistry. 1967;6:1169–1192. doi: 10.1016/S0031-9422(00)86080-X. DOI
Leonard N.J., Hecht S.M., Skoog F., Schmitz R.Y. Cytokinins: Synthesis, mass spectra, and biological activity of compounds related to zeatin. Biochemistry. 1969;63:175–182. doi: 10.1073/pnas.63.1.175. PubMed DOI PMC
Fleysher M.H. N6-Substituted Adenosines: Synthesis, Biological Activity, and Some Structure-Activity Relationships. J. Med. Chem. 1972;15:187–191. doi: 10.1021/jm00272a015. PubMed DOI
Schmitz R.Y., Skoog F., Playtis A.J., Leonard N.J. Cytokinins: Synthesis and Biological Activity of Geometric and Position Isomers of Zeatin. Plant Physiol. 1972;50:702–705. doi: 10.1104/pp.50.6.702. PubMed DOI PMC
Laloue M., Terrine C., Guern J. Cytokinins: Metabolism and Biological Activity of N6-(Δ2-Isopentenyl)adenosine and N6-(Δ2-Isopentenyl)adenine in Tobacco Cells and Callus. Plant Physiol. 1977;59:478–483. doi: 10.1104/pp.59.3.478. PubMed DOI PMC
Yonekura-Sakakibara K., Kojima M., Yamaya T., Sakakibara H. Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 2004;134:1654–1661. doi: 10.1104/pp.103.037176. PubMed DOI PMC
Kamínek M., Pačes V., Corse J., Challice J. Effect of Stereospecifîc Hydroxylation of N6-(Δ2-Isopentenyl)adenosine on Cytokinin Activity. Planta. 1979;145:239–243. doi: 10.1007/BF00454447. PubMed DOI
Van Staden J., Bayley A.D., Upfold S.J., Drewes F.E. Cytokinins in Cut Carnation Flowers. VIII. Uptake, Transport and Metabolism of Benzyladenine and the Effect of Benzyladenine Derivatives on Flower Longevity. J. Plant Physiol. 1990;135:703–707. doi: 10.1016/S0176-1617(11)80883-7. DOI
Radhika V., Ueda N., Tsuboi Y., Kojima M., Kikuchi J., Kudo T., Sakakibara H. Methylated Cytokinins from the Phytopathogen Rhodococcus fascians Mimic Plant Hormone Activity. Plant Physiol. 2015;169:1118–1126. doi: 10.1104/pp.15.00787. PubMed DOI PMC
Pertry I., Vaclavikova K., Depuydt S., Galuszka P., Spichal L., Temmerman W., Stes E., Schmulling T., Kakimoto T., Van Montagu M.C.E., et al. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc. Natl. Acad. Sci. USA. 2009;106:929–934. doi: 10.1073/pnas.0811683106. PubMed DOI PMC
Pertry I., Vaclavikova K., Gemrotova M., Spichal L., Galuszka P., Depuydt S., Temmerman W., Stes E., De Keyser A., Riefler M., et al. Rhodococcus fascians impacts plant development through the dynamic fas-mediated production of a cytokinin mix. Mol. Plant Microbe Interact. 2010;23:1164–1174. doi: 10.1094/MPMI-23-9-1164. PubMed DOI
Evidente A., Fujii T., Iacobellis N., Riva I.S., Sisto A., Surico G. Structure-activity relationship of zeatin cytokinins produced by plant pathogenic Pseudomonades. Phytochemistry. 1991;30:3505–3510. doi: 10.1016/0031-9422(91)80055-6. DOI
Fujii T., Ohba M., Kawamura H., Nakashio Y., Honda K., Matsubara S. Purines. LXII. Both enantiomers of N6-(1,3-dimethyl-2-butenyl)adenine and their 9-β-D-ribofuranosides: Synthesis and cytokinin activity. Chem. Pharm. Bull. 1994;42:1045–1049. doi: 10.1248/cpb.42.1045. PubMed DOI
Kieber J.J., Schaller G.E. Cytokinin signaling in plant development. Development. 2018;145:1–7. doi: 10.1242/dev.149344. PubMed DOI
Lomin S.N., Krivosheev D.M., Steklov M.Y., Osolodkin D.I., Romanov G.A. Receptor Properties and Features of Cytokinin Signaling. Acta Nat. 2012;4:31–45. doi: 10.32607/20758251-2012-4-3-31-45. PubMed DOI PMC
Osugi A., Kojima M., Takebayashi Y., Ueda N., Kiba T., Sakakibara H. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat. Plants. 2017;3:17112. doi: 10.1038/nplants.2017.112. PubMed DOI
Silva-Navas J., Conesa C.M., Saez A., Navarro-Neila S., Garcia-Mina J.M., Zamarreño A.M., Baigorri R., Swarup R., del Pozo J.C. Role of cis-zeatin in root responses to phosphate starvation. New Phytol. 2019;224:242–257. doi: 10.1111/nph.16020. PubMed DOI
Turner J.E., Mok M.C., Mok D.W.S. Zeatin Metabolism in Fruits of Phaseolus. Plant Physiol. 1985;79:321–322. doi: 10.1104/pp.79.1.321. PubMed DOI PMC
Letham D.S. The biosynthesis and metabolism of cytokinins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1983;34:163–197. doi: 10.1146/annurev.pp.34.060183.001115. DOI
Singh S., Palni L.M.S., Letham D.S. Cytokinin Biochemistry in Relation to Leaf Senescence V. Endogenous Cytokinin Levels and Metabolism of Zeatin Riboside in Leaf Discs from Green and Senescent Tobacco (Nicotiana rustica) Leaves. J. Plant Physiol. 1992;139:279–283. doi: 10.1016/S0176-1617(11)80337-8. DOI
Scott I.M., Martin G.C., Horgan R., Heald J. Mass spectrometric measurement of zeatin glycoside levels in Vinca rosea L. crown gall tissue. Planta. 1982;154:273–276. doi: 10.1007/BF00387874. PubMed DOI
Duke C.C., Letham D.S., Parker C.W., MacLeod J.K., Summons R.E. The complex of O-glucosylzeatin derivatives formed in Populus species. Phytochemistry. 1979;18:819–824. doi: 10.1016/0031-9422(79)80021-7. DOI
Aremu A.O., Plačková L., Gruz J., Bíba O., Šubrtová M., Novák O., Doležal K., Van Staden J. Accumulation pattern of endogenous cytokinins and phenolics in different organs of 1-year-old cytokinin pre-incubated plants: Implications for conservation. Plant Biol. 2015;17:1146–1155. doi: 10.1111/plb.12367. PubMed DOI
Von Schwartzenberg K., Núñez M.F., Blaschke H., Dobrev P.I., Novák O., Motyka V., Strnad M. Cytokinins in the bryophyte Physcomitrella patens: Analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol. 2007;145:786–800. doi: 10.1104/pp.107.103176. PubMed DOI PMC
Kiran N.S., Benková E., Reková A., Dubová J., Malbeck J., Palme K., Brzobohatý B. Retargeting a maize β-glucosidase to the vacuole—Evidence from intact plants that zeatin-O-glucoside is stored in the vacuole. Phytochemistry. 2012;79:67–77. doi: 10.1016/j.phytochem.2012.03.012. PubMed DOI
Fusseder A., Ziegler P. Metabolism and compartmentation of dihydrozeatin exogenously supplied to photoautotrophic suspension cultures of Chenopodium rubrum. Planta. 1988;173:104–109. doi: 10.1007/BF00394494. PubMed DOI
Horgan R., Hewett E.W., Horgan J.M., Purse J., Wareing P.F. A new cytokinin from Populus x robusta. Phytochemistry. 1975;14:1005–1008. doi: 10.1016/0031-9422(75)85176-4. DOI
Chaves das Neves A new cytokinin from fruits of Zantedeschia-Aethiopica. Tetrahedron. 1980;21:4387–4390. doi: 10.1016/S0040-4039(00)77865-8. DOI
Ge L., Yong J.W.H., Goh N.K., Chia L.S., Tan S.N., Ong E.S. Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography-tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005;829:26–34. doi: 10.1016/j.jchromb.2005.09.026. PubMed DOI
Sáenz L., Jones L.H., Oropeza C., Vláčil D., Strnad M. Endogenous isoprenoid and aromatic cytokinins in different plant parts of Cocos nucifera (L.) Plant Growth Regul. 2003;39:205–215. doi: 10.1023/A:1022851012878. DOI
Kamínek M., Vaněk T. Cytokinin activities of N6-benzyladenosine derivatives hydroxylated on the side-chain phenyl ring. J. Plant Growth Regul. 1987:113–120. doi: 10.1007/BF02026460. DOI
Aremu A.O., Bairu M.W., Doležal K., Finnie J.F., Van Staden J. Topolins: A panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult. 2012;108:1–16. doi: 10.1007/s11240-011-0007-7. DOI
Baroja-Fernández E., Aguirreolea J., Martínková H., Hanuš J., Strnad M. Aromatic cytokinins in micropropagated potato plants. Plant Physiol. Biochem. 2002;40:217–224. doi: 10.1016/S0981-9428(02)01362-1. DOI
Vasudevan R., van Staden J. Cytokinin and explant types influence in vitro plant regeneration of Leopard Orchid (Ansellia africana Lindl.) Plant Cell Tissue Organ Cult. 2011;107:123–129. doi: 10.1007/s11240-011-9964-0. DOI
Podwyszynska M., Wegrzynowicz-Lesiak E., Dolezal K., Krekule J., Strnad M., Saniewski M. New cytokinins—Meta-methoytopolins in micropropagation of Cotinus Coggygria Scop. ‘Royal Purple’. Propag. Ornam. PLANTS. 2012;12:220–228.
Ördög V., Stirk W.A., Van Staden J., Novák O., Strnad M. Endogenous cytokinins in three genera of microalgae from the chlorophyta. J. Phycol. 2004;40:88–95. doi: 10.1046/j.1529-8817.2004.03046.x. DOI
Ivanova M., Novák O., Strnad M., Van Staden J. Endogenous cytokinins in shoots of Aloe polyphylla cultured in vitro in relation to hyperhydricity, exogenous cytokinins and gelling agents. Plant Growth Regul. 2006;50:219–230. doi: 10.1007/s10725-006-9139-x. DOI
Tarkowská D., Doležal K., Tarkowski P., Åstot C., Holub J., Fuksová K., Schmülling T., Sandberg G., Strnad M. Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus x canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. Physiol. Plant. 2003;117:579–590. doi: 10.1034/j.1399-3054.2003.00071.x. PubMed DOI
Bogaert I., Van Cauter S., Werbrouck S.P.O., Doležal K. New aromatic cytokinins can make the difference. Acta Hortic. 2006;725 I:265–270. doi: 10.17660/ActaHortic.2006.725.33. DOI
Bairu M.W., Stirk W.A., Dolezal K., Van Staden J. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell. Tissue Organ Cult. 2007;90:15–23. doi: 10.1007/s11240-007-9233-4. DOI
Amoo S.O., Finnie J.F., van Staden J. The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regul. 2011;63:197–206. doi: 10.1007/s10725-010-9504-7. DOI
Aremu A.O., Bairu M.W., Szüčová L., Finnie J.F., Van Staden J. The role of meta-topolins on the photosynthetic pigment profiles and foliar structures of micropropagated “Williams” bananas. J. Plant Physiol. 2012;169:1530–1541. doi: 10.1016/j.jplph.2012.06.006. PubMed DOI
Matsubara S. Structure-activity relationships of cytokinins. Phytochemistry. 1980;19:2239–2253. doi: 10.1016/S0031-9422(00)91006-9. DOI
Murvanidze N., Doležal K., Werbrouck S.P.O. Fluorine containing topolin cytokinins for Phalaenopsis Amabilis (L.) blume micropropagation. Propag. Ornam. Plants. 2019;19:48–51.
Durán-Medina Y., Díaz-Ramírez D., Marsch-Martínez N. Cytokinins on the move. Front. Plant Sci. 2017;8:146. doi: 10.3389/fpls.2017.00146. PubMed DOI PMC
Bryksová M. Ph.D. Thesis. Palacký University Olomouc; Olomouc, Czech republic: Preparation and biological activity of the new cytokinin derivatives.
Wan Z.K., Binnun E., Wilson D.P., Lee J. A highly facile and efficient one-step synthesis of N6-adenosine and N6-2′-deoxyadenosine derivatives. Org. Lett. 2005;7:5877–5880. doi: 10.1021/ol052424+. PubMed DOI
Kobayashi H., Morisaki N., Tago Y., Hashimoto Y., Iwasaki S., Kawachi E., Nagata R., Shudo K. Identification of a major cytokinin in coconut milk. Experientia. 1995;51:1081–1084. doi: 10.1007/BF01946921. PubMed DOI
Miernyk J.A., Blaydes D.F. Short-Term Metabolism of Radioactive Kinetin during Lettuce Seed Germination. Physiol. Plant. 1977;39:4–8. doi: 10.1111/j.1399-3054.1977.tb09276.x. DOI
Pietraface W.J., Blaydes D.F. Activity and metabolism of 9-substituted cytokinins during lettuce seed germination. Physiol. Planetarum. 1981;53:249–254. doi: 10.1111/j.1399-3054.1981.tb04495.x. DOI
Zatloukal M., Dolezal K., Voller J., Spichal L., Strnad M. Substitution Derivatives of N-Benzyladenosine-5′-monophosphate, Methods of Preparation Thereof, Use Thereof as Medicaments, and Therapeutic Preparations Containing these Compounds. WO 2011134444, EP2563801 (24.9.2014)
Voller J., Zatloukal M., Lenobel R., Doležal K., Béreš T., Kryštof V., Spíchal L., Niemann P., Džubák P., Hajdúch M., et al. Anticancer activity of natural cytokinins: A structure-activity relationship study. Phytochemistry. 2010;71:1350–1359. doi: 10.1016/j.phytochem.2010.04.018. PubMed DOI
Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. 4th ed. Garland Science; New York, NY, USA: 2002. pp. 120–121.
Inoue Y., Ling F., Kimura A. 2′-Deoxyribosylzeatin: A Novel Inhibitor for DNA Polymerase I of Escherichia coli. Agric. Biol. Chem. 1991;55:629–631. doi: 10.1271/bbb1961.55.629. DOI
Matušková V., Zatloukal M., Voller J., Grúz J., Pěkná Z., Briestenská K., Mistríková J., Spíchal L., Doležal K., Strnad M. New aromatic 6-substituted 2′-deoxy-9-(β)-D-ribofuranosylpurine derivatives as potential plant growth regulators. Bioorgan. Med. Chem. 2020 doi: 10.1016/j.bmc.2019.115230. in press. PubMed DOI
Pohjala L., Barai V., Azhayev A., Lapinjoki S., Ahola T. A luciferase-based screening method for inhibitors of alphavirus replication applied to nucleoside analogues. Antivir. Res. 2008;78:215–222. doi: 10.1016/j.antiviral.2008.01.001. PubMed DOI
Tararov V.I., Tijsma A., Kolyachkina S.V., Oslovsky V.E., Neyts J., Drenichev M.S., Leyssen P., Mikhailov S.N. Chemical modification of the plant isoprenoid cytokinin N 6-isopentenyladenosine yields a selective inhibitor of human enterovirus 71 replication. Eur. J. Med. Chem. 2015;90:406–413. doi: 10.1016/j.ejmech.2014.11.048. PubMed DOI
Drenichev M.S., Oslovsky V.E., Sun L., Tijsma A., Kurochkin N.N., Tararov V.I., Chizhov A.O., Neyts J., Pannecouque C., Leyssen P., et al. Modification of the length and structure of the linker of N6-benzyladenosine modulates its selective antiviral activity against enterovirus 71. Eur. J. Med. Chem. 2016;111:84–94. doi: 10.1016/j.ejmech.2016.01.036. PubMed DOI
Dutta S.P., Mittelman A., Chen C.M., Chheda G.B. Synthesis and biological-activities of some analogs of N-6-(Δ2-isopentenyl)adenosine. J. Carbohydrates Nucleosides Nucleotides. 1978;5:47–57.
Hansske F., Madej D., Robins M.J. 2′ And 3′-ketonucleosides and their arabino and xylo reduction products. Tetrahedron. 1984;40:125–135. doi: 10.1016/0040-4020(84)85111-X. DOI
Reist E.J., Benitez A., Goodman L., Baker B.R., Lee W.W. Potential Anticancer Agents.1 LXXVI. Synthesis of Purine Nucleosides of β-D-Arabinofuranose. J. Org. Chem. 1962;27:3274–3279. doi: 10.1021/jo01056a071. DOI
Secrist III J.A., Shortnacy A.T., Montgomery J.A. Synthesis and Biological Evaluations of Certain 2-Halo-2′-Substituted Derivatives of 9-β-D-Arabinofuranosyladenine. J. Med. Chem. 1988;31:405–410. doi: 10.1021/jm00397a024. PubMed DOI
Gosselin G., Bergogne M.C., Imbach J.L. Obtaining of arabinofurannonucleosides using the chemical transformation of certain xylofurannonucleosides. Nucleosides Nucleotides. 1984;3:265–275. doi: 10.1080/07328318408081263. DOI
Krenitsky T.A., Koszalka G.W., Tuttle J.V., Rideout J.L., Elion G.B. An enzymic synthesis of purine D-Arabinonucleosides. Carbohydr. Res. 1981;97:139–146. doi: 10.1016/S0008-6215(00)80531-5. DOI
Koszalka G.W., Averett D.R., Fyfe J.A., Roberts G.B., Spector T., Biron K., Krenitsky T.A. 6-N-substituted derivatives of adenine arabinoside as selective inhibitors of varicella-zoster virus. Antimicrob. Agents Chemother. 1991;35:1437–1443. doi: 10.1128/AAC.35.7.1437. PubMed DOI PMC
Kaneko M., Kimura M., Nishimura T.S.B. Synthesis of N6-substituted or 8-substituted 9-(β-D-arabinofuranosyl)-adenines and their anti-viral activities against Herpes-Simplex and Vaccinia viruses. Chem. Pharm. Bull. 1977;25:2482–2489. doi: 10.1248/cpb.25.2482. PubMed DOI
Ikehara M., Kaneko M., Ogiso Y. Cleavage of 8,2′-anhydro-8-oxy-9-β-D-arabinofuranosyladenine with hydrogen sulfide and its interconversion with 8,5′-cyclonucleoside. Tetrahedron Lett. 1970;11:4673–4676. doi: 10.1016/S0040-4039(00)89405-8. DOI
Ikehara M., Ogiso Y. Studies of nucleosides and nucleotides-LIV. Purine cyclonucleosides. 19. Further investigations on the cleavage of the 8,2′-O-anhydro linkage. A new synthesis of 9-β-D-arabinofuranosyladenine. Tetrahedron. 1972;28:3695–3704. doi: 10.1016/S0040-4020(01)93816-5. DOI
Bryksová M., Dabravolski S., Kučerová Z., Zavadil Kokáš F., Špundová M., Plíhalová L., Takáč T., Grúz J., Hudeček M., Hloušková V., et al. Aromatic cytokinin arabinosides promote PAMP-like responses and positively regulate leaf longevity. ACS Chem. Biol. 2020 Submitted. PubMed
Taylor J.S., Koshioka M., Pharis R.P., Sweet G.B. Changes in Cytokinins and Gibberellin-Like Substances in Pinus radiata Buds during Lateral Shoot Initiation and the Characterization of Ribosyl Zeatin and a Novel Ribosyl Zeatin Glycoside. Plant Physiol. 1984;74:626–631. doi: 10.1104/pp.74.3.626. PubMed DOI PMC
Morris J.W., Doumas P., Morris R.O., Zaerr J.B. Cytokinins in vegetative and reproductive buds of Pseudotsuga menziesii. Plant Physiol. 1990;93:67–71. doi: 10.1104/pp.93.1.67. PubMed DOI PMC
Zhang H., Horgan K.J., Reynolds P.H.S., Norris G.E., Jameson P.E. Novel cytokinins: The predominant forms in mature buds of Pinus radiata. Physiol. Plant. 2001;112:127–134. doi: 10.1034/j.1399-3054.2001.1120117.x. PubMed DOI
Zhang H., Horgan K.J., Reynolds P.H.S., Jameson P.E. Cytokinins and bud morphology in Pinus radiata. Physiol. Plant. 2003;117:264–269. doi: 10.1034/j.1399-3054.2003.00026.x. DOI
Blakesley D., Lenton J.R., Horgan R. Benzyladenine ribosylglucoside: A metabolite of benzyladenine in Gerbera jamesonii. Phytochemistry. 1991;30:387–388. doi: 10.1016/0031-9422(91)83689-I. DOI
Auer C.A., Cohen J.D. Identification of a benzyladenine disaccharide conjugate produced during shoot organogenesis in Petunia leaf explant. Plant Physiol. 1993;102:541–545. doi: 10.1104/pp.102.2.541. PubMed DOI PMC
Cortizo M., Cuesta C., Centeno M.L., Rodríguez A., Fernández B., Ordás R. Benzyladenine metabolism and temporal competence of Pinus pinea cotyledons to form buds in vitro. J. Plant Physiol. 2009;166:1069–1076. doi: 10.1016/j.jplph.2008.12.013. PubMed DOI
Zhang H., Horgan K.J., Reynolds P.H.S., Jameson P.E. 6-Benzyladenine metabolism during reinvigoration of mature Pinus radiata buds in vitro. Tree Physiol. 2010;30:514–526. doi: 10.1093/treephys/tpp130. PubMed DOI
Tahir M., Banyal R. Clonal forestry: An effective technique for increasing the productivity of plantations. SKUAST J. Res. 2017;19:22–28.
Fox J.E., Sood C.K., Buckwalter B., McChesney J.D. The metabolism and biological activity of a 9-substituted cytokinin. Plant Physiol. 1971;47:275–281. doi: 10.1104/pp.47.2.275. PubMed DOI PMC
Zhang R., Letham D.S. Cytokinin biochemistry in relation to leaf senescence. III. The senescence-retarding activity and metabolism of 9-substituted 6-benzylaminopurines in soybean leaves. J. Plant Growth Regul. 1989;8:181–197. doi: 10.1007/BF02308087. DOI
Corse J., Pacovsky R.S., Lyman M.L., Brandon D.L. Biological activity of several 9-nonglycosidic-substituted natural cytokinins. J. Plant Growth Regul. 1989;8:211–223. doi: 10.1007/BF02308090. DOI
Szüčová L., Spíchal L., Doležal K., Zatloukal M., Greplová J., Galuszka P., Kryštof V., Voller J., Popa I., Massino F.J., et al. Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorganic Med. Chem. 2009;17:1938–1947. doi: 10.1016/j.bmc.2009.01.041. PubMed DOI
Duke C., Macleod J., Summons R., Letham D., Parker C. The Structure and Synthesis of Cytokinin Metabolites. II. Lupinic Acid and O-β-d-Glucopyranosylzeatin From Lupinus angustifolius. Aust. J. Chem. 1978;31:1291–1301. doi: 10.1071/CH9781291. DOI
Entsch B., Parker C.W., Letham D.S. An enzyme from lupin seeds forming alanine derivatives of cytokinins. Phytochemistry. 1983;22:375–381. doi: 10.1016/0031-9422(83)83008-8. DOI
Palni L.M.S., Palmer M.V., Letham D.S. The stability and biological activity of cytokinin metabolites in soybean callus tissue. Planta. 1984;160:242–249. doi: 10.1007/BF00402861. PubMed DOI
Mok D.W.S., Mok M.C. Cytokinins: Chemistry, Activity, and Function. CRC Press; Boca Raton, FL, USA: 1994.
Kuhnle J.A., Fuller G., Corse J., Mackey B.E. Antisenescent Activity of Natural Cytokinins. Physiol. Plant. 1977;41:14–21. doi: 10.1111/j.1399-3054.1977.tb01514.x. DOI
Kuroda M., Oaiawa T., Imagawa H. Changes in chloroplast peroxidase activities in relation to chlorophyll loss in barley leaf segments. Physiol. Plant. 1990;80:555–560. doi: 10.1111/j.1399-3054.1990.tb05678.x. DOI
Kar M., Mishra D. Catalase, Peroxidase, and Polyphenoloxidase Activities during Rice Leaf Senescence. Plant Physiol. 1976;57:315–319. doi: 10.1104/pp.57.2.315. PubMed DOI PMC
Varga A., Bruinsma J. Effects of different cytokinins on the senescence of detached oat leaves. Planta. 1973;111:91–93. doi: 10.1007/BF00386739. PubMed DOI
Eisinger W. Role of Cytokinins in Carnation Flower Senescence. Plant Physiol. 1977;59:707–709. doi: 10.1104/pp.59.4.707. PubMed DOI PMC
Mik V., Szüčová L., Šmehilová M., Zatloukal M., Doležal K., Nisler J., Grúz J., Galuszka P., Strnad M., Spíchal L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. Phytochemistry. 2011;72:821–831. doi: 10.1016/j.phytochem.2011.02.002. PubMed DOI
Mik V., Szüčová L., Spíchal L., Plíhal O., Nisler J., Zahajská L., Doležal K., Strnad M. N9-Substituted N6-[(3-methylbut-2-en-1-yl)amino]purine derivatives and their biological activity in selected cytokinin bioassays. Bioorg. Med. Chem. 2011;19:7244–7251. doi: 10.1016/j.bmc.2011.09.052. PubMed DOI
Robins M.J., Hall R.H., Thedford R. N6-(Δ2-Isopenteny1) adenosine. A Component of the Transfer Ribonucleic Acid of Yeast and of Mammalian Tissue, Methods of Isolation, and Characterization. Biochemistry. 1967;6:1837–1848. doi: 10.1021/bi00858a035. PubMed DOI
Nisler J., Zatloukal M., Popa I., Doležal K., Strnad M., Spíchal L. Cytokinin receptor antagonists derived from 6-benzylaminopurine. Phytochemistry. 2010;71:823–830. doi: 10.1016/j.phytochem.2010.01.018. PubMed DOI
Spíchal L., Werner T., Popa I., Riefler M., Schmülling T., Strnad M. The purine derivative PI-55 blocks cytokinin action via receptor inhibition. FEBS J. 2009;276:244–253. doi: 10.1111/j.1742-4658.2008.06777.x. PubMed DOI
Johnston G.F.S., Jeffcoat B. Effects of some growth regulators on tiller bud elongation in cereals. New Phytol. 1977;79:239–245. doi: 10.1111/j.1469-8137.1977.tb02201.x. DOI
Letham D.S. Regulators of Cell Division in Plant Tissues: VI. The effects of zeatin and other stimulants of cell division on apple fruit development. N. Z. J. Agric. Res. 1969;12:1–20. doi: 10.1080/00288233.1969.10427073. DOI
Weaver R.J., van Overbeek J., Pool R.M. Induction of Fruit Set in Vitis vinifera L. by a Kinin. Nature. 1965;206:952–953. doi: 10.1038/206952b0. DOI
Arena M.E., Pastur G.J.M. Adventitious shoot induction from leaf explants of Ribes magellanicum cultured in vitro. Sci. Hortic. 1997;72:73–79. doi: 10.1016/S0304-4238(96)00940-5. DOI
Falck J.R., Li D.R., Bejot R., Mioskowski C. An economic and practical synthesis of the 2-tetrahydrofuranyl ether protective group. Tetrahedron Lett. 2006;47:5111–5113. doi: 10.1016/j.tetlet.2006.05.081. PubMed DOI PMC
Amoo S.O., Aremu A.O., Moyo M., Szüčová L., Doležal K., Van Staden J. Physiological effects of a novel aromatic cytokinin analogue in micropropagated Aloe arborescens and Harpagophytum procumbens. Plant Cell. Tissue Organ Cult. 2014;116:17–26. doi: 10.1007/s11240-013-0377-0. DOI
Amoo S.O., Aremu A.O., Moyo M., Sunmonu T.O., Plíhalová L., Doležal K., Van Staden J. Physiological and biochemical effects of a tetrahydropyranyl-substituted meta-topolin in micropropagated Merwilla plumbea. Plant Cell. Tissue Organ Cult. 2015;121:579–590. doi: 10.1007/s11240-015-0728-0. DOI
Masondo N.A., Aremu A.O., Finnie J.F., Van Staden J. Plant growth regulator induced phytochemical and antioxidant variations in micropropagated and acclimatized Eucomis autumnalis subspecies autumnalis (Asparagaceae) Acta Physiol. Plant. 2014;36:2467–2479. doi: 10.1007/s11738-014-1619-4. DOI
Aremu A.O., Bairu M.W., Szüčová L., Doležal K., Finnie J.F., Van Staden J. Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated “Williams” banana. Acta Physiol. Plant. 2012;36:2265–2273. doi: 10.1007/s11738-012-1027-6. DOI
Aremu A.O., Plačková L., Bairu M.W., Novák O., Szüčová L., Doležal K., Finnie J.F., Van Staden J. Endogenous cytokinin profiles of tissue-cultured and acclimatized “Williams” bananas subjected to different aromatic cytokinin treatments. Plant Sci. 2014;214:88–98. doi: 10.1016/j.plantsci.2013.09.012. PubMed DOI
Zahajská L., Nisler J., Voller J., Gucký T., Pospíšil T., Spíchal L., Strnad M. Preparation, characterization and biological activity of C8-substituted cytokinins. Phytochemistry. 2017;135:115–127. doi: 10.1016/j.phytochem.2016.12.005. PubMed DOI
Taddei D., Kilian P., Slawin A.M.Z., Woollins J.D. Synthesis and full characterisation of 6-chloro-2-iodopurine, a template for the functionalisation of purines. Org. Biomol. Chem. 2004;2:665–670. doi: 10.1039/b312629c. PubMed DOI
Robins R.K., Godefroi E.F., Taylor E.C., Lewis L.R., Jackson A. Purine Nucleosides. I. The Synthesis of Certain 6-Substituted-9-(tetrahydro-2-pyxanyl)- purines as Models of Purine Deoxynucleosides. J. Am. Chem. Soc. 1961;83:2574–2579. doi: 10.1021/ja01472a034. DOI
MJNolsoee J., Gundersen L.-L., Rise F. Synthesis of 8-Halopurines by Reaction of Lithiated Purines with Appropriate Halogen Donors. Synth. Commun. 1998;28:4303–4315. doi: 10.1080/00397919808004464. DOI
Hönig M., Plíhalová L., Spíchal L., Grúz J., Kadlecová A., Voller J., Svobodová A.R., Vostálová J., Ulrichová J., Doležal K., et al. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. Eur. J. Med. Chem. 2018;150:946–957. doi: 10.1016/j.ejmech.2018.03.043. PubMed DOI