Dynamic changes of endogenous phytohormones and carbohydrates during spontaneous morphogenesis of Centaurium erythraea Rafn
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39568459
PubMed Central
PMC11576275
DOI
10.3389/fpls.2024.1487897
Knihovny.cz E-zdroje
- Klíčová slova
- auxin, centaury, cytokinin, morphogenesis, phytohormone, soluble sugars,
- Publikační typ
- časopisecké články MeSH
Common centaury (Centaurium eryhtraea Rafn) is a medicinal plant species with vigorous morphogenic potential in vitro. The process of spontaneous shoot regeneration in a solid root culture is characteristic for this plant species. In this context, the aim of this work was to investigate the dynamic changes of endogenous phytohormones and carbohydrates content in root explants at different time points (0, 2, 4, 7, 14, 21, 28, and 60 days) during spontaneous centaury morphogenesis in vitro. Detailed analysis of cytokinins (CKs) showed that trans-zeatin (tZ) was the major bioactive CK at all time points. The corresponding riboside, tZ9R, was also determined in the majority of the identified transport forms, at all time-points. Further analysis of endogenous auxin revealed a significant increase in endogenous indole-3-acetic acid (IAA) after 21 days, when a huge jump in the ratio of IAA/bioactive CKs was also observed. The maximum total soluble sugar content was measured after 14 days, while a significant decrease was determined after 21 days, when the first regenerated adventitious shoots appeared. This undoubtedly indicates an increased energy requirement prior to the actual regeneration of the shoots. The obtained results indicate that the period from day 14 to day 21 involves the most dramatic disturbances in endogenous bioactive CKs, IAA and carbohydrate balance, which are very important and valuable factors for the onset of shoot regeneration.
Zobrazit více v PubMed
Akabane T., Suzuki N., Ikeda K., Yonezawa T., Nagatoishi S., Matsumura H., et al. . (2024). THOUSAND-GRAIN WEIGHT 6, which is an IAA-glucose hydrolase, preferentially recognizes the structure of the indole ring. Sci. Rep. 14, 6778. doi: 10.1038/s41598-024-57506-z PubMed DOI PMC
Aragão V. P. M., de Souza Ribeiro Y. R., Reis R. S., Macedo A. F., Floh E. I. S., Silveira V., et al. . (2016). In vitro organogenesis of Cedrela fissilis Vell. (Meliaceae): the involvement of endogenous polyamines and carbohydrates on shoot development. Plant Cell Tiss. Org 124, 611–620. doi: 10.1007/s11240-015-0919-8 DOI
Bajguz A., Piotrowska-Niczyporuk A. (2023). Biosynthetic pathways of hormones in plants. Metabolites 13, 884. doi: 10.3390/metabo13080884 PubMed DOI PMC
Casanova-Sáez R., Mateo-Bonmati E., Ljung K. (2021). Auxin metabolism in plants. CSH Perspect. Biol. 13, a039867. doi: 10.1101/cshperspect.a039867 PubMed DOI PMC
Dahiya A., Saini R., Saingh Haini S., Devi A. (2017). Sucrose metabolism: controls the sugar sensing and generation of signalling molecules in plants. J. Pharmacogn. Phytochem. 6, 1563–1572.
De Conti D., Corredor-Prado J. P., Roecker Junior D., Suzuki R. M., Guerra M. P., Pescador R. (2018). Determination of endogenous IAA and carbohydrates during the induction and development of protocorm-like bodies of Cattleya tigrina A. Richard. Acta Sci. Biol. Sci. 40, e37874. doi: 10.4025/actascibiolsci.v40i1.37874 DOI
Gago J., Martínez-Núñez L., Landín M., Flaxas J., Gallego P. P. (2014). Modeling the effects of light and sucrose on in vitro propagated plants: a multiscale system analysis using artificial intelligence technology. PloS One 9, e85989. doi: 10.1371/journal.pone.0085989 PubMed DOI PMC
Grzyb M., Kalandyk A., Waligórski P., Mikuła A. (2017). The content of endogenous hormones and sugars in the process of early somatic embryogenesis in the tree fern Cyathea delgadii Sternb. Plant Cell Tiss. Org 129, 387–397. doi: 10.1007/s11240-017-1185-8 DOI
Guo W. J., Pommerrenig B., Neuhaus H. E., Keller I. (2023). Interaction between sugar transport and plant development. J. Plant Physiol. 288, 154073. doi: 10.1016/j.jplph.2023.154073 PubMed DOI
Haberer G., Kieber J. J. (2002). Cytokinins. New Insights into a classic phytohormone. Plant Physiol. 128, 354–362. doi: 10.1104/pp.010773 PubMed DOI PMC
Hayashi Ki., Arai K., Aoi Y., Tanaka Y., Hira H., Guo R., et al. . (2021). The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 12, 6752. doi: 10.1038/s41467-021-27020-1 PubMed DOI PMC
Hirayama T., Mochida K. (2022). Plant hormonomics: a key tool for deep physiological phenotyping to improve crop productivity. Plant Cell Physiol. 63, 1826–1839. doi: 10.1093/pcp/pcac067 PubMed DOI PMC
Hluska T., Hlusková L., Emery R. J. N. (2021). The hulks and the deadpools of the cytokinin universe: a dual strategy for cytokinin production, translocation, and signal transduction. Biomolecules 11, 209. doi: 10.3390/biom11020209 PubMed DOI PMC
Hou B., Lim E. K., Higgins G. S., Bowles D. J. (2004). N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana . J. Biol. Chem. 279, 47822–47832. doi: 10.1074/jbc.M409569200 PubMed DOI
Hoyerová K., Hošek P. (2020). New insights inti the metabolism and role of cytokinin N-glucosides in plants. Front. Plant Sci. 11, 741. doi: 10.389/fpls.2020.00741 PubMed DOI PMC
Hu W., Fagundez S., Katin-Grazzini L., Li Y., Li W., Chen Y., et al. . (2017). Endogenous auxin and its manipulation influence in vitro shoot organogenesis of citrus epicotyl explants. Hortic. Res. 4, 17071. doi: 10.1038/hortres.2017.71 PubMed DOI PMC
Ikeuchi M., Favero D. S., Sakamoto Y., Iwase A., Coleman D., Rymen B., et al. . (2019). Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 70, 377–406. doi: 10.1146/annurev-arplant-050718-100434 PubMed DOI
Kamínek M., Březinov A., Gaudinová A., Motyka V., Vaňková R., Zaăímalová E. (2000). Purine cytokinins: a proposal for abbreviations. Plant Growth Regul. 32, 253–256. doi: 10.1023/A:1010743522048 DOI
Kasahara H. (2016). Current aspects of auxin biosynthesis in plants. Biosci. Biotech. Bioch 80, 34–42. doi: 10.1080/09168451.2015.1086259 PubMed DOI
Khai H. D., Bien L. T., Vinh N. Q., Dung D. M., Nghiep N. D., Mai N. T. N., et al. . (2021). Alterations in endogenous hormone levels and energy metabolism promoted the induction, differentiation and maturation of Begonia somatic embryos under clinorotation. Plant Sci. 312, 111045. doi: 10.1016/j.plantsci.2021.111045 PubMed DOI
Khan M. R. I., Wang Y., Afrin S., He L., Ma G. (2018). Glycogen and extracellular glucose estimation from cyanobacteria Synechocystis sp. PCC 6803. Bio-protocol 8, e2826. doi: 10.21759/BioProtoc.2826 PubMed DOI PMC
Kiba T., Mizutani K., Nakahara A., Takebayashi Y., Kojima M., Hobo T., et al. . (2023). The trans-zeatin-type side-chain modification of cytokinins controls rice growth. Plant Physiol. 192, 2457–2474. doi: 10.1093/plphys/kiad197 PubMed DOI PMC
Kiba T., Takei K., Kojima M., Sakakibara H. (2013). Side-chain modification of cytokinins controls shoot growth in Arabidopsis . Dev. Cell 27, 452–461. doi: 10.1016/j.devcel.2013.10.004 PubMed DOI
Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. Development 145, dev149344. doi: 10.1242/dev.149344 PubMed DOI
Korasick D. A., Enders T. A., Strader L. C. (2013). Auxin biosynthesis and storage forms. J. Exp. Bot. 4, 2541–2555. doi: 10.1093/jxb/ert080 PubMed DOI PMC
Kottapalli J., David-Schwartz R., Khamaisi B., Brandsma D., Lugassi N., Egbaria A., et al. . (2018). Sucrose-induced stomatal closure is conserved across evolution. PloS One 13, e0205359. doi: 10.1371/journal.pone.0205359 PubMed DOI PMC
Kushwah S., Laxmi A. (2014). The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana . Plant Cell Environ. 37, 235–253. doi: 10.1111/pce.12149 PubMed DOI
Le C., Stuckey D. C. (2016). Colorimetric measurement of carbohydrates in biological wastewater treatment systems: a critical evaluation. Water Res. 94, 280–287. doi: 10.1016/j.watres.2016.03.008 PubMed DOI
Ljung K. (2013). Auxin metabolism and homeostasis during plant development. Development 140, 943–950. doi: 10.1242/dev.086363 PubMed DOI
Lomin S. N., Krivosheev D. M., Steklov M. Y., Arkhipov D. V., Osolodkin D. I., Schmülling T., et al. . (2015). Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 66, 1851–1863. doi: 10.1093/jxb/eru522 PubMed DOI PMC
Marković M., Trifunović-Momčilov M., Uzelac B., Radulović O., Milošević S., Jevremović S., et al. . (2020). Breaking the dormancy of snake’s head fritillary (Fritillaria meleagris L.) in vitro bulbs – part 2: effect of GA3 soaking and chilling on sugar status in sprouted bulbs. Plants 9, 1573. doi: 10.3390/plants9111573 PubMed DOI PMC
Mercier H., Souza B. M., Kraus J. E., Hamasaki R. M., Sotta B. (2003). Endogenous auxin and cytokinin contents associated withshoot formation in leaves of pineapple cultured in vitro. Braz. J. Plant Physiol. 15, 107–112. doi: 10.1590/S1677-04202003000200006 DOI
Messineo L., Musarra E. (1972). Sensitive spectrophotometric determination of fructose, sucrose, and inulin without interference from aldohexoses, aldopentoses, and ketopentoses. Int. J. Biochem. 3, 691–699. doi: 10.1016/0020-711X(72)90063-8 DOI
Miao Y., Zhu Z., Guo Q., Yang X., Liu L., Sun Y., et al. . (2016). Dynamic changes in carbohydrate metabolism and endogenous hormones during Tulipa edulis stolon development into a new bulb. J. Plant Biol. 59, 121–132. doi: 10.1007/s12374-016-0456-y DOI
Morales-Fernández S. D., Mora-Aguilar R., Salinas-Moreno Y., RodríguezPérez J. E., Colinas-León M. T., Lozoya-Saldaña M. T. (2015). Growth, yield and sugar content of potato tubers at different physiological ages. Rev. Chapingo Ser. Hortic. 21, 129–146. doi: 10.5154/r.rchsh.2014.06.031 DOI
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473–479. doi: 10.111/j.1399-3054.1962.tb08052.x DOI
Nguyen H. N., Nguyen T. Q., Kisiala A. B., Emery R. J. N. (2021). Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta 254, 45. doi: 10.1007/s00425-021-03693-2 PubMed DOI
Patrick J. W., Botha F. C., Birch R. G. (2013). Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnol. J. 11, 142–156. doi: 10.1111/pbi.12002 PubMed DOI
Pérez-Alonso M. M., Ortiz-García P., Moya-Cuevas J., Lehmann T., Sánchez-Parra B., Björk R. G., et al. . (2021). Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. J. Exp. Bot. 72, 459–475. doi: 10.1093/jxb/eraa485 PubMed DOI PMC
Pokorná E., Hluska T., Galuszka P., Hallmark H. T., Dobrev P. I., Záveská Drábková L., et al. . (2021). Cytokinin N-glucosides: Occurrence, metabolism and biological activities in plants. Biomolecules 11, 24. doi: 10.3390/biom11010024 PubMed DOI PMC
Prerostova S., Dobrev P. I., Knirsch V., Jarosova J., Gaudinova A., Zupkova B., et al. . (2021). Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 22, 2736. doi: 10.3390/ijms22052736 PubMed DOI PMC
Raspor M., Motyka V., Kaleri A. R., Ninković S., Tubić L. J., Cingel A., et al. . (2021). Integrating the roles for cytokinin and auxin in de novo shoot organogenesis: from hormone uptake to signaling outputs. Int. J. Mol. Sci. 22, 8554. doi: 10.3390/ijms22168554 PubMed DOI PMC
Ren Z., Xu Y., Lvy X., Zhang D., Gao C., Lin Y., et al. . (2021). Early sucrose degradation and the dominant sucrose cleavage pattern influence Lycoris sprengeri bulblet regeneration in vitro . Int. J. Mol. Sci. 22, 11890. doi: 10.3390/ijms222111890 PubMed DOI PMC
Sakakibara H. (2021). Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant J. 105, 421–430. doi: 10.1111/tpj.15011 PubMed DOI
Seldimirova O. A., Kudoyarova G. R., Kruglova N. N., Zaytsev D. Y., Veselov S. Y. (2016). Changes in distribution of zeatin and indole-3-acetic acid in cells during callus induction and organogenesis in vitro in immature embryo culture of wheat. In Vitro Cell. Dev.–Pl 52, 251–264. doi: 10.1007/s11627-016-9767-4 DOI
Simonović A. D., Trifunović-Momčilov M. M., Filipović B. K., Marković M. P., Bogdanović M. D., Subotić A. R. (2021). Somatic embryogenesis in Centaurium erythraea Rafn – current status and perspectives: a review. Plants 10, 70. doi: 10.3390/plants10010070 PubMed DOI PMC
Skalický V., Kubeš M., Napier R., Novák O. (2018). Auxins and cytokinins – the role of subcellular organization on homeostasis. Int. J. Mol. Sci. 19, 3115. doi: 10.3390/ijms19103115 PubMed DOI PMC
Stepanova A. N., Alonso J. M. (2016). Auxin catabolism unplugged: role of IAA oxidation in auxin homeostasis. P. Natl. Acad. Sci. U.S.A. 13, 10742–10744. doi: 10.1073/pnas.1613506113 PubMed DOI PMC
Subotić A., Janković T., Jevremović S., Grubišić D. (2006). “Plant Tissue Culture and Secondary Metabolites Productions of Centaurium erythraea Rafn, a Medical Plant,” in Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues. Ed. Teixeira da Silva J. A. (Global Science Books, London, UK: ), 564–570.
Tang J., Li Y., Zhang L., Mu J., Jiang Y., Fu H., et al. . (2023). Biosynthetic pathways and functions of indole-3-acetic acid in microorganisms. Microorganisms 11, 2077. doi: 10.3390/microorganisms11082077 PubMed DOI PMC
Tejeda-Sartorius O., Soto-Hernández R. M., San Miguel-Chávez R., Trejo-Téllez L. I., Caamal-Velázquez H. (2022). Endogenous hormone profile and sugars display differential distribution in leaves and pseudobulbs of Laelia anceps plants induced and non-induced to flowering by exogenous gibberellic acid. Plants 11, 845. doi: 10.3390/plants11070845 PubMed DOI PMC
Trifunović-Momčilov M., Motyka V., Dragićević I.Č., Petrić M., Jevremović S., Malbeck J., et al. . (2016). Endogenous phytohormones in spontaneously regenerated Centaurium erythraea Rafn plants grown in vitro . J. Plant Growth Regul. 35, 543–552. doi: 10.1007/s00344-015-9558-x DOI
Vale E. M., Reis R. S., Passamani L. Z., Santa-Clarina C., Silveira V. (2018). Morphological analyses and variation in carbohydrate content during the maturation of somatic embryos of Carica papaya . Physiol. Mol. Biol. Plants 24, 295–305. doi: 10.1007/s12298-017-0501-4 PubMed DOI PMC
Vylíčilová H., Bryksová M., Matušková V., Doležal K., Plíhalová L., Strnad M. (2020). Naturally occurring and artificial N9-cytokinin conjugates: from synthesis to biological activity and back. Biomolecules 10, 832. doi: 10.3390/biom10060832 PubMed DOI PMC
Wang M., Le Gourrierec J., Jiao F., Demotes-Mainard S., Perez-Garcia M.-D., Ogé L., et al. . (2021). Convergence and divergence of sugar and cytokinin signaling in plant development. Int. J. Mol. Sci. 22, 1282. doi: 10.3390/ijms22031282 PubMed DOI PMC
Werner S., Bartrina I., Novák O., Strnad M., Werner T., Schmülling T. (2021). The cytokinin status of the epidermis regulates aspects of vegetative and reproductive development in Arabidopsis thaliana. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.613488 PubMed DOI PMC
Xu J., Li Q., Yang L., Li X., Wang Z., Zhang Y. (2020). Changes in carbohydrate metabolism and endogenous hormone regulation during bulblet initiation and development in Lycoris radiate . BMC Plant Biol. 20, 180. doi: 10.1186/s12870-020-02394-4 PubMed DOI PMC
Yaseen M., Ahmad T., Sablok G., Standardi A., Hafiz I. A. (2013). Review: role of carbon sources for in vitro plant growth and development. Mol. Biol. Rep. 40, 2837–2849. doi: 10.1007/s11033-012-2299-z PubMed DOI
Zhang Y. J., Li A., Liu X. Q., Sun J. X., Guo W. J., Zhang J. W., et al. . (2019). Changes in the morphology of the bud meristem and the levels of endogenous hormones after low temperature treatment of different Phalaenopsis cultivars. S. Afr. J. Bot. 125, 499–504. doi: 10.1016/j.sajb.2019.08.016 DOI
Zhang J., Peer W. A. (2017). Auxin homeostasis: the DAO of catabolism. J. Exp. Bot. 68, 3145–3154. doi: 10.1093/jxb/erx221 PubMed DOI
Zhao Y. (2014). Auxin biosynthesis. Arabidopsis Book 12, e0173. doi: 10.1199/tab.0173 PubMed DOI PMC