Re-appraising the evidence for the source, regulation and function of p53-family isoforms

. 2024 Nov 11 ; 52 (20) : 12112-12129.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39404067

Grantová podpora
FCE_3_2020_1_161877 Agencia Nacional de Investigación e Innovación
Programa de Desarrollo de las Ciencias Básicas
GACR 23-05951S Czech Science Foundation
CZ.02.01.01/00/22_008/0 004 644 European Union and the State Budget of the Czech Republic
Cancerforskningsfonden Norr, Cancerfonden, Vetenskapsradet
MH CZ-DRO MMCI Ministry of Health

The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.

Zobrazit více v PubMed

Nilsen T.W., Graveley B.R.. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010; 463:457–463. PubMed PMC

Wang E.T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mayr C., Kingsmore S.F., Schroth G.P., Burge C.B.. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008; 456:470–476. PubMed PMC

Tress M.L., Abascal F., Valencia A.. Alternative splicing may not Be the key to proteome complexity. Trends Biochem. Sci. 2017; 42:98–110. PubMed PMC

Xu C., Park J.-K., Zhang J.. Evidence that alternative transcriptional initiation is largely nonadaptive. PLoS Biol. 2019; 17:e3000197. PubMed PMC

Pickrell J.K., Pai A.A., Gilad Y., Pritchard J.K.. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 2010; 6:e1001236. PubMed PMC

Fox-Walsh K.L., Hertel K.J.. Splice-site pairing is an intrinsically high fidelity process. Proc. Natl Acad. Sci. U.S.A. 2009; 106:1766–1771. PubMed PMC

Saudemont B., Popa A., Parmley J.L., Rocher V., Blugeon C., Necsulea A., Meyer E., Duret L.. The fitness cost of mis-splicing is the main determinant of alternative splicing patterns. Genome Biol. 2017; 18:208. PubMed PMC

Bhuiyan S.A., Ly S., Phan M., Huntington B., Hogan E., Liu C.C., Liu J., Pavlidis P.. Systematic evaluation of isoform function in literature reports of alternative splicing. BMC Genomics. 2018; 19:637. PubMed PMC

Sinitcyn P., Richards A.L., Weatheritt R.J., Brademan D.R., Marx H., Shishkova E., Meyer J.G., Hebert A.S., Westphall M.S., Blencowe B.J.et al. .. Global detection of human variants and isoforms by deep proteome sequencing. Nat. Biotechnol. 2023; 41:1776–1786. PubMed PMC

Haque A., Engel J., Teichmann S.A., Lönnberg T.. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017; 9:75. PubMed PMC

Reyes A., Huber W.. Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic Acids Res. 2018; 46:582–592. PubMed PMC

Chia M., Li C., Marques S., Pelechano V., Luscombe N.M., van Werven F.J.. High-resolution analysis of cell-state transitions in yeast suggests widespread transcriptional tuning by alternative starts. Genome Biol. 2021; 22:34. PubMed PMC

de Klerk E., Hoen P.A.C.. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet. 2015; 31:128–139. PubMed

Haberle V., Arnold C.D., Pagani M., Rath M., Schernhuber K., Stark A.. Transcriptional cofactors display specificity for distinct types of core promoters. Nature. 2019; 570:122–126. PubMed PMC

Sandelin A., Carninci P., Lenhard B., Ponjavic J., Hayashizaki Y., Hume D.A.. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 2007; 8:424–436. PubMed

Alfonso-Gonzalez C., Legnini I., Holec S., Arrigoni L., Ozbulut H.C., Mateos F., Koppstein D., Rybak-Wolf A., Bönisch U., Rajewsky N.et al. .. Sites of transcription initiation drive mRNA isoform selection. Cell. 2023; 186:2438–2455. PubMed PMC

Benitez-Cantos M.S., Yordanova M.M., O’Connor P.B.F., Zhdanov A.V., Kovalchuk S.I., Papkovsky D.B., Andreev D.E., Baranov P.V. Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context. Genome Res. 2020; 30:974–984. PubMed PMC

Kozak M. Pushing the limits of the scanning mechanism for initiation of translation. Gene. 2002; 299:1–34. PubMed PMC

Harno E., Gali Ramamoorthy T., Coll A.P., White A.. POMC: the physiological power of hormone processing. Physiol. Rev. 2018; 98:2381–2430. PubMed PMC

Ossovskaya V.S., Bunnett N.W.. Protease-activated receptors: contribution to physiology and disease. Physiol. Rev. 2004; 84:579–621. PubMed

Shen K., Arslan S., Akopian D., Ha T., Shan S.. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature. 2012; 492:271–275. PubMed PMC

Bonczek O., Wang L., Gnanasundram S.V., Chen S., Haronikova L., Zavadil-Kokas F., Vojtesek B.. DNA and RNA binding proteins: from motifs to roles in cancer. Int. J. Mol. Sci. 2022; 23:9329. PubMed PMC

Haronikova L., Olivares-Illana V., Wang L., Karakostis K., Chen S., Fåhraeus R.. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res. 2019; 47:3257–3271. PubMed PMC

Katoch A., George B., Iyyappan A., Khan D., Das S.. Interplay between PTB and miR-1285 at the p53 3’UTR modulates the levels of p53 and its isoform Δ40p53α. Nucleic Acids Res. 2017; 45:10206–10217. PubMed PMC

Arsic N., Slatter T., Gadea G., Villain E., Fournet A., Kazantseva M., Allemand F., Sibille N., Seveno M., de Rossi S.et al. .. Δ133p53β isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells. Nat. Commun. 2021; 12:5463. PubMed PMC

Melo dos Santos N., de Oliveira G.A.P., Ramos Rocha M., Pedrote M.M., Diniz da Silva Ferretti G., Pereira Rangel L., Morgado-Diaz J.A., Silva J.L., Rodrigues Pereira Gimba E.. Loss of the p53 transactivation domain results in high amyloid aggregation of the Δ40p53 isoform in endometrial carcinoma cells. J. Biol. Chem. 2019; 294:9430–9439. PubMed PMC

Guo Y., Wu H., Wiesmüller L., Chen M.. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell Death. Dis. 2024; 15:412. PubMed PMC

Billant O., Friocourt G., Roux P., Voisset C.. p53, A victim of the Prion fashion. Cancers (Basel). 2021; 13:269. PubMed PMC

Belyi V.A., Levine A.J.. One billion years of p53/p63/p73 evolution. Proc. Natl Acad. Sci. U.S.A. 2009; 106:17609–17610. PubMed PMC

Chillemi G., Kehrloesser S., Bernassola F., Desideri A., Dötsch V., Levine A.J., Melino G.. Structural evolution and dynamics of the p53 proteins. Cold Spring Harb. Perspect. Med. 2017; 7:a028308. PubMed PMC

Schmale H., Bamberger C.. A novel protein with strong homology to the tumor suppressor p53. Oncogene. 1997; 15:1363–1367. PubMed

Yang A., Kaghad M., Wang Y., Gillett E., Fleming M.D., Dötsch V., Andrews N.C., Caput D., McKeon F.. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell. 1998; 2:305–316. PubMed

Marshall C.B., Beeler J.S., Lehmann B.D., Gonzalez-Ericsson P., Sanchez V., Sanders M.E., Boyd K.L., Pietenpol J.A.. Tissue-specific expression of p73 and p63 isoforms in human tissues. Cell Death. Dis. 2021; 12:745. PubMed PMC

Rizzo J.M., Romano R.-A., Bard J., Sinha S.. RNA-seq studies reveal new insights into p63 and the transcriptomic landscape of the mouse skin. J. Invest. Dermatol. 2015; 135:629–632. PubMed

Sethi I., Romano R.-A., Gluck C., Smalley K., Vojtesek B., Buck M.J., Sinha S.. A global analysis of the complex landscape of isoforms and regulatory networks of p63 in human cells and tissues. BMC Genomics. 2015; 16:584. PubMed PMC

Consortium T.G.T.E., Aguet F., Anand S., Ardlie K.G., Gabriel S., Getz G.A., Graubert A., Hadley K., Handsaker R.E., Huang K.H.et al. .. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020; 369:1318–1330. PubMed PMC

Bankhead A., McMaster T., Wang Y., Boonstra P.S., Palmbos P.L.. TP63 isoform expression is linked with distinct clinical outcomes in cancer. EBioMedicine. 2020; 51:102561. PubMed PMC

Senoo M., Tsuchiya I., Matsumura Y., Mori T., Saito Y., Kato H., Okamoto T., Habu S.. Transcriptional dysregulation of the p73L /p63 / p51 / p40 / KET gene in human squamous cell carcinomas: expression of delta Np73L, a novel dominant-negative isoform, and loss of expression of the potential tumour suppressor p51. Br. J. Cancer. 2001; 84:1235–1241. PubMed PMC

Hibi K., Trink B., Patturajan M., Westra W.H., Caballero O.L., Hill D.E., Ratovitski E.A., Jen J., Sidransky D.. AIS is an oncogene amplified in squamous cell carcinoma. Proc. Natl Acad. Sci. U.S.A. 2000; 97:5462–5467. PubMed PMC

Nekulova M., Holcakova J., Nenutil R., Stratmann R., Bouchalova P., Müller P., Mouková L., Coates P.J., Vojtesek B.. Characterization of specific p63 and p63-N-terminal isoform antibodies and their application for immunohistochemistry. Virchows. Arch. 2013; 463:415–425. PubMed

Nylander K., Vojtesek B., Nenutil R., Lindgren B., Roos G., Zhanxiang W., Sjöström B., Dahlqvist A., Coates P.J.. Differential expression of p63 isoforms in normal tissues and neoplastic cells. J. Pathol. 2002; 198:417–427. PubMed

Rosenbluth J.M., Johnson K., Tang L., Triplett T., Pietenpol J.A.. Evaluation of p63 and p73 antibodies for cross-reactivity. Cell Cycle. 2009; 8:3702–3706. PubMed

Gebel J., Tuppi M., Chaikuad A., Hötte K., Schröder M., Schulz L., Löhr F., Gutfreund N., Finke F., Henrich E.et al. .. p63 uses a switch-like mechanism to set the threshold for induction of apoptosis. Nat. Chem. Biol. 2020; 16:1078–1086. PubMed

Pokorná Z., Vysloužil J., Hrabal V., Vojtěšek B., Coates P.J.. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J. Pathol. 2021; 254:454–473. PubMed

Crum C.P., McKeon F.D.. p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu. Rev. Pathol. 2010; 5:349–371. PubMed

Fisher M.L., Balinth S., Mills A.A.. ΔNp63α in cancer: importance and therapeutic opportunities. Trends Cell Biol. 2023; 33:280–292. PubMed PMC

Pokorna Z., Hrabal V., Tichy V., Vojtesek B., Coates P.J.. DNA demethylation switches oncogenic ΔNp63 to tumor suppressive TAp63 in squamous cell carcinoma. Front. Oncol. 2022; 12:924354. PubMed PMC

Fisher M.L., Balinth S., Mills A.A.. p63-related signaling at a glance. J. Cell Sci. 2020; 133:jcs228015. PubMed PMC

Armstrong S.R., Wu H., Wang B., Abuetabh Y., Sergi C., Leng R.P.. The regulation of tumor suppressor p63 by the ubiquitin-proteasome system. Int. J. Mol. Sci. 2016; 17:2041. PubMed PMC

Boldrup L., Coates P.J., Gu X., Nylander K.. DeltaNp63 isoforms differentially regulate gene expression in squamous cell carcinoma: identification of Cox-2 as a novel p63 target. J. Pathol. 2009; 218:428–436. PubMed

Ghioni P., Bolognese F., Duijf P.H.G., Van Bokhoven H., Mantovani R., Guerrini L.. Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol. Cell. Biol. 2002; 22:8659–8668. PubMed PMC

Dolgin E. The most popular genes in the human genome. Nature. 2017; 551:427–431. PubMed

Sondka Z., Dhir N.B., Carvalho-Silva D., Jupe S., Madhumita McLaren K., Starkey M., Ward S., Wilding J., Ahmed M.et al. .. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 2024; 52:D1210–D1217. PubMed PMC

Kastenhuber E.R., Lowe S.W.. Putting p53 in context. Cell. 2017; 170:1062–1078. PubMed PMC

Liu Y., Tavana O., Gu W.. p53 modifications: exquisite decorations of the powerful guardian. J. Mol. Cell Biol. 2019; 11:564–577. PubMed PMC

Liu Y., Su Z., Tavana O., Gu W.. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell. 2024; 42:946–967. PubMed PMC

Levine A.J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer. 2020; 20:471–480. PubMed

Vogelstein B., Lane D., Levine A.J.. Surfing the p53 network. Nature. 2000; 408:307–310. PubMed

Joruiz S.M., Bourdon J.-C.. p53 Isoforms: key regulators of the cell fate decision. Cold Spring Harb. Perspect. Med. 2016; 6:a02603. PubMed PMC

Marcel V., Fernandes K., Terrier O., Lane D.P., Bourdon J.-C.. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response. Cell Death Differ. 2014; 21:1377–1387. PubMed PMC

Flaman J.M., Waridel F., Estreicher A., Vannier A., Limacher J.M., Gilbert D., Iggo R., Frebourg T.. The human tumour suppressor gene p53 is alternatively spliced in normal cells. Oncogene. 1996; 12:813–818. PubMed

Li Y., Wu M., Zhang L., Wan L., Li H., Zhang L., Sun G., Huang W., Zhang J., Su F.et al. .. Nonsense-mediated mRNA decay inhibition synergizes with MDM2 inhibition to suppress TP53 wild-type cancer cells in p53 isoform-dependent manner. Cell Death Discov. 2022; 8:402. PubMed PMC

Gudikote J.P., Cascone T., Poteete A., Sitthideatphaiboon P., Wu Q., Morikawa N., Zhang F., Peng S., Tong P., Li L.et al. .. Inhibition of nonsense-mediated decay rescues p53β/γ isoform expression and activates the p53 pathway in MDM2-overexpressing and select p53-mutant cancers. J. Biol. Chem. 2021; 297:101163. PubMed PMC

Avery-Kiejda K.A., Morten B., Wong-Brown M.W., Mathe A., Scott R.J.. The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome. Carcinogenesis. 2014; 35:586–596. PubMed

Ghosh A., Stewart D., Matlashewski G.. Regulation of Human p53 activity and cell localization by alternative splicing. Mol. Cell. Biol. 2004; 24:7987–7997. PubMed PMC

Boone M., De Koker A., Callewaert N.. Capturing the ‘ome’: the expanding molecular toolbox for RNA and DNA library construction. Nucleic Acids Res. 2018; 46:2701–2721. PubMed PMC

Green M.R., Sambrook J.. Isolation of poly(A)+ messenger RNA using magnetic oligo(dT) beads. Cold Spring Harb. Protoc. 2019; 2019:10.1101/pdb.prot101733. PubMed DOI

Vural S., Chang L.-C., Yee L.M., Sonkin D.. TP53 isoform junction reads based analysis in malignant and normal contexts. Sci. Rep. 2021; 11:17275. PubMed PMC

Candeias M.M., Hagiwara M., Matsuda M.. Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis. EMBO Rep. 2016; 17:1542–1551. PubMed PMC

Hayman L., Chaudhry W.R., Revin V.V., Zhelev N., Bourdon J.-C.. What is the potential of p53 isoforms as a predictive biomarker in the treatment of cancer?. Expert Rev. Mol. Diagn. 2019; 19:149–159. PubMed

Zhao L., Sanyal S.. p53 Isoforms as cancer biomarkers and therapeutic targets. Cancers (Basel). 2022; 14:3145. PubMed PMC

Kaelin W.G. Common pitfalls in preclinical cancer target validation. Nat. Rev. Cancer. 2017; 17:425–440. PubMed

Kahles A., Lehmann K.-V., Toussaint N.C., Hüser M., Stark S.G., Sachsenberg T., Stegle O., Kohlbacher O., Sander C.Cancer Genome Atlas Research Network et al. .. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018; 34:211–224. PubMed PMC

Bradley R.K., Anczuków O.. RNA splicing dysregulation and the hallmarks of cancer. Nat. Rev. Cancer. 2023; 23:135–155. PubMed PMC

Bienz-Tadmor B., Zakut-Houri R., Libresco S., Givol D., Oren M.. The 5’ region of the p53 gene: evolutionary conservation and evidence for a negative regulatory element. EMBO J. 1985; 4:3209–3213. PubMed PMC

Lamb P., Crawford L.. Characterization of the human p53 gene. Mol. Cell. Biol. 1986; 6:1379–1385. PubMed PMC

Bourdon J.-C., Fernandes K., Murray-Zmijewski F., Liu G., Diot A., Xirodimas D.P., Saville M.K., Lane D.P.. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 2005; 19:2122–2137. PubMed PMC

Marcel V., Perrier S., Aoubala M., Ageorges S., Groves M.J., Diot A., Fernandes K., Tauro S., Bourdon J.-C.. Δ160p53 is a novel N-terminal p53 isoform encoded by Δ133p53 transcript. FEBS Lett. 2010; 584:4463–4468. PubMed

Courtois S., Verhaegh G., North S., Luciani M.-G., Lassus P., Hibner U., Oren M., Hainaut P.. DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene. 2002; 21:6722–6728. PubMed

Yin Y., Stephen C.W., Luciani M.G., Fåhraeus R.. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat. Cell Biol. 2002; 4:462–467. PubMed

Vojtĕsek B., Bártek J., Midgley C.A., Lane D.P.. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods. 1992; 151:237–244. PubMed

Sabapathy K., Lane D.P.. Understanding p53 functions through p53 antibodies. J. Mol. Cell Biol. 2019; 11:317–329. PubMed PMC

Ko C.J., Myung P., Leffell D.J., Bourdon J.-C.. Cutaneous immunohistochemical staining pattern of p53β isoforms. J. Clin. Pathol. 2018; 71:1120–1122. PubMed

Steffens Reinhardt L., Groen K., Morten B.C., Bourdon J.-C., Avery-Kiejda K.A.. Cytoplasmic p53β isoforms are associated with worse disease-free survival in breast cancer. Int. J. Mol. Sci. 2022; 23:6670. PubMed PMC

Bang S., Kaur S., Kurokawa M.. Regulation of the p53 Family proteins by the ubiquitin proteasomal pathway. Int. J. Mol. Sci. 2019; 21:261. PubMed PMC

Giaccia A.J., Kastan M.B.. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 1998; 12:2973–2983. PubMed

Karakostis K., Fåhraeus R.. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer. 2019; 19:915. PubMed PMC

Kruse J.-P., Gu W.. Modes of p53 regulation. Cell. 2009; 137:609–622. PubMed PMC

Piccirillo C.A., Bjur E., Topisirovic I., Sonenberg N., Larsson O.. Translational control of immune responses: from transcripts to translatomes. Nat. Immunol. 2014; 15:503–511. PubMed

Ingolia N.T. Ribosome footprint profiling of translation throughout the genome. Cell. 2016; 165:22–33. PubMed PMC

Powell D.J., Hrstka R., Candeias M., Bourougaa K., Vojtesek B., Fåhraeus R.. Stress-dependent changes in the properties of p53 complexes by the alternative translation product p53/47. Cell Cycle. 2008; 7:950–959. PubMed

Takahashi R., Giannini C., Sarkaria J.N., Schroeder M., Rogers J., Mastroeni D., Scrable H.. p53 isoform profiling in glioblastoma and injured brain. Oncogene. 2013; 32:3165–3174. PubMed PMC

Ungewitter E., Scrable H.. Δ40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes Dev. 2010; 24:2408–2419. PubMed PMC

Fujita K., Mondal A.M., Horikawa I., Nguyen G.H., Kumamoto K., Sohn J.J., Bowman E.D., Mathe E.A., Schetter A.J., Pine S.R.et al. .. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat. Cell Biol. 2009; 11:1135–1142. PubMed PMC

Aoubala M., Murray-Zmijewski F., Khoury M.P., Fernandes K., Perrier S., Bernard H., Prats A.-C., Lane D.P., Bourdon J.-C.. p53 directly transactivates Δ133p53α, regulating cell fate outcome in response to DNA damage. Cell Death Differ. 2011; 18:248–258. PubMed PMC

Marcel V., Petit I., Murray-Zmijewski F., Goullet de Rugy T., Fernandes K., Meuray V., Diot A., Lane D.P., Aberdam D., Bourdon J.-C.. Diverse p63 and p73 isoforms regulate Δ133p53 expression through modulation of the internal TP53 promoter activity. Cell Death Differ. 2012; 19:816–826. PubMed PMC

Mondal A.M., Horikawa I., Pine S.R., Fujita K., Morgan K.M., Vera E., Mazur S.J., Appella E., Vojtesek B., Blasco M.A.et al. .. p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J. Clin. Invest. 2013; 123:5247–5257. PubMed PMC

Turnquist C., Horikawa I., Foran E., Major E.O., Vojtesek B., Lane D.P., Lu X., Harris B.T., Harris C.C.. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ. 2016; 23:1515–1528. PubMed PMC

von Muhlinen N., Horikawa I., Alam F., Isogaya K., Lissa D., Vojtesek B., Lane D.P., Harris C.C.. p53 isoforms regulate premature aging in human cells. Oncogene. 2018; 37:2379–2393. PubMed PMC

Wei J., Noto J., Zaika E., Romero-Gallo J., Correa P., El-Rifai W., Peek R.M., Zaika A.. Pathogenic bacterium Helicobacter pylori alters the expression profile of p53 protein isoforms and p53 response to cellular stresses. Proc. Natl Acad. Sci. U.S.A. 2012; 109:E2543–E2550. PubMed PMC

Avery-Kiejda K.A., Zhang X.D., Adams L.J., Scott R.J., Vojtesek B., Lane D.P., Hersey P.. Small molecular weight variants of p53 are expressed in Human melanoma cells and are induced by the DNA-damaging agent cisplatin. Clin. Cancer Res. 2008; 14:1659–1668. PubMed

Camus S., Menéndez S., Fernandes K., Kua N., Liu G., Xirodimas D.P., Lane D.P., Bourdon J.-C.. The p53 isoforms are differentially modified by Mdm2. Cell Cycle. 2012; 11:1646–1655. PubMed PMC

Gadea G., Arsic N., Fernandes K., Diot A., Joruiz S.M., Abdallah S., Meuray V., Vinot S., Anguille C., Remenyi J.et al. .. TP53 drives invasion through expression of its Δ133p53β variant. eLife. 2016; 5:e14734. PubMed PMC

Blackburn J., Roden D.L., Ng R., Wu J., Bosman A., Epstein R.J.. Damage-inducible intragenic demethylation of the human TP53 tumor suppressor gene is associated with transcription from an alternative intronic promoter. Mol. Carcinog. 2016; 55:1940–1951. PubMed PMC

Bourougaa K., Naski N., Boularan C., Mlynarczyk C., Candeias M.M., Marullo S., Fåhraeus R.. Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol. Cell. 2010; 38:78–88. PubMed

Candeias M.M., Powell D.J., Roubalova E., Apcher S., Bourougaa K., Vojtesek B., Bruzzoni-Giovanelli H., Fåhraeus R.. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene. 2006; 25:6936–6947. PubMed

Gajjar M., Candeias M.M., Malbert-Colas L., Mazars A., Fujita J., Olivares-Illana V., Fåhraeus R.. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012; 21:25–35. PubMed

Malbert-Colas L., Ponnuswamy A., Olivares-Illana V., Tournillon A.-S., Naski N., Fåhraeus R.. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol. Cell. 2014; 54:500–511. PubMed

Mlynarczyk C., Fåhraeus R.. Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21(CDKN1A). Nat. Commun. 2014; 5:5067. PubMed

Fusée L., Salomao N., Ponnuswamy A., Wang L., López I., Chen S., Gu X., Polyzoidis S., Vadivel Gnanasundram S., Fahraeus R.. The p53 endoplasmic reticulum stress-response pathway evolved in humans but not in mice via PERK-regulated p53 mRNA structures. Cell Death Differ. 2023; 30:1072–1081. PubMed PMC

el-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W., Vogelstein B.. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993; 75:817–825. PubMed

el-Deiry W.S., Harper J.W., O’Connor P.M., Velculescu V.E., Canman C.E., Jackman J., Pietenpol J.A., Burrell M., Hill D.E., Wang Y. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 1994; 54:1169–1174. PubMed

Maier B., Gluba W., Bernier B., Turner T., Mohammad K., Guise T., Sutherland A., Thorner M., Scrable H.. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 2004; 18:306–319. PubMed PMC

Pehar M., Ko M.H., Li M., Scrable H., Puglielli L.. P44, the ‘longevity-assurance’ isoform of P53, regulates tau phosphorylation and is activated in an age-dependent fashion. Aging Cell. 2014; 13:449–456. PubMed PMC

Takagi M., Absalon M.J., McLure K.G., Kastan M.B.. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005; 123:49–63. PubMed

Rodriguez M.S., Desterro J.M., Lain S., Lane D.P., Hay R.T.. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol. 2000; 20:8458–8467. PubMed PMC

Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J.C., Valent A., Minty A., Chalon P., Lelias J.M., Dumont X.et al. .. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997; 90:809–819. PubMed

Yang A., Walker N., Bronson R., Kaghad M., Oosterwegel M., Bonnin J., Vagner C., Bonnet H., Dikkes P., Sharpe A.et al. .. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature. 2000; 404:99–103. PubMed

Marshall C.B., Mays D.J., Beeler J.S., Rosenbluth J.M., Boyd K.L., Santos Guasch G.L., Shaver T.M., Tang L.J., Liu Q., Shyr Y.et al. .. p73 Is required for multiciliogenesis and regulates the Foxj1-associated gene network. Cell Rep. 2016; 14:2289–2300. PubMed PMC

Nemajerova A., Kramer D., Siller S.S., Herr C., Shomroni O., Pena T., Gallinas Suazo C., Glaser K., Wildung M., Steffen H.et al. .. TAp73 is a central transcriptional regulator of airway multiciliogenesis. Genes Dev. 2016; 30:1300–1312. PubMed PMC

Orzol P., Holcakova J., Nekulova M., Nenutil R., Vojtesek B., Coates P.J.. The diverse oncogenic and tumour suppressor roles of p63 and p73 in cancer: a review by cancer site. Histol. Histopathol. 2015; 30:503–521. PubMed

Strubel A., Münick P., Hartmann O., Chaikuad A., Dreier B., Schaefer J.V., Gebel J., Osterburg C., Tuppi M., Schäfer B.et al. .. DARPins detect the formation of hetero-tetramers of p63 and p73 in epithelial tissues and in squamous cell carcinoma. Cell Death. Dis. 2023; 14:674. PubMed PMC

De Laurenzi V., Costanzo A., Barcaroli D., Terrinoni A., Falco M., Annicchiarico-Petruzzelli M., Levrero M., Melino G.. Two new p73 splice variants, gamma and delta, with different transcriptional activity. J. Exp. Med. 1998; 188:1763–1768. PubMed PMC

Ueda Y., Hijikata M., Takagi S., Chiba T., Shimotohno K.. New p73 variants with altered C-terminal structures have varied transcriptional activities. Oncogene. 1999; 18:4993–4998. PubMed

Fillippovich I., Sorokina N., Gatei M., Haupt Y., Hobson K., Moallem E., Spring K., Mould M., McGuckin M.A., Lavin M.F.et al. .. Transactivation-deficient p73alpha (p73Deltaexon2) inhibits apoptosis and competes with p53. Oncogene. 2001; 20:514–522. PubMed

Ng S.W., Yiu G.K., Liu Y., Huang L.W., Palnati M., Jun S.H., Berkowitz R.S., Mok S.C.. Analysis of p73 in human borderline and invasive ovarian tumor. Oncogene. 2000; 19:1885–1890. PubMed

Stiewe T., Zimmermann S., Frilling A., Esche H., Pützer B.M.. Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Res. 2002; 62:3598–3602. PubMed

Ishimoto O., Kawahara C., Enjo K., Obinata M., Nukiwa T., Ikawa S.. Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res. 2002; 62:636–641. PubMed

Pützer B.M., Tuve S., Tannapfel A., Stiewe T.. Increased DeltaN-p73 expression in tumors by upregulation of the E2F1-regulated, TA-promoter-derived DeltaN’-p73 transcript. Cell Death Differ. 2003; 10:612–614. PubMed

Zaika A.I., Slade N., Erster S.H., Sansome C., Joseph T.W., Pearl M., Chalas E., Moll U.M.. DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J. Exp. Med. 2002; 196:765–780. PubMed PMC

Stiewe T., Tuve S., Peter M., Tannapfel A., Elmaagacli A.H., Pützer B.M.. Quantitative TP73 transcript analysis in hepatocellular carcinomas. Clin. Cancer Res. 2004; 10:626–633. PubMed

Domínguez G., Peña C., Silva J., García J.M., García V., Rodríguez R., Cantos B., Citores M.J., España P., Bonilla F.. The presence of an intronic deletion in p73 and high levels of ZEB1 alter the TAp73/DeltaTAp73 ratio in colorectal carcinomas. J. Pathol. 2006; 210:390–397. PubMed

Vilgelm A.E., Hong S.-M., Washington M.K., Wei J., Chen H., El-Rifai W., Zaika A.. Characterization of ΔNp73 expression and regulation in gastric and esophageal tumors. Oncogene. 2010; 29:5861–5868. PubMed PMC

Cuadros M., Ribas G., Fernández V., Rivas C., Benitez J., Martinez-Delgado B.. Allelic expression and quantitative RT-PCR study of TAp73 and DeltaNp73 in non-hodgkin's lymphomas. Leuk. Res. 2006; 30:170–177. PubMed

Hassan H.M., Varney M.L., Jain S., Weisenburger D.D., Singh R.K., Dave B.J.. Disruption of chromosomal locus 1p36 differentially modulates TAp73 and ΔNp73 expression in follicular lymphoma. Leuk. Lymphoma. 2014; 55:2924–2931. PubMed PMC

Sayan A.E., Roperch J.-P., Sayan B.S., Rossi M., Pinkoski M.J., Knight R.A., Willis A.E., Melino G.. Generation of DeltaTAp73 proteins by translation from a putative internal ribosome entry site. Ann. N.Y. Acad. Sci. 2007; 1095:315–324. PubMed

Pham T.D., Fan C., Pfeifer D., Zhang H., Sun X.-F.. Image-based network analysis of DNp73 expression by immunohistochemistry in rectal cancer patients. Front. Physiol. 2019; 10:1551. PubMed PMC

Beeler J.S., Marshall C.B., Gonzalez-Ericsson P.I., Shaver T.M., Santos Guasch G.L., Lea S.T., Johnson K.N., Jin H., Venters B.J., Sanders M.E.et al. .. p73 regulates epidermal wound healing and induced keratinocyte programming. PLoS One. 2019; 14:e0218458. PubMed PMC

Tomasini R., Tsuchihara K., Wilhelm M., Fujitani M., Rufini A., Cheung C.C., Khan F., Itie-Youten A., Wakeham A., Tsao M.-S.et al. .. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 2008; 22:2677–2691. PubMed PMC

Wilhelm M.T., Rufini A., Wetzel M.K., Tsuchihara K., Inoue S., Tomasini R., Itie-Youten A., Wakeham A., Arsenian-Henriksson M., Melino G.et al. .. Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes Dev. 2010; 24:549–560. PubMed PMC

Tissir F., Ravni A., Achouri Y., Riethmacher D., Meyer G., Goffinet A.M.. DeltaNp73 regulates neuronal survival in vivo. Proc. Natl Acad. Sci. U.S.A. 2009; 106:16871–16876. PubMed PMC

Lissy N.A., Davis P.K., Irwin M., Kaelin W.G., Dowdy S.F.. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature. 2000; 407:642–645. PubMed

Irwin M., Marin M.C., Phillips A.C., Seelan R.S., Smith D.I., Liu W., Flores E.R., Tsai K.Y., Jacks T., Vousden K.H.et al. .. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature. 2000; 407:645–648. PubMed

Stiewe T., Pützer B.M.. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat. Genet. 2000; 26:464–469. PubMed

Zaika A., Irwin M., Sansome C., Moll U.M.. Oncogenes induce and activate endogenous p73 protein. J. Biol. Chem. 2001; 276:11310–11316. PubMed

Biswas A.K., Johnson D.G.. Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage. Cancer Res. 2012; 72:13–17. PubMed PMC

Marabese M., Vikhanskaya F., Rainelli C., Sakai T., Broggini M.. DNA damage induces transcriptional activation of p73 by removing C-EBPalpha repression on E2F1. Nucleic Acids Res. 2003; 31:6624–6632. PubMed PMC

Zhu X., Wimmer K., Kuick R., Lamb B.J., Motyka S., Jasty R., Castle V.P., Hanash S.M.. N-myc modulates expression of p73 in neuroblastoma. Neoplasia. 2002; 4:432–439. PubMed PMC

Corn P.G., Kuerbitz S.J., van Noesel M.M., Esteller M., Compitello N., Baylin S.B., Herman J.G.. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5’ CpG island methylation. Cancer Res. 1999; 59:3352–3356. PubMed

Kawano S., Miller C.W., Gombart A.F., Bartram C.R., Matsuo Y., Asou H., Sakashita A., Said J., Tatsumi E., Koeffler H.P.. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood. 1999; 94:1113–1120. PubMed

Siu L.L.P., Chan J.K.C., Wong K.-F., Kwong Y.-L.. Specific patterns of gene methylation in natural killer cell lymphomas: p73 is consistently involved. Am. J. Pathol. 2002; 160:59–66. PubMed PMC

Ushiku T., Chong J.-M., Uozaki H., Hino R., Chang M.-S., Sudo M., Rani B.R., Sakuma K., Nagai H., Fukayama M.. p73 gene promoter methylation in Epstein–Barr virus-associated gastric carcinoma. Int. J. Cancer. 2007; 120:60–66. PubMed

Chaudhary N., Maddika S.. WWP2-WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and ΔNp73 levels. Mol. Cell. Biol. 2014; 34:3754–3764. PubMed PMC

Levy D., Reuven N., Shaul Y.. A regulatory circuit controlling Itch-mediated p73 degradation by Runx. J. Biol. Chem. 2008; 283:27462–27468. PubMed

Oberst A., Rossi M., Salomoni P., Pandolfi P.P., Oren M., Melino G., Bernassola F.. Regulation of the p73 protein stability and degradation. Biochem. Biophys. Res. Commun. 2005; 331:707–712. PubMed

Quesnel-Vallières M., Jewell S., Lynch K.W., Thomas-Tikhonenko A., Barash Y.. MAJIQlopedia: an encyclopedia of RNA splicing variations in human tissues and cancer. Nucleic Acids Res. 2024; 52:D213–D221. PubMed PMC

Martinez Gomez L., Pozo F., Walsh T.A., Abascal F., Tress M.L.. The clinical importance of tandem exon duplication-derived substitutions. Nucleic Acids Res. 2021; 49:8232–8246. PubMed PMC

Pozo F., Rodriguez J.M., Vázquez J., Tress M.L.. Clinical variant interpretation and biologically relevant reference transcripts. NPJ Genom. Med. 2022; 7:59. PubMed PMC

Rodriguez J.M., Rodriguez-Rivas J., Di Domenico T., Vázquez J., Valencia A., Tress M.L.. APPRIS 2017: principal isoforms for multiple gene sets. Nucleic Acids Res. 2018; 46:D213–D217. PubMed PMC

Koide A., Bailey C.W., Huang X., Koide S.. The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 1998; 284:1141–1151. PubMed

Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 2015; 55:489–511. PubMed

Nord K., Gunneriusson E., Ringdahl J., Ståhl S., Uhlén M., Nygren P.A.. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat. Biotechnol. 1997; 15:772–777. PubMed

Beste G., Schmidt F.S., Stibora T., Skerra A.. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl Acad. Sci. U.S.A. 1999; 96:1898–1903. PubMed PMC

Löfblom J., Frejd F.Y., Ståhl S.. Non-immunoglobulin based protein scaffolds. Curr. Opin. Biotechnol. 2011; 22:843–848. PubMed

Tajik M., Baharfar M., Donald W.A.. Single-cell mass spectrometry. Trends Biotechnol. 2022; 40:1374–1392. PubMed

Van Damme P., Gawron D., Van Criekinge W., Menschaert G.. N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men. Mol. Cell. Proteomics. 2014; 13:1245–1261. PubMed PMC

Lena A.M., Rossi V., Osterburg S., Smirnov A., Osterburg C., Tuppi M., Cappello A., Amelio I., Dötsch V., De Felici M.et al. .. The p63 C-terminus is essential for murine oocyte integrity. Nat. Commun. 2021; 12:383. PubMed PMC

Hall C., Muller P.A.J.. The diverse functions of mutant 53, its family members and isoforms in cancer. Int. J. Mol. Sci. 2019; 20:6188. PubMed PMC

Söderberg O., Gullberg M., Jarvius M., Ridderstråle K., Leuchowius K.-J., Jarvius J., Wester K., Hydbring P., Bahram F., Larsson L.-G.et al. .. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 2006; 3:995–1000. PubMed

Galperin M.Y., Koonin E.V.. Divergence and convergence in enzyme evolution. J. Biol. Chem. 2012; 287:21–28. PubMed PMC

Veesler D., Johnson J.E.. Virus maturation. Annu. Rev. Biophys. 2012; 41:473–496. PubMed PMC

Gehring W.J. Historical perspective on the development and evolution of eyes and photoreceptors. Int. J. Dev. Biol. 2004; 48:707–717. PubMed

Orabi B., Xie N., McConeghy B., Dong X., Chauve C., Hach F.. Freddie: annotation-independent detection and discovery of transcriptomic alternative splicing isoforms using long-read sequencing. Nucleic Acids Res. 2023; 51:e11. PubMed PMC

Cherry S., Lynch K.W.. Alternative splicing and cancer: insights, opportunities, and challenges from an expanding view of the transcriptome. Genes Dev. 2020; 34:1005–1016. PubMed PMC

Zhang Y., Yao X., Zhou H., Wu X., Tian J., Zeng J., Yan L., Duan C., Liu H., Li H.et al. .. OncoSplicing: an updated database for clinically relevant alternative splicing in 33 human cancers. Nucleic Acids Res. 2022; 50:D1340–D1347. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

TAp73 and ΔTAp73 isoforms show cell-type specific distributions and alterations in cancer

. 2024 Dec 02 ; 14 (1) : 29949. [epub] 20241202

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...