Re-appraising the evidence for the source, regulation and function of p53-family isoforms
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
FCE_3_2020_1_161877
Agencia Nacional de Investigación e Innovación
Programa de Desarrollo de las Ciencias Básicas
GACR 23-05951S
Czech Science Foundation
CZ.02.01.01/00/22_008/0 004 644
European Union and the State Budget of the Czech Republic
Cancerforskningsfonden Norr, Cancerfonden, Vetenskapsradet
MH CZ-DRO MMCI
Ministry of Health
PubMed
39404067
PubMed Central
PMC11551734
DOI
10.1093/nar/gkae855
PII: 7822297
Knihovny.cz E-zdroje
- MeSH
- alternativní sestřih * MeSH
- lidé MeSH
- messenger RNA metabolismus genetika MeSH
- molekulární evoluce MeSH
- nádorový supresorový protein p53 * metabolismus genetika MeSH
- počátek transkripce MeSH
- protein - isoformy * genetika metabolismus MeSH
- regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- messenger RNA MeSH
- nádorový supresorový protein p53 * MeSH
- protein - isoformy * MeSH
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Biochemistry Faculty of Science Universidad de la República Iguá 4225 Montevideo 11400 Uruguay
Cell Biology Unit Institut Pasteur de Montevideo Mataojo 2020 Montevideo 11400 Uruguay
Department of Medical Biosciences Building 6M Umeå University Umeå 90185 Sweden
RECAMO Masaryk Memorial Cancer Institute Zluty kopec 7 Brno 65653 Czech Republic
Zobrazit více v PubMed
Nilsen T.W., Graveley B.R.. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010; 463:457–463. PubMed PMC
Wang E.T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mayr C., Kingsmore S.F., Schroth G.P., Burge C.B.. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008; 456:470–476. PubMed PMC
Tress M.L., Abascal F., Valencia A.. Alternative splicing may not Be the key to proteome complexity. Trends Biochem. Sci. 2017; 42:98–110. PubMed PMC
Xu C., Park J.-K., Zhang J.. Evidence that alternative transcriptional initiation is largely nonadaptive. PLoS Biol. 2019; 17:e3000197. PubMed PMC
Pickrell J.K., Pai A.A., Gilad Y., Pritchard J.K.. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 2010; 6:e1001236. PubMed PMC
Fox-Walsh K.L., Hertel K.J.. Splice-site pairing is an intrinsically high fidelity process. Proc. Natl Acad. Sci. U.S.A. 2009; 106:1766–1771. PubMed PMC
Saudemont B., Popa A., Parmley J.L., Rocher V., Blugeon C., Necsulea A., Meyer E., Duret L.. The fitness cost of mis-splicing is the main determinant of alternative splicing patterns. Genome Biol. 2017; 18:208. PubMed PMC
Bhuiyan S.A., Ly S., Phan M., Huntington B., Hogan E., Liu C.C., Liu J., Pavlidis P.. Systematic evaluation of isoform function in literature reports of alternative splicing. BMC Genomics. 2018; 19:637. PubMed PMC
Sinitcyn P., Richards A.L., Weatheritt R.J., Brademan D.R., Marx H., Shishkova E., Meyer J.G., Hebert A.S., Westphall M.S., Blencowe B.J.et al. .. Global detection of human variants and isoforms by deep proteome sequencing. Nat. Biotechnol. 2023; 41:1776–1786. PubMed PMC
Haque A., Engel J., Teichmann S.A., Lönnberg T.. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017; 9:75. PubMed PMC
Reyes A., Huber W.. Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic Acids Res. 2018; 46:582–592. PubMed PMC
Chia M., Li C., Marques S., Pelechano V., Luscombe N.M., van Werven F.J.. High-resolution analysis of cell-state transitions in yeast suggests widespread transcriptional tuning by alternative starts. Genome Biol. 2021; 22:34. PubMed PMC
de Klerk E., Hoen P.A.C.. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet. 2015; 31:128–139. PubMed
Haberle V., Arnold C.D., Pagani M., Rath M., Schernhuber K., Stark A.. Transcriptional cofactors display specificity for distinct types of core promoters. Nature. 2019; 570:122–126. PubMed PMC
Sandelin A., Carninci P., Lenhard B., Ponjavic J., Hayashizaki Y., Hume D.A.. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 2007; 8:424–436. PubMed
Alfonso-Gonzalez C., Legnini I., Holec S., Arrigoni L., Ozbulut H.C., Mateos F., Koppstein D., Rybak-Wolf A., Bönisch U., Rajewsky N.et al. .. Sites of transcription initiation drive mRNA isoform selection. Cell. 2023; 186:2438–2455. PubMed PMC
Benitez-Cantos M.S., Yordanova M.M., O’Connor P.B.F., Zhdanov A.V., Kovalchuk S.I., Papkovsky D.B., Andreev D.E., Baranov P.V. Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context. Genome Res. 2020; 30:974–984. PubMed PMC
Kozak M. Pushing the limits of the scanning mechanism for initiation of translation. Gene. 2002; 299:1–34. PubMed PMC
Harno E., Gali Ramamoorthy T., Coll A.P., White A.. POMC: the physiological power of hormone processing. Physiol. Rev. 2018; 98:2381–2430. PubMed PMC
Ossovskaya V.S., Bunnett N.W.. Protease-activated receptors: contribution to physiology and disease. Physiol. Rev. 2004; 84:579–621. PubMed
Shen K., Arslan S., Akopian D., Ha T., Shan S.. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature. 2012; 492:271–275. PubMed PMC
Bonczek O., Wang L., Gnanasundram S.V., Chen S., Haronikova L., Zavadil-Kokas F., Vojtesek B.. DNA and RNA binding proteins: from motifs to roles in cancer. Int. J. Mol. Sci. 2022; 23:9329. PubMed PMC
Haronikova L., Olivares-Illana V., Wang L., Karakostis K., Chen S., Fåhraeus R.. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res. 2019; 47:3257–3271. PubMed PMC
Katoch A., George B., Iyyappan A., Khan D., Das S.. Interplay between PTB and miR-1285 at the p53 3’UTR modulates the levels of p53 and its isoform Δ40p53α. Nucleic Acids Res. 2017; 45:10206–10217. PubMed PMC
Arsic N., Slatter T., Gadea G., Villain E., Fournet A., Kazantseva M., Allemand F., Sibille N., Seveno M., de Rossi S.et al. .. Δ133p53β isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells. Nat. Commun. 2021; 12:5463. PubMed PMC
Melo dos Santos N., de Oliveira G.A.P., Ramos Rocha M., Pedrote M.M., Diniz da Silva Ferretti G., Pereira Rangel L., Morgado-Diaz J.A., Silva J.L., Rodrigues Pereira Gimba E.. Loss of the p53 transactivation domain results in high amyloid aggregation of the Δ40p53 isoform in endometrial carcinoma cells. J. Biol. Chem. 2019; 294:9430–9439. PubMed PMC
Guo Y., Wu H., Wiesmüller L., Chen M.. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell Death. Dis. 2024; 15:412. PubMed PMC
Billant O., Friocourt G., Roux P., Voisset C.. p53, A victim of the Prion fashion. Cancers (Basel). 2021; 13:269. PubMed PMC
Belyi V.A., Levine A.J.. One billion years of p53/p63/p73 evolution. Proc. Natl Acad. Sci. U.S.A. 2009; 106:17609–17610. PubMed PMC
Chillemi G., Kehrloesser S., Bernassola F., Desideri A., Dötsch V., Levine A.J., Melino G.. Structural evolution and dynamics of the p53 proteins. Cold Spring Harb. Perspect. Med. 2017; 7:a028308. PubMed PMC
Schmale H., Bamberger C.. A novel protein with strong homology to the tumor suppressor p53. Oncogene. 1997; 15:1363–1367. PubMed
Yang A., Kaghad M., Wang Y., Gillett E., Fleming M.D., Dötsch V., Andrews N.C., Caput D., McKeon F.. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell. 1998; 2:305–316. PubMed
Marshall C.B., Beeler J.S., Lehmann B.D., Gonzalez-Ericsson P., Sanchez V., Sanders M.E., Boyd K.L., Pietenpol J.A.. Tissue-specific expression of p73 and p63 isoforms in human tissues. Cell Death. Dis. 2021; 12:745. PubMed PMC
Rizzo J.M., Romano R.-A., Bard J., Sinha S.. RNA-seq studies reveal new insights into p63 and the transcriptomic landscape of the mouse skin. J. Invest. Dermatol. 2015; 135:629–632. PubMed
Sethi I., Romano R.-A., Gluck C., Smalley K., Vojtesek B., Buck M.J., Sinha S.. A global analysis of the complex landscape of isoforms and regulatory networks of p63 in human cells and tissues. BMC Genomics. 2015; 16:584. PubMed PMC
Consortium T.G.T.E., Aguet F., Anand S., Ardlie K.G., Gabriel S., Getz G.A., Graubert A., Hadley K., Handsaker R.E., Huang K.H.et al. .. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020; 369:1318–1330. PubMed PMC
Bankhead A., McMaster T., Wang Y., Boonstra P.S., Palmbos P.L.. TP63 isoform expression is linked with distinct clinical outcomes in cancer. EBioMedicine. 2020; 51:102561. PubMed PMC
Senoo M., Tsuchiya I., Matsumura Y., Mori T., Saito Y., Kato H., Okamoto T., Habu S.. Transcriptional dysregulation of the p73L /p63 / p51 / p40 / KET gene in human squamous cell carcinomas: expression of delta Np73L, a novel dominant-negative isoform, and loss of expression of the potential tumour suppressor p51. Br. J. Cancer. 2001; 84:1235–1241. PubMed PMC
Hibi K., Trink B., Patturajan M., Westra W.H., Caballero O.L., Hill D.E., Ratovitski E.A., Jen J., Sidransky D.. AIS is an oncogene amplified in squamous cell carcinoma. Proc. Natl Acad. Sci. U.S.A. 2000; 97:5462–5467. PubMed PMC
Nekulova M., Holcakova J., Nenutil R., Stratmann R., Bouchalova P., Müller P., Mouková L., Coates P.J., Vojtesek B.. Characterization of specific p63 and p63-N-terminal isoform antibodies and their application for immunohistochemistry. Virchows. Arch. 2013; 463:415–425. PubMed
Nylander K., Vojtesek B., Nenutil R., Lindgren B., Roos G., Zhanxiang W., Sjöström B., Dahlqvist A., Coates P.J.. Differential expression of p63 isoforms in normal tissues and neoplastic cells. J. Pathol. 2002; 198:417–427. PubMed
Rosenbluth J.M., Johnson K., Tang L., Triplett T., Pietenpol J.A.. Evaluation of p63 and p73 antibodies for cross-reactivity. Cell Cycle. 2009; 8:3702–3706. PubMed
Gebel J., Tuppi M., Chaikuad A., Hötte K., Schröder M., Schulz L., Löhr F., Gutfreund N., Finke F., Henrich E.et al. .. p63 uses a switch-like mechanism to set the threshold for induction of apoptosis. Nat. Chem. Biol. 2020; 16:1078–1086. PubMed
Pokorná Z., Vysloužil J., Hrabal V., Vojtěšek B., Coates P.J.. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J. Pathol. 2021; 254:454–473. PubMed
Crum C.P., McKeon F.D.. p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu. Rev. Pathol. 2010; 5:349–371. PubMed
Fisher M.L., Balinth S., Mills A.A.. ΔNp63α in cancer: importance and therapeutic opportunities. Trends Cell Biol. 2023; 33:280–292. PubMed PMC
Pokorna Z., Hrabal V., Tichy V., Vojtesek B., Coates P.J.. DNA demethylation switches oncogenic ΔNp63 to tumor suppressive TAp63 in squamous cell carcinoma. Front. Oncol. 2022; 12:924354. PubMed PMC
Fisher M.L., Balinth S., Mills A.A.. p63-related signaling at a glance. J. Cell Sci. 2020; 133:jcs228015. PubMed PMC
Armstrong S.R., Wu H., Wang B., Abuetabh Y., Sergi C., Leng R.P.. The regulation of tumor suppressor p63 by the ubiquitin-proteasome system. Int. J. Mol. Sci. 2016; 17:2041. PubMed PMC
Boldrup L., Coates P.J., Gu X., Nylander K.. DeltaNp63 isoforms differentially regulate gene expression in squamous cell carcinoma: identification of Cox-2 as a novel p63 target. J. Pathol. 2009; 218:428–436. PubMed
Ghioni P., Bolognese F., Duijf P.H.G., Van Bokhoven H., Mantovani R., Guerrini L.. Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol. Cell. Biol. 2002; 22:8659–8668. PubMed PMC
Dolgin E. The most popular genes in the human genome. Nature. 2017; 551:427–431. PubMed
Sondka Z., Dhir N.B., Carvalho-Silva D., Jupe S., Madhumita McLaren K., Starkey M., Ward S., Wilding J., Ahmed M.et al. .. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 2024; 52:D1210–D1217. PubMed PMC
Kastenhuber E.R., Lowe S.W.. Putting p53 in context. Cell. 2017; 170:1062–1078. PubMed PMC
Liu Y., Tavana O., Gu W.. p53 modifications: exquisite decorations of the powerful guardian. J. Mol. Cell Biol. 2019; 11:564–577. PubMed PMC
Liu Y., Su Z., Tavana O., Gu W.. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell. 2024; 42:946–967. PubMed PMC
Levine A.J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer. 2020; 20:471–480. PubMed
Vogelstein B., Lane D., Levine A.J.. Surfing the p53 network. Nature. 2000; 408:307–310. PubMed
Joruiz S.M., Bourdon J.-C.. p53 Isoforms: key regulators of the cell fate decision. Cold Spring Harb. Perspect. Med. 2016; 6:a02603. PubMed PMC
Marcel V., Fernandes K., Terrier O., Lane D.P., Bourdon J.-C.. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response. Cell Death Differ. 2014; 21:1377–1387. PubMed PMC
Flaman J.M., Waridel F., Estreicher A., Vannier A., Limacher J.M., Gilbert D., Iggo R., Frebourg T.. The human tumour suppressor gene p53 is alternatively spliced in normal cells. Oncogene. 1996; 12:813–818. PubMed
Li Y., Wu M., Zhang L., Wan L., Li H., Zhang L., Sun G., Huang W., Zhang J., Su F.et al. .. Nonsense-mediated mRNA decay inhibition synergizes with MDM2 inhibition to suppress TP53 wild-type cancer cells in p53 isoform-dependent manner. Cell Death Discov. 2022; 8:402. PubMed PMC
Gudikote J.P., Cascone T., Poteete A., Sitthideatphaiboon P., Wu Q., Morikawa N., Zhang F., Peng S., Tong P., Li L.et al. .. Inhibition of nonsense-mediated decay rescues p53β/γ isoform expression and activates the p53 pathway in MDM2-overexpressing and select p53-mutant cancers. J. Biol. Chem. 2021; 297:101163. PubMed PMC
Avery-Kiejda K.A., Morten B., Wong-Brown M.W., Mathe A., Scott R.J.. The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome. Carcinogenesis. 2014; 35:586–596. PubMed
Ghosh A., Stewart D., Matlashewski G.. Regulation of Human p53 activity and cell localization by alternative splicing. Mol. Cell. Biol. 2004; 24:7987–7997. PubMed PMC
Boone M., De Koker A., Callewaert N.. Capturing the ‘ome’: the expanding molecular toolbox for RNA and DNA library construction. Nucleic Acids Res. 2018; 46:2701–2721. PubMed PMC
Green M.R., Sambrook J.. Isolation of poly(A)+ messenger RNA using magnetic oligo(dT) beads. Cold Spring Harb. Protoc. 2019; 2019:10.1101/pdb.prot101733. PubMed DOI
Vural S., Chang L.-C., Yee L.M., Sonkin D.. TP53 isoform junction reads based analysis in malignant and normal contexts. Sci. Rep. 2021; 11:17275. PubMed PMC
Candeias M.M., Hagiwara M., Matsuda M.. Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis. EMBO Rep. 2016; 17:1542–1551. PubMed PMC
Hayman L., Chaudhry W.R., Revin V.V., Zhelev N., Bourdon J.-C.. What is the potential of p53 isoforms as a predictive biomarker in the treatment of cancer?. Expert Rev. Mol. Diagn. 2019; 19:149–159. PubMed
Zhao L., Sanyal S.. p53 Isoforms as cancer biomarkers and therapeutic targets. Cancers (Basel). 2022; 14:3145. PubMed PMC
Kaelin W.G. Common pitfalls in preclinical cancer target validation. Nat. Rev. Cancer. 2017; 17:425–440. PubMed
Kahles A., Lehmann K.-V., Toussaint N.C., Hüser M., Stark S.G., Sachsenberg T., Stegle O., Kohlbacher O., Sander C.Cancer Genome Atlas Research Network et al. .. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018; 34:211–224. PubMed PMC
Bradley R.K., Anczuków O.. RNA splicing dysregulation and the hallmarks of cancer. Nat. Rev. Cancer. 2023; 23:135–155. PubMed PMC
Bienz-Tadmor B., Zakut-Houri R., Libresco S., Givol D., Oren M.. The 5’ region of the p53 gene: evolutionary conservation and evidence for a negative regulatory element. EMBO J. 1985; 4:3209–3213. PubMed PMC
Lamb P., Crawford L.. Characterization of the human p53 gene. Mol. Cell. Biol. 1986; 6:1379–1385. PubMed PMC
Bourdon J.-C., Fernandes K., Murray-Zmijewski F., Liu G., Diot A., Xirodimas D.P., Saville M.K., Lane D.P.. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 2005; 19:2122–2137. PubMed PMC
Marcel V., Perrier S., Aoubala M., Ageorges S., Groves M.J., Diot A., Fernandes K., Tauro S., Bourdon J.-C.. Δ160p53 is a novel N-terminal p53 isoform encoded by Δ133p53 transcript. FEBS Lett. 2010; 584:4463–4468. PubMed
Courtois S., Verhaegh G., North S., Luciani M.-G., Lassus P., Hibner U., Oren M., Hainaut P.. DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene. 2002; 21:6722–6728. PubMed
Yin Y., Stephen C.W., Luciani M.G., Fåhraeus R.. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat. Cell Biol. 2002; 4:462–467. PubMed
Vojtĕsek B., Bártek J., Midgley C.A., Lane D.P.. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods. 1992; 151:237–244. PubMed
Sabapathy K., Lane D.P.. Understanding p53 functions through p53 antibodies. J. Mol. Cell Biol. 2019; 11:317–329. PubMed PMC
Ko C.J., Myung P., Leffell D.J., Bourdon J.-C.. Cutaneous immunohistochemical staining pattern of p53β isoforms. J. Clin. Pathol. 2018; 71:1120–1122. PubMed
Steffens Reinhardt L., Groen K., Morten B.C., Bourdon J.-C., Avery-Kiejda K.A.. Cytoplasmic p53β isoforms are associated with worse disease-free survival in breast cancer. Int. J. Mol. Sci. 2022; 23:6670. PubMed PMC
Bang S., Kaur S., Kurokawa M.. Regulation of the p53 Family proteins by the ubiquitin proteasomal pathway. Int. J. Mol. Sci. 2019; 21:261. PubMed PMC
Giaccia A.J., Kastan M.B.. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 1998; 12:2973–2983. PubMed
Karakostis K., Fåhraeus R.. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer. 2019; 19:915. PubMed PMC
Kruse J.-P., Gu W.. Modes of p53 regulation. Cell. 2009; 137:609–622. PubMed PMC
Piccirillo C.A., Bjur E., Topisirovic I., Sonenberg N., Larsson O.. Translational control of immune responses: from transcripts to translatomes. Nat. Immunol. 2014; 15:503–511. PubMed
Ingolia N.T. Ribosome footprint profiling of translation throughout the genome. Cell. 2016; 165:22–33. PubMed PMC
Powell D.J., Hrstka R., Candeias M., Bourougaa K., Vojtesek B., Fåhraeus R.. Stress-dependent changes in the properties of p53 complexes by the alternative translation product p53/47. Cell Cycle. 2008; 7:950–959. PubMed
Takahashi R., Giannini C., Sarkaria J.N., Schroeder M., Rogers J., Mastroeni D., Scrable H.. p53 isoform profiling in glioblastoma and injured brain. Oncogene. 2013; 32:3165–3174. PubMed PMC
Ungewitter E., Scrable H.. Δ40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes Dev. 2010; 24:2408–2419. PubMed PMC
Fujita K., Mondal A.M., Horikawa I., Nguyen G.H., Kumamoto K., Sohn J.J., Bowman E.D., Mathe E.A., Schetter A.J., Pine S.R.et al. .. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat. Cell Biol. 2009; 11:1135–1142. PubMed PMC
Aoubala M., Murray-Zmijewski F., Khoury M.P., Fernandes K., Perrier S., Bernard H., Prats A.-C., Lane D.P., Bourdon J.-C.. p53 directly transactivates Δ133p53α, regulating cell fate outcome in response to DNA damage. Cell Death Differ. 2011; 18:248–258. PubMed PMC
Marcel V., Petit I., Murray-Zmijewski F., Goullet de Rugy T., Fernandes K., Meuray V., Diot A., Lane D.P., Aberdam D., Bourdon J.-C.. Diverse p63 and p73 isoforms regulate Δ133p53 expression through modulation of the internal TP53 promoter activity. Cell Death Differ. 2012; 19:816–826. PubMed PMC
Mondal A.M., Horikawa I., Pine S.R., Fujita K., Morgan K.M., Vera E., Mazur S.J., Appella E., Vojtesek B., Blasco M.A.et al. .. p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J. Clin. Invest. 2013; 123:5247–5257. PubMed PMC
Turnquist C., Horikawa I., Foran E., Major E.O., Vojtesek B., Lane D.P., Lu X., Harris B.T., Harris C.C.. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ. 2016; 23:1515–1528. PubMed PMC
von Muhlinen N., Horikawa I., Alam F., Isogaya K., Lissa D., Vojtesek B., Lane D.P., Harris C.C.. p53 isoforms regulate premature aging in human cells. Oncogene. 2018; 37:2379–2393. PubMed PMC
Wei J., Noto J., Zaika E., Romero-Gallo J., Correa P., El-Rifai W., Peek R.M., Zaika A.. Pathogenic bacterium Helicobacter pylori alters the expression profile of p53 protein isoforms and p53 response to cellular stresses. Proc. Natl Acad. Sci. U.S.A. 2012; 109:E2543–E2550. PubMed PMC
Avery-Kiejda K.A., Zhang X.D., Adams L.J., Scott R.J., Vojtesek B., Lane D.P., Hersey P.. Small molecular weight variants of p53 are expressed in Human melanoma cells and are induced by the DNA-damaging agent cisplatin. Clin. Cancer Res. 2008; 14:1659–1668. PubMed
Camus S., Menéndez S., Fernandes K., Kua N., Liu G., Xirodimas D.P., Lane D.P., Bourdon J.-C.. The p53 isoforms are differentially modified by Mdm2. Cell Cycle. 2012; 11:1646–1655. PubMed PMC
Gadea G., Arsic N., Fernandes K., Diot A., Joruiz S.M., Abdallah S., Meuray V., Vinot S., Anguille C., Remenyi J.et al. .. TP53 drives invasion through expression of its Δ133p53β variant. eLife. 2016; 5:e14734. PubMed PMC
Blackburn J., Roden D.L., Ng R., Wu J., Bosman A., Epstein R.J.. Damage-inducible intragenic demethylation of the human TP53 tumor suppressor gene is associated with transcription from an alternative intronic promoter. Mol. Carcinog. 2016; 55:1940–1951. PubMed PMC
Bourougaa K., Naski N., Boularan C., Mlynarczyk C., Candeias M.M., Marullo S., Fåhraeus R.. Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol. Cell. 2010; 38:78–88. PubMed
Candeias M.M., Powell D.J., Roubalova E., Apcher S., Bourougaa K., Vojtesek B., Bruzzoni-Giovanelli H., Fåhraeus R.. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene. 2006; 25:6936–6947. PubMed
Gajjar M., Candeias M.M., Malbert-Colas L., Mazars A., Fujita J., Olivares-Illana V., Fåhraeus R.. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012; 21:25–35. PubMed
Malbert-Colas L., Ponnuswamy A., Olivares-Illana V., Tournillon A.-S., Naski N., Fåhraeus R.. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol. Cell. 2014; 54:500–511. PubMed
Mlynarczyk C., Fåhraeus R.. Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21(CDKN1A). Nat. Commun. 2014; 5:5067. PubMed
Fusée L., Salomao N., Ponnuswamy A., Wang L., López I., Chen S., Gu X., Polyzoidis S., Vadivel Gnanasundram S., Fahraeus R.. The p53 endoplasmic reticulum stress-response pathway evolved in humans but not in mice via PERK-regulated p53 mRNA structures. Cell Death Differ. 2023; 30:1072–1081. PubMed PMC
el-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W., Vogelstein B.. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993; 75:817–825. PubMed
el-Deiry W.S., Harper J.W., O’Connor P.M., Velculescu V.E., Canman C.E., Jackman J., Pietenpol J.A., Burrell M., Hill D.E., Wang Y. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 1994; 54:1169–1174. PubMed
Maier B., Gluba W., Bernier B., Turner T., Mohammad K., Guise T., Sutherland A., Thorner M., Scrable H.. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 2004; 18:306–319. PubMed PMC
Pehar M., Ko M.H., Li M., Scrable H., Puglielli L.. P44, the ‘longevity-assurance’ isoform of P53, regulates tau phosphorylation and is activated in an age-dependent fashion. Aging Cell. 2014; 13:449–456. PubMed PMC
Takagi M., Absalon M.J., McLure K.G., Kastan M.B.. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005; 123:49–63. PubMed
Rodriguez M.S., Desterro J.M., Lain S., Lane D.P., Hay R.T.. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol. 2000; 20:8458–8467. PubMed PMC
Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J.C., Valent A., Minty A., Chalon P., Lelias J.M., Dumont X.et al. .. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997; 90:809–819. PubMed
Yang A., Walker N., Bronson R., Kaghad M., Oosterwegel M., Bonnin J., Vagner C., Bonnet H., Dikkes P., Sharpe A.et al. .. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature. 2000; 404:99–103. PubMed
Marshall C.B., Mays D.J., Beeler J.S., Rosenbluth J.M., Boyd K.L., Santos Guasch G.L., Shaver T.M., Tang L.J., Liu Q., Shyr Y.et al. .. p73 Is required for multiciliogenesis and regulates the Foxj1-associated gene network. Cell Rep. 2016; 14:2289–2300. PubMed PMC
Nemajerova A., Kramer D., Siller S.S., Herr C., Shomroni O., Pena T., Gallinas Suazo C., Glaser K., Wildung M., Steffen H.et al. .. TAp73 is a central transcriptional regulator of airway multiciliogenesis. Genes Dev. 2016; 30:1300–1312. PubMed PMC
Orzol P., Holcakova J., Nekulova M., Nenutil R., Vojtesek B., Coates P.J.. The diverse oncogenic and tumour suppressor roles of p63 and p73 in cancer: a review by cancer site. Histol. Histopathol. 2015; 30:503–521. PubMed
Strubel A., Münick P., Hartmann O., Chaikuad A., Dreier B., Schaefer J.V., Gebel J., Osterburg C., Tuppi M., Schäfer B.et al. .. DARPins detect the formation of hetero-tetramers of p63 and p73 in epithelial tissues and in squamous cell carcinoma. Cell Death. Dis. 2023; 14:674. PubMed PMC
De Laurenzi V., Costanzo A., Barcaroli D., Terrinoni A., Falco M., Annicchiarico-Petruzzelli M., Levrero M., Melino G.. Two new p73 splice variants, gamma and delta, with different transcriptional activity. J. Exp. Med. 1998; 188:1763–1768. PubMed PMC
Ueda Y., Hijikata M., Takagi S., Chiba T., Shimotohno K.. New p73 variants with altered C-terminal structures have varied transcriptional activities. Oncogene. 1999; 18:4993–4998. PubMed
Fillippovich I., Sorokina N., Gatei M., Haupt Y., Hobson K., Moallem E., Spring K., Mould M., McGuckin M.A., Lavin M.F.et al. .. Transactivation-deficient p73alpha (p73Deltaexon2) inhibits apoptosis and competes with p53. Oncogene. 2001; 20:514–522. PubMed
Ng S.W., Yiu G.K., Liu Y., Huang L.W., Palnati M., Jun S.H., Berkowitz R.S., Mok S.C.. Analysis of p73 in human borderline and invasive ovarian tumor. Oncogene. 2000; 19:1885–1890. PubMed
Stiewe T., Zimmermann S., Frilling A., Esche H., Pützer B.M.. Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Res. 2002; 62:3598–3602. PubMed
Ishimoto O., Kawahara C., Enjo K., Obinata M., Nukiwa T., Ikawa S.. Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res. 2002; 62:636–641. PubMed
Pützer B.M., Tuve S., Tannapfel A., Stiewe T.. Increased DeltaN-p73 expression in tumors by upregulation of the E2F1-regulated, TA-promoter-derived DeltaN’-p73 transcript. Cell Death Differ. 2003; 10:612–614. PubMed
Zaika A.I., Slade N., Erster S.H., Sansome C., Joseph T.W., Pearl M., Chalas E., Moll U.M.. DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J. Exp. Med. 2002; 196:765–780. PubMed PMC
Stiewe T., Tuve S., Peter M., Tannapfel A., Elmaagacli A.H., Pützer B.M.. Quantitative TP73 transcript analysis in hepatocellular carcinomas. Clin. Cancer Res. 2004; 10:626–633. PubMed
Domínguez G., Peña C., Silva J., García J.M., García V., Rodríguez R., Cantos B., Citores M.J., España P., Bonilla F.. The presence of an intronic deletion in p73 and high levels of ZEB1 alter the TAp73/DeltaTAp73 ratio in colorectal carcinomas. J. Pathol. 2006; 210:390–397. PubMed
Vilgelm A.E., Hong S.-M., Washington M.K., Wei J., Chen H., El-Rifai W., Zaika A.. Characterization of ΔNp73 expression and regulation in gastric and esophageal tumors. Oncogene. 2010; 29:5861–5868. PubMed PMC
Cuadros M., Ribas G., Fernández V., Rivas C., Benitez J., Martinez-Delgado B.. Allelic expression and quantitative RT-PCR study of TAp73 and DeltaNp73 in non-hodgkin's lymphomas. Leuk. Res. 2006; 30:170–177. PubMed
Hassan H.M., Varney M.L., Jain S., Weisenburger D.D., Singh R.K., Dave B.J.. Disruption of chromosomal locus 1p36 differentially modulates TAp73 and ΔNp73 expression in follicular lymphoma. Leuk. Lymphoma. 2014; 55:2924–2931. PubMed PMC
Sayan A.E., Roperch J.-P., Sayan B.S., Rossi M., Pinkoski M.J., Knight R.A., Willis A.E., Melino G.. Generation of DeltaTAp73 proteins by translation from a putative internal ribosome entry site. Ann. N.Y. Acad. Sci. 2007; 1095:315–324. PubMed
Pham T.D., Fan C., Pfeifer D., Zhang H., Sun X.-F.. Image-based network analysis of DNp73 expression by immunohistochemistry in rectal cancer patients. Front. Physiol. 2019; 10:1551. PubMed PMC
Beeler J.S., Marshall C.B., Gonzalez-Ericsson P.I., Shaver T.M., Santos Guasch G.L., Lea S.T., Johnson K.N., Jin H., Venters B.J., Sanders M.E.et al. .. p73 regulates epidermal wound healing and induced keratinocyte programming. PLoS One. 2019; 14:e0218458. PubMed PMC
Tomasini R., Tsuchihara K., Wilhelm M., Fujitani M., Rufini A., Cheung C.C., Khan F., Itie-Youten A., Wakeham A., Tsao M.-S.et al. .. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 2008; 22:2677–2691. PubMed PMC
Wilhelm M.T., Rufini A., Wetzel M.K., Tsuchihara K., Inoue S., Tomasini R., Itie-Youten A., Wakeham A., Arsenian-Henriksson M., Melino G.et al. .. Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes Dev. 2010; 24:549–560. PubMed PMC
Tissir F., Ravni A., Achouri Y., Riethmacher D., Meyer G., Goffinet A.M.. DeltaNp73 regulates neuronal survival in vivo. Proc. Natl Acad. Sci. U.S.A. 2009; 106:16871–16876. PubMed PMC
Lissy N.A., Davis P.K., Irwin M., Kaelin W.G., Dowdy S.F.. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature. 2000; 407:642–645. PubMed
Irwin M., Marin M.C., Phillips A.C., Seelan R.S., Smith D.I., Liu W., Flores E.R., Tsai K.Y., Jacks T., Vousden K.H.et al. .. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature. 2000; 407:645–648. PubMed
Stiewe T., Pützer B.M.. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat. Genet. 2000; 26:464–469. PubMed
Zaika A., Irwin M., Sansome C., Moll U.M.. Oncogenes induce and activate endogenous p73 protein. J. Biol. Chem. 2001; 276:11310–11316. PubMed
Biswas A.K., Johnson D.G.. Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage. Cancer Res. 2012; 72:13–17. PubMed PMC
Marabese M., Vikhanskaya F., Rainelli C., Sakai T., Broggini M.. DNA damage induces transcriptional activation of p73 by removing C-EBPalpha repression on E2F1. Nucleic Acids Res. 2003; 31:6624–6632. PubMed PMC
Zhu X., Wimmer K., Kuick R., Lamb B.J., Motyka S., Jasty R., Castle V.P., Hanash S.M.. N-myc modulates expression of p73 in neuroblastoma. Neoplasia. 2002; 4:432–439. PubMed PMC
Corn P.G., Kuerbitz S.J., van Noesel M.M., Esteller M., Compitello N., Baylin S.B., Herman J.G.. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5’ CpG island methylation. Cancer Res. 1999; 59:3352–3356. PubMed
Kawano S., Miller C.W., Gombart A.F., Bartram C.R., Matsuo Y., Asou H., Sakashita A., Said J., Tatsumi E., Koeffler H.P.. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood. 1999; 94:1113–1120. PubMed
Siu L.L.P., Chan J.K.C., Wong K.-F., Kwong Y.-L.. Specific patterns of gene methylation in natural killer cell lymphomas: p73 is consistently involved. Am. J. Pathol. 2002; 160:59–66. PubMed PMC
Ushiku T., Chong J.-M., Uozaki H., Hino R., Chang M.-S., Sudo M., Rani B.R., Sakuma K., Nagai H., Fukayama M.. p73 gene promoter methylation in Epstein–Barr virus-associated gastric carcinoma. Int. J. Cancer. 2007; 120:60–66. PubMed
Chaudhary N., Maddika S.. WWP2-WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and ΔNp73 levels. Mol. Cell. Biol. 2014; 34:3754–3764. PubMed PMC
Levy D., Reuven N., Shaul Y.. A regulatory circuit controlling Itch-mediated p73 degradation by Runx. J. Biol. Chem. 2008; 283:27462–27468. PubMed
Oberst A., Rossi M., Salomoni P., Pandolfi P.P., Oren M., Melino G., Bernassola F.. Regulation of the p73 protein stability and degradation. Biochem. Biophys. Res. Commun. 2005; 331:707–712. PubMed
Quesnel-Vallières M., Jewell S., Lynch K.W., Thomas-Tikhonenko A., Barash Y.. MAJIQlopedia: an encyclopedia of RNA splicing variations in human tissues and cancer. Nucleic Acids Res. 2024; 52:D213–D221. PubMed PMC
Martinez Gomez L., Pozo F., Walsh T.A., Abascal F., Tress M.L.. The clinical importance of tandem exon duplication-derived substitutions. Nucleic Acids Res. 2021; 49:8232–8246. PubMed PMC
Pozo F., Rodriguez J.M., Vázquez J., Tress M.L.. Clinical variant interpretation and biologically relevant reference transcripts. NPJ Genom. Med. 2022; 7:59. PubMed PMC
Rodriguez J.M., Rodriguez-Rivas J., Di Domenico T., Vázquez J., Valencia A., Tress M.L.. APPRIS 2017: principal isoforms for multiple gene sets. Nucleic Acids Res. 2018; 46:D213–D217. PubMed PMC
Koide A., Bailey C.W., Huang X., Koide S.. The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 1998; 284:1141–1151. PubMed
Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 2015; 55:489–511. PubMed
Nord K., Gunneriusson E., Ringdahl J., Ståhl S., Uhlén M., Nygren P.A.. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat. Biotechnol. 1997; 15:772–777. PubMed
Beste G., Schmidt F.S., Stibora T., Skerra A.. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl Acad. Sci. U.S.A. 1999; 96:1898–1903. PubMed PMC
Löfblom J., Frejd F.Y., Ståhl S.. Non-immunoglobulin based protein scaffolds. Curr. Opin. Biotechnol. 2011; 22:843–848. PubMed
Tajik M., Baharfar M., Donald W.A.. Single-cell mass spectrometry. Trends Biotechnol. 2022; 40:1374–1392. PubMed
Van Damme P., Gawron D., Van Criekinge W., Menschaert G.. N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men. Mol. Cell. Proteomics. 2014; 13:1245–1261. PubMed PMC
Lena A.M., Rossi V., Osterburg S., Smirnov A., Osterburg C., Tuppi M., Cappello A., Amelio I., Dötsch V., De Felici M.et al. .. The p63 C-terminus is essential for murine oocyte integrity. Nat. Commun. 2021; 12:383. PubMed PMC
Hall C., Muller P.A.J.. The diverse functions of mutant 53, its family members and isoforms in cancer. Int. J. Mol. Sci. 2019; 20:6188. PubMed PMC
Söderberg O., Gullberg M., Jarvius M., Ridderstråle K., Leuchowius K.-J., Jarvius J., Wester K., Hydbring P., Bahram F., Larsson L.-G.et al. .. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 2006; 3:995–1000. PubMed
Galperin M.Y., Koonin E.V.. Divergence and convergence in enzyme evolution. J. Biol. Chem. 2012; 287:21–28. PubMed PMC
Veesler D., Johnson J.E.. Virus maturation. Annu. Rev. Biophys. 2012; 41:473–496. PubMed PMC
Gehring W.J. Historical perspective on the development and evolution of eyes and photoreceptors. Int. J. Dev. Biol. 2004; 48:707–717. PubMed
Orabi B., Xie N., McConeghy B., Dong X., Chauve C., Hach F.. Freddie: annotation-independent detection and discovery of transcriptomic alternative splicing isoforms using long-read sequencing. Nucleic Acids Res. 2023; 51:e11. PubMed PMC
Cherry S., Lynch K.W.. Alternative splicing and cancer: insights, opportunities, and challenges from an expanding view of the transcriptome. Genes Dev. 2020; 34:1005–1016. PubMed PMC
Zhang Y., Yao X., Zhou H., Wu X., Tian J., Zeng J., Yan L., Duan C., Liu H., Li H.et al. .. OncoSplicing: an updated database for clinically relevant alternative splicing in 33 human cancers. Nucleic Acids Res. 2022; 50:D1340–D1347. PubMed PMC