TAp73 and ΔTAp73 isoforms show cell-type specific distributions and alterations in cancer
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MMCI 00209805
Ministerstvo Zdravotnictví Ceské Republiky
GACR 23-05951S
Grantová Agentura České Republiky
PubMed
39622910
PubMed Central
PMC11612387
DOI
10.1038/s41598-024-80927-9
PII: 10.1038/s41598-024-80927-9
Knihovny.cz E-zdroje
- Klíčová slova
- Cervical cancer, Endometrium, Fallopian tube, Multiciliated cells, Squamous epithelial stem cells, p73 isoforms,
- MeSH
- epitelové buňky metabolismus MeSH
- lidé MeSH
- monoklonální protilátky MeSH
- nádorové buněčné linie MeSH
- nádory děložního čípku metabolismus patologie genetika MeSH
- nádory metabolismus patologie genetika MeSH
- protein - isoformy * metabolismus genetika MeSH
- protein p73 * metabolismus genetika MeSH
- spinocelulární karcinom metabolismus patologie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- delta Np73 protein, human MeSH Prohlížeč
- monoklonální protilátky MeSH
- protein - isoformy * MeSH
- protein p73 * MeSH
- TP73 protein, human MeSH Prohlížeč
TP73 is a member of the TP53 gene family and produces N- and C-terminal protein isoforms through alternative promoters, alternative translation initiation and alternative splicing. Most notably, p73 protein isoforms may either contain a p53-like transactivation domain (TAp73 isoforms) or lack this domain (ΔTAp73 isoforms) and these variants have opposing or independent functions. To date, there is a lack of well-characterised isoform-specific p73 antibodies. Here, we produced polyclonal and monoclonal antibodies to N-terminal p73 variants and the C-terminal p73α isoform, the most common variant in human tissues. These reagents show that TAp73 is a marker of multiciliated epithelial cells, while ΔTAp73 is a marker of non-proliferative basal/reserve cells in squamous epithelium. We were unable to detect ΔNp73 variant proteins, in keeping with recent data that this is a minor form in human tissues. Most cervical squamous cell carcinomas (79%) express p73α, and the distribution of staining in basal cells correlated with lower tumour grade. TAp73 was found in 17% of these tumours, with a random distribution and no association with clinicopathological features. These data indicate roles for ΔTAp73 in maintaining a non-proliferative state of undifferentiated squamous epithelial cells and for TAp73 in the production of differentiated multiciliated cells.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Pathology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature278, 261–263 (1979). PubMed
Linzer, D. I., Maltzman, W. & Levine, A. J. The SV40 A gene product is required for the production of a 54,000 MW cellular tumor antigen. Virology98, 308–318 (1979). PubMed
Schmale, H. & Bamberger, C. A novel protein with strong homology to the tumor suppressor p53. Oncogene15, 1363–1367 (1997). PubMed
Kaghad, M. et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell90, 809–819 (1997). PubMed
Liu, Y., Su, Z., Tavana, O. & Gu, W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell.42, 946–967 (2024). PubMed PMC
Dickman, S. First p53 relative may be a new tumor suppressor. Science277, 1605–1606 (1997). PubMed
Jost, C. A., Marin, M. C. & Kaelin, W. G. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature389, 191–194 (1997). PubMed
Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature398, 714–718 (1999). PubMed
Nemajerova, A. & Moll, U. M. Tissue-specific roles of p73 in development and homeostasis. J. Cell. Sci.132, jcs233338 (2019). PubMed PMC
Inoue, K. & Fry, E. A. Alterations of p63 and p73 in human cancers. Subcell. Biochem.85, 17–40 (2014). PubMed PMC
Orzol, P. et al. The diverse oncogenic and tumour suppressor roles of p63 and p73 in cancer: a review by cancer site. Histol. Histopathol. 30, 503–521 (2015). PubMed
Pokorná, Z., Vysloužil, J., Hrabal, V., Vojtěšek, B. & Coates, P. J. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J. Pathol.254, 454–473 (2021). PubMed
Vikhreva, P., Melino, G. & Amelio, I. p73 alternative splicing: exploring a Biological role for the C-Terminal isoforms. J. Mol. Biol.430, 1829–1838 (2018). PubMed PMC
López, I., Valdivia, I. L., Vojtesek, B., Fåhraeus, R. & Coates, P. J. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res.52, 12112–12129 (2024). PubMed PMC
Grob, T. J. et al. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell. Death Differ.8, 1213–1223 (2001). PubMed
Carithers, L. J. & Moore, H. M. The genotype-tissue expression (GTEx) project. Biopreservation Biobanking. 13, 307–308 (2015). PubMed PMC
GTEx et al. Genetic effects on gene expression across human tissues. Nature550, 204–213 (2017). PubMed PMC
Marshall, C. B. et al. Tissue-specific expression of p73 and p63 isoforms in human tissues. Cell. Death Dis.12, 745 (2021). PubMed PMC
Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature404, 99–103 (2000). PubMed
Maeso-Alonso, L., López-Ferreras, L. & Marques, M. M. Marin, M. C. p73 as a tissue architect. Front. Cell. Dev. Biol.9, 716957 (2021). PubMed PMC
Marshall, C. B. et al. p73 is required for Multiciliogenesis and regulates the Foxj1-Associated Gene Network. Cell. Rep.14, 2289–2300 (2016). PubMed PMC
Napoli, M. & Flores, E. R. Unifying the p73 knockout phenotypes: TAp73 orchestrates multiciliogenesis. Genes Dev.30, 1253–1254 (2016). PubMed PMC
Nemajerova, A. et al. Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism. Cell. Death Differ.25, 144–153 (2018). PubMed PMC
Nenutil, R., Ceskova, P., Coates, P. J., Nylander, K. & Vojtesek, B. Differential expression of p73alpha in normal ectocervical epithelium, cervical intraepithelial neoplasia, and invasive squamous cell carcinoma. Int. J. Gynecol. Pathol. Off J. Int. Soc. Gynecol. Pathol.22, 386–392 (2003). PubMed
Puig, P. et al. p73 expression in human normal and tumor tissues: loss of p73alpha expression is associated with tumor progression in bladder cancer. Clin. Cancer Res. Off J. Am. Assoc. Cancer Res.9, 5642–5651 (2003). PubMed
Rosenbluth, J. M., Johnson, K., Tang, L., Triplett, T. & Pietenpol, J. A. Evaluation of p63 and p73 antibodies for cross-reactivity. Cell. Cycle Georget. Tex.8, 3702–3706 (2009). PubMed
Nekulova, M. et al. Characterization of specific p63 and p63-N-terminal isoform antibodies and their application for immunohistochemistry. Virchows Arch. Int. J. Pathol.463, 415–425 (2013). PubMed
Pellegrini, G. et al. p63 identifies keratinocyte stem cells. Proc. Natl. Acad. Sci. U S A. 98, 3156–3161 (2001). PubMed PMC
Guo, Y., Wu, H., Wiesmüller, L. & Chen, M. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell. Death Dis.15, 412 (2024). PubMed PMC
Logotheti, S. et al. Mechanisms of functional pleiotropy of p73 in Cancer and Beyond. Front. Cell. Dev. Biol.9, 737735 (2021). PubMed PMC
Concin, N. et al. Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res.64, 2449–2460 (2004). PubMed
Dötsch, V., Bernassola, F., Coutandin, D., Candi, E. & Melino, G. p63 and p73, the ancestors of p53. Cold Spring Harb Perspect. Biol.2, a004887 (2010). PubMed PMC
Baker, M. When antibodies mislead: the quest for validation. Nature585, 313–314 (2020). PubMed
Kahn, R. A. et al. Antibody characterization is critical to enhance reproducibility in biomedical research. eLife13, e100211 (2024). PubMed PMC
Pham, T. D., Fan, C., Pfeifer, D., Zhang, H. & Sun, X. F. Image-based network analysis of DNp73 expression by immunohistochemistry in rectal Cancer patients. Front. Physiol.10, 1551 (2019). PubMed PMC
Vilgelm, A. E. et al. Characterization of ∆Np73 expression and regulation in gastric and esophageal tumors. Oncogene29, 5861–5868 (2010). PubMed PMC
Beeler, J. S. et al. p73 regulates epidermal wound healing and induced keratinocyte programming. PloS One. 14, e0218458 (2019). PubMed PMC
Marques, M. M., Villoch-Fernandez, J., Maeso-Alonso, L., Fuertes-Alvarez, S. & Marin, M. C. The Trp73 mutant mice: a Ciliopathy Model that uncouples Ciliogenesis from Planar Cell Polarity. Front. Genet.10, 154 (2019). PubMed PMC
Cochrane, D. R. et al. Single cell transcriptomes of normal endometrial derived organoids uncover novel cell type markers and cryptic differentiation of primary tumours. J. Pathol.252, 201–214 (2020). PubMed
Ishimoto, O. et al. Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res.62, 636–641 (2002). PubMed
Zaika, A. I. et al. DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J. Exp. Med.196, 765–780 (2002). PubMed PMC
Di, C. et al. Mechanisms, function and clinical applications of DNp73. Cell. Cycle Georget. Tex.12, 1861–1867 (2013). PubMed PMC
Sayan, A. E. et al. Generation of DeltaTAp73 proteins by translation from a putative internal ribosome entry site. Ann. N Y Acad. Sci.1095, 315–324 (2007). PubMed
Li, Y. et al. p63: a crucial player in epithelial stemness regulation. Oncogene42, 3371–3384 (2023). PubMed PMC
Romano, R. A. et al. ∆Np63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Dev. Camb. Engl.139, 772–782 (2012). PubMed PMC
Strubel, A. et al. DARPins detect the formation of hetero-tetramers of p63 and p73 in epithelial tissues and in squamous cell carcinoma. Cell. Death Dis.14, 674 (2023). PubMed PMC
Coates, P. J. et al. p63 isoforms in triple-negative breast cancer: ∆Np63 associates with the basal phenotype whereas TAp63 associates with androgen receptor, lack of BRCA mutation, PTEN and improved survival. Virchows Arch. Int. J. Pathol.472, 351–359 (2018). PubMed
Loljung, L. et al. High expression of p63 is correlated to poor prognosis in squamous cell carcinoma of the tongue. J. Oral Pathol. Med. Off Publ Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol.43, 14–19 (2014). PubMed
Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 3, 995–1000 (2006). PubMed
Silverberg, S. G. Problems in the differential diagnosis of endometrial hyperplasia and carcinoma. Mod. Pathol. Off J. U S Can. Acad. Pathol. Inc. 13, 309–327 (2000). PubMed
Richardson, M. T., Recouvreux, M. S., Karlan, B. Y., Walts, A. E. & Orsulic, S. Ciliated cells in Ovarian Cancer decrease with increasing Tumor Grade and Disease Progression. Cells11, 4009 (2022). PubMed PMC
Hibi, K. et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc. Natl. Acad. Sci. U S A. 97, 5462–5467 (2000). PubMed PMC
Nylander, K. et al. Differential expression of p63 isoforms in normal tissues and neoplastic cells. J. Pathol.198, 417–427 (2002). PubMed
Krejci, A., Hupp, T. R., Lexa, M., Vojtesek, B. & Muller, P. Hammock: a hidden Markov model-based peptide clustering algorithm to identify protein-interaction consensus motifs in large datasets. Bioinforma Oxf. Engl.32, 9–16 (2016). PubMed PMC