DNA Demethylation Switches Oncogenic ΔNp63 to Tumor Suppressive TAp63 in Squamous Cell Carcinoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35912167
PubMed Central
PMC9331744
DOI
10.3389/fonc.2022.924354
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, TAp63, alternative promoter usage, decitabine, keratinocytes, squamous cell carcinoma, ΔNp63,
- Publikační typ
- časopisecké články MeSH
The TP63 gene encodes two major protein variants; TAp63 contains a p53-like transcription domain and consequently has tumor suppressor activities whereas ΔNp63 lacks this domain and acts as an oncogene. The two variants show distinct expression patterns in normal tissues and tumors, with lymphocytes and lymphomas/leukemias expressing TAp63, and basal epithelial cells and some carcinomas expressing high levels of ΔNp63, most notably squamous cell carcinomas (SCC). Whilst the transcriptional functions of TAp63 and ΔNp63 isoforms are known, the mechanisms involved in their regulation are poorly understood. Using squamous epithelial cells that contain high levels of ΔNp63 and low/undetectable TAp63, the DNA demethylating agent decitabine (5-aza-2'-deoxycytidine, 5-dAza) caused a dose-dependent increase in TAp63, with a simultaneous reduction in ΔNp63, indicating DNA methylation-dependent regulation at the isoform-specific promoters. The basal cytokeratin KRT5, a direct ΔNp63 transcriptional target, was also reduced, confirming functional alteration of p63 activity after DNA demethylation. We also showed high level methylation of three CpG sites in the TAP63 promoter in these cells, which was reduced by decitabine. DNMT1 depletion using inducible shRNAs partially replicated these effects, including an increase in the ratio of TAP63:ΔNP63 mRNAs, a reduction in ΔNp63 protein and reduced KRT5 mRNA levels. Finally, high DNA methylation levels were found at the TAP63 promoter in clinical SCC samples and matched normal tissues. We conclude that DNA methylation at the TAP63 promoter normally silences transcription in squamous epithelial cells, indicating DNA methylation as a therapeutic approach to induce this tumor suppressor in cancer. That decitabine simultaneously reduced the oncogenic activity of ΔNp63 provides a "double whammy" for SCC and other p63-positive carcinomas. Whilst a variety of mechanisms may be involved in producing the opposite effects of DNA demethylation on TAp63 and ΔNp63, we propose an "either or" mechanism in which TAP63 transcription physically interferes with the ability to initiate transcription from the downstream ΔNP63 promoter on the same DNA strand. This mechanism can explain the observed inverse expression of p63 isoforms in normal cells and cancer.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Research Center of Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czechia
Zobrazit více v PubMed
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The Foggy World(s) of P63 Isoform Regulation in Normal Cells and Cancer. J Pathol (2021) 254(4):454–73. doi: 10.1002/path.5656 PubMed DOI
Fisher ML, Balinth S, Mills AA. P63-Related Signaling at a Glance. J Cell Sci (2020) 133(17):jcs228015. doi: 10.1242/jcs.228015 PubMed DOI PMC
Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze-Bergkamen H, et al. . TAp63alpha Induces Apoptosis by Activating Signaling via Death Receptors and Mitochondria. EMBO J (2005) 24(13):2458–71. doi: 10.1038/sj.emboj.7600708 PubMed DOI PMC
Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, Lowe SW, et al. . TAp63 Induces Senescence and Suppresses Tumorigenesis In Vivo . Nat Cell Biol (2009) 11(12):1451–7. doi: 10.1038/ncb1988 PubMed DOI PMC
Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Lin YL, et al. . TAp63 Suppresses Metastasis Through Coordinate Regulation of Dicer and miRNAs. Nature (2010) 467(7318):986–90. doi: 10.1038/nature09459 PubMed DOI PMC
Su X, Napoli M, Abbas HA, Venkatanarayan A, Bui NHB, Coarfa C, et al. . TAp63 Suppresses Mammary Tumorigenesis Through Regulation of the Hippo Pathway. Oncogene (2017) 36(17):2377–93. doi: 10.1038/onc.2016.388 PubMed DOI PMC
Ha L, Ponnamperuma RM, Jay S, Ricci MS, Weinberg WC. Dysregulated Δnp63α Inhibits Expression of Ink4a/arf, Blocks Senescence, and Promotes Malignant Conversion of Keratinocytes. PloS One (2011) 6(7):e21877. doi: 10.1371/journal.pone.0021877 PubMed DOI PMC
Devos M, Gilbert B, Denecker G, Leurs K, Mc Guire C, Lemeire K, et al. . Elevated Δnp63α Levels Facilitate Epidermal and Biliary Oncogenic Transformation. J Invest Dermatol (2017) 137(2):494–505. doi: 10.1016/j.jid.2016.09.026 PubMed DOI
Bretz AC, Gittler MP, Charles JP, Gremke N, Eckhardt I, Mernberger M, et al. . Δnp63 Activates the Fanconi Anemia DNA Repair Pathway and Limits the Efficacy of Cisplatin Treatment in Squamous Cell Carcinoma. Nucleic Acids Res (2016) 44(7):3204–18. doi: 10.1093/nar/gkw036 PubMed DOI PMC
Gunaratne PH, Pan Y, Rao AK, Lin C, Hernandez-Herrera A, Liang K, et al. . Activating P53 Family Member TAp63: A Novel Therapeutic Strategy for Targeting P53-Altered Tumors. Cancer (2019) 125(14):2409–22. doi: 10.1002/cncr.32053 PubMed DOI PMC
Davis AJ, Tsinkevich M, Rodencal J, Abbas HA, Su XH, Gi YJ, et al. . TAp63-Regulated miRNAs Suppress Cutaneous Squamous Cell Carcinoma Through Inhibition of a Network of Cell-Cycle Genes. Cancer Res (2020) 80(12):2484–97. doi: 10.1158/0008-5472.CAN-19-1892 PubMed DOI PMC
Pokorna Z, Vyslouzil J, Vojtesek B, Coates PJ. Identifying Pathways Regulating the Oncogenic P53 Family Member Δnp63 Provides Therapeutic Avenues for Squamous Cell Carcinoma. Cell Mol Biol Lett (2022) 27(1):18. doi: 10.1186/s11658-022-00323-x PubMed DOI PMC
Venkatanarayan A, Raulji P, Norton W, Flores ER. Novel Therapeutic Interventions for P53-Altered Tumors Through Manipulation of Its Family Members, P63 and P73. Cell Cycle (2016) 15(2):164–71. doi: 10.1080/15384101.2015.1121333 PubMed DOI PMC
Orzol P, Holcakova J, Nekulova M, Nenutil R, Vojtesek B, Coates PJ. The Diverse Oncogenic and Tumour Suppressor Roles of P63 and P73 in Cancer: A Review by Cancer Site. Histol Histopathol (2015) 30(5):503–21. PubMed
Moses MA, George AL, Sakakibara N, Mahmood K, Ponnamperuma RM, King KE, et al. . Molecular Mechanisms of P63-Mediated Squamous Cancer Pathogenesis. Int J Mol Sci (2019) 20(14):3590. doi: 10.3390/ijms20143590 PubMed DOI PMC
Sethi I, Romano RA, Gluck C, Smalley K, Vojtesek B, Buck MJ, et al. . A Global Analysis of the Complex Landscape of Isoforms and Regulatory Networks of P63 in Human Cells and Tissues. BMC Genomics (2015) 16:584. doi: 10.1186/s12864-015-1793-9 PubMed DOI PMC
Nekulova M, Holcakova J, Nenutil R, Stratmann R, Bouchalova P, Müller P, et al. . Characterization of Specific P63 and P63-N-Terminal Isoform Antibodies and Their Application for Immunohistochemistry. Virchows Arch (2013) 463(3):415–25. doi: 10.1007/s00428-013-1459-4 PubMed DOI
Abbas HA, Bui NHB, Rajapakshe K, Wong J, Gunaratne P, Tsai KY, et al. . Distinct TP63 Isoform-Driven Transcriptional Signatures Predict Tumor Progression and Clinical Outcomes. Cancer Res (2018) 78(2):451–62. doi: 10.1158/0008-5472.CAN-17-1803 PubMed DOI PMC
Coates PJ, Nenutil R, Holcakova J, Nekulova M, Podhorec J, Svoboda M, et al. . P63 Isoforms in Triple-Negative Breast Cancer: Δnp63 Associates With the Basal Phenotype Whereas TAp63 Associates With Androgen Receptor, Lack of BRCA Mutation, PTEN and Improved Survival. Virchows Arch (2018) 472(3):351–9. doi: 10.1007/s00428-018-2324-2 PubMed DOI
Park S, Lee S, Kim J, Kim G, Park KH, Kim TU, et al. . Δnp63 to TAp63 Expression Ratio as a Potential Molecular Marker for Cervical Cancer Prognosis. PloS One (2019) 14(4):e0214867. doi: 10.1371/journal.pone.0214867 PubMed DOI PMC
Humphries LA, Godbersen JC, Danilova OV, Kaur P, Christensen BC, Danilov AV. Pro-Apoptotic TP53 Homolog TAp63 is Repressed via Epigenetic Silencing and B-Cell Receptor Signalling in Chronic Lymphocytic Leukaemia. Br J Haematol (2013) 163(5):590–602. doi: 10.1111/bjh.12580 PubMed DOI PMC
Papakonstantinou N, Ntoufa S, Tsagiopoulou M, Moysiadis T, Bhoi S, Malousi A, et al. . Integrated Epigenomic and Transcriptomic Analysis Reveals TP63 as a Novel Player in Clinically Aggressive Chronic Lymphocytic Leukemia. Int J Cancer (2019) 144(11):2695–706. doi: 10.1002/ijc.31999 PubMed DOI
Shi YX, Wang Y, Li X, Zhang W, Zhou HH, Yin JY, et al. . Genome-Wide DNA Methylation Profiling Reveals Novel Epigenetic Signatures in Squamous Cell Lung Cancer. BMC Genomics (2017) 18(1):901. doi: 10.1186/s12864-017-4223-3 PubMed DOI PMC
Zhang H, Jin Z, Cheng L, Zhang B. Integrative Analysis of Methylation and Gene Expression in Lung Adenocarcinoma and Squamous Cell Lung Carcinoma. Front Bioeng Biotechnol (2020) 8:3. doi: 10.3389/fbioe.2020.00003 PubMed DOI PMC
Campbell JD, Yau C, Bowlby R, Liu Y, Brennan K, Fan H, et al. . Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Rep (2018) 23(1):194–212.e6. PubMed PMC
ENCODE Project Consortium . An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature (2012) 489(7414):57–74. doi: 10.1038/nature11247 PubMed DOI PMC
Li LC, Dahiya R. MethPrimer: Designing Primers for Methylation PCRs. Bioinformatics (2002) 18(11):1427–31. doi: 10.1093/bioinformatics/18.11.1427 PubMed DOI
Leakey TI, Zielinski J, Siegfried RN, Siegel ER, Fan CY, Cooney CA. A Simple Algorithm for Quantifying DNA Methylation Levels on Multiple Independent CpG Sites in Bisulfite Genomic Sequencing Electropherograms. Nucleic Acids Res (2008) 36(11):e64. doi: 10.1093/nar/gkn210 PubMed DOI PMC
Jiang M, Zhang Y, Fei J, Chang X, Fan W, Qian X, et al. . Rapid Quantification of DNA Methylation by Measuring Relative Peak Heights in Direct Bisulfite-PCR Sequencing Traces. Lab Invest (2010) 90(2):282–90. doi: 10.1038/labinvest.2009.132 PubMed DOI
Karlsson A, Jönsson M, Lauss M, Brunnström H, Jönsson P, Borg Å, et al. . Genome-Wide DNA Methylation Analysis of Lung Carcinoma Reveals One Neuroendocrine and Four Adenocarcinoma Epitypes Associated With Patient Outcome. Clin Cancer Res (2014) 20(23):6127–40. doi: 10.1158/1078-0432.CCR-14-1087 PubMed DOI
Kurokawa T, Nakagawa T, Matsusaka K, Fukuyo M, Mima M, Misawa K, et al. . Establishment of Epigenetic Markers to Predict Irradiation Efficacy Against Oropharyngeal Cancer. Cancer Sci (2020) 111(4):1407–16. doi: 10.1111/cas.14338 PubMed DOI PMC
Orzol P, Nekulova M, Holcakova J, Muller P, Votesek B, Coates PJ. Δnp63 Regulates Cell Proliferation, Differentiation, Adhesion, and Migration in the BL2 Subtype of Basal-Like Breast Cancer. Tumour Biol (2016) 37(8):10133–40. doi: 10.1007/s13277-016-4880-x PubMed DOI
Pfaffl MW. A New Mathematical Model for Relative Quantification in Real-Time RT-PCR. Nucleic Acids Res (2001) 29(9):e45. doi: 10.1093/nar/29.9.e45 PubMed DOI PMC
Nylander K, Coates PJ, Hall PA. Characterization of the Expression Pattern of P63 Alpha and Delta Np63 Alpha in Benign and Malignant Oral Epithelial Lesions. Int J Cancer (2000) 87(3):368–72. doi: 10.1002/1097-0215(20000801)87:3<368::AID-IJC9>3.0.CO;2-J PubMed DOI
Romano RA, Ortt K, Birkaya B, Smalley K, Sinha S. An Active Role of the DeltaN Isoform of P63 in Regulating Basal Keratin Genes K5 and K14 and Directing Epidermal Cell Fate. PloS One (2009) 4(5):e5623. doi: 10.1371/journal.pone.0005623 PubMed DOI PMC
Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD. DNA Methylation Inhibitor 5-Aza-2’-Deoxycytidine Induces Reversible Genome-Wide DNA Damage That Is Distinctly Influenced by DNA Methyltransferases 1 and 3B. Mol Cell Biol (2008) 28(2):752–71. doi: 10.1128/MCB.01799-07 PubMed DOI PMC
Orta ML, Höglund A, Calderón-Montaño JM, Domínguez I, Burgos-Morón E, Visnes T, et al. . The PARP Inhibitor Olaparib Disrupts Base Excision Repair of 5-Aza-2’-Deoxycytidine Lesions. Nucleic Acids Res (2014) 42(14):9108–20. doi: 10.1093/nar/gku638 PubMed DOI PMC
Rogakou EP, Boon C, Redon C, Bonner WM. Megabase Chromatin Domains Involved in DNA Double-Strand Breaks In Vivo . J Cell Biol (1999) 146(5):905–16. doi: 10.1083/jcb.146.5.905 PubMed DOI PMC
Bishop JA, Teruya-Feldstein J, Westra WH, Pelosi G, Travis WD, Rekhtman N. P40 (Δnp63) Is Superior to P63 for the Diagnosis of Pulmonary Squamous Cell Carcinoma. Mod Pathol (2012) 25(3):405–15. doi: 10.1038/modpathol.2011.173 PubMed DOI
Clark SJ, Melki J. DNA Methylation and Gene Silencing in Cancer: Which Is the Guilty Party? Oncogene (2002) 21(35):5380–7. doi: 10.1038/sj.onc.1205598 PubMed DOI
Esteller M. Dormant Hypermethylated Tumour Suppressor Genes: Questions and Answers. J Pathol (2005) 205(2):172–80. doi: 10.1002/path.1707 PubMed DOI
Romero-Garcia S, Prado-Garcia H, Carlos-Reyes A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front Oncol (2020) 10:1152. doi: 10.3389/fonc.2020.01152 PubMed DOI PMC
Mascolo M, Siano M, Ilardi G, Russo D, Merolla F, De Rosa G, et al. . Epigenetic Disregulation in Oral Cancer. Int J Mol Sci (2012) 13(2):2331–53. doi: 10.3390/ijms13022331 PubMed DOI PMC
Castilho RM, Squarize CH, Almeida LO. Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int J Mol Sci (2017) 18(7):E1506. doi: 10.3390/ijms18071506 PubMed DOI PMC
Lyko F. The DNA Methyltransferase Family: A Versatile Toolkit for Epigenetic Regulation. Nat Rev Genet (2018) 19(2):81–92. doi: 10.1038/nrg.2017.80 PubMed DOI
Petryk N, Bultmann S, Bartke T, Defossez PA. Staying True to Yourself: Mechanisms of DNA Methylation Maintenance in Mammals. Nucleic Acids Res (2021) 49(6):3020–32. doi: 10.1093/nar/gkaa1154 PubMed DOI PMC
Liang G, Weisenberger DJ. DNA Methylation Aberrancies as a Guide for Surveillance and Treatment of Human Cancers. Epigenetics (2017) 12(6):416–32. doi: 10.1080/15592294.2017.1311434 PubMed DOI PMC
Pruneri G, Fabris S, Dell’Orto P, Biasi MO, Valentini S, Del Curto B, et al. . The Transactivating Isoforms of P63 Are Overexpressed in High-Grade Follicular Lymphomas Independent of the Occurrence of P63 Gene Amplification. J Pathol (2005) 206(3):337–45. doi: 10.1002/path.1787 PubMed DOI
Venkatanarayan A, Raulji P, Norton W, Chakravarti D, Coarfa C, Su X, et al. . IAPP-Driven Metabolic Reprogramming Induces Regression of P53-Deficient Tumours In Vivo . Nature (2015) 517(7536):626–30. doi: 10.1038/nature13910 PubMed DOI PMC
Fomenkov A, Zangen R, Huang YP, Osada M, Guo Z, Fomenkov T, et al. . RACK1 and Stratifin Target DeltaNp63alpha for a Proteasome Degradation in Head and Neck Squamous Cell Carcinoma Cells Upon DNA Damage. Cell Cycle (2004) 3(10):1285–95. doi: 10.4161/cc.3.10.1155 PubMed DOI
Westfall MD, Joyner AS, Barbieri CE, Livingstone M, Pietenpol JA. Ultraviolet Radiation Induces Phosphorylation and Ubiquitin-Mediated Degradation of DeltaNp63alpha. Cell Cycle (2005) 4(5):710–6. doi: 10.4161/cc.4.5.1685 PubMed DOI
Lazzari C, Prodosmo A, Siepi F, Rinaldo C, Galli F, Gentileschi M, et al. . HIPK2 Phosphorylates Δnp63α and Promotes Its Degradation in Response to DNA Damage. Oncogene (2011) 30(48):4802–13. doi: 10.1038/onc.2011.182 PubMed DOI
Shin DY, Park YS, Yang K, Kim GY, Kim WJ, Han MH, et al. . Decitabine, a DNA Methyltransferase Inhibitor, Induces Apoptosis in Human Leukemia Cells Through Intracellular Reactive Oxygen Species Generation. Int J Oncol (2012) 41(3):910–8. doi: 10.3892/ijo.2012.1546 PubMed DOI
Shin DY, Sung Kang H, Kim GY, Kim WJ, Yoo YH, Choi YH. Decitabine, a DNA Methyltransferases Inhibitor, Induces Cell Cycle Arrest at G2/M Phase Through P53-Independent Pathway in Human Cancer Cells. BioMed Pharmacother (2013) 67(4):305–11. doi: 10.1016/j.biopha.2013.01.004 PubMed DOI
Miari R, Azzam N, Bar-Shalom R, Fares F. 5-Aza-2’-Deoxycytidine Induces Apoptosis and Inhibits Tumour Growth In Vivo of FaDu Cells, a Specific HPVnegative HNSCC Cell Line. PloS One (2021) 16(9):e0253756. doi: 10.1371/journal.pone.0253756 PubMed DOI PMC
Chakravarti D, Su X, Cho MS, Bui NHB, Coarfa C, Venkatanarayan A, et al. . Induced Multipotency in Adult Keratinocytes Through Down-Regulation of Δnp63 or DGCR8. Proc Natl Acad Sci USA (2014) 111(5):E572–581. doi: 10.1073/pnas.1319743111 PubMed DOI PMC
Romano RA, Smalley K, Magraw C, Serna VA, Kurita T, Raghavan S, et al. . Δnp63 Knockout Mice Reveal Its Indispensable Role as a Master Regulator of Epithelial Development and Differentiation. Development (2012) 139(4):772–82. doi: 10.1242/dev.071191 PubMed DOI PMC
Rinaldi L, Datta D, Serrat J, Morey L, Solanas G, Avgustinova A, et al. . Dnmt3a and Dnmt3b Associate With Enhancers to Regulate Human Epidermal Stem Cell Homeostasis. Cell Stem Cell (2016) 19(4):491–501. doi: 10.1016/j.stem.2016.06.020 PubMed DOI
Stirzaker C, Song JZ, Davidson B, Clark SJ. Transcriptional Gene Silencing Promotes DNA Hypermethylation Through a Sequential Change in Chromatin Modifications in Cancer Cells. Cancer Res (2004) 64(11):3871–7. doi: 10.1158/0008-5472.CAN-03-3690 PubMed DOI
Skvortsova K, Masle-Farquhar E, Luu PL, Song JZ, Qu W, Zotenko E, et al. . DNA Hypermethylation Encroachment at CpG Island Borders in Cancer Is Predisposed by H3K4 Monomethylation Patterns. Cancer Cell (2019) 35(2):297–314.e8. doi: 10.1016/j.ccell.2019.01.004 PubMed DOI
Nekulova M, Holcakova J, Coates P, Vojtesek B. The Role of P63 in Cancer, Stem Cells and Cancer Stem Cells. Cell Mol Biol Lett (2011) 16(2):296–327. doi: 10.2478/s11658-011-0009-9 PubMed DOI PMC
Liu Y, Nekulova M, Nenutil R, Horakova I, Appleyard MV, Murray K, et al. . ∆Np63/p40 Correlates With the Location and Phenotype of Basal/Mesenchymal Cancer Stem-Like Cells in Human ER+ and HER2+ Breast Cancers. J Pathol Clin Res (2020) 6(1):83–93. doi: 10.1002/cjp2.149 PubMed DOI PMC
Galoczova M, Nenutil R, Pokorna Z, Vojtesek B, Coates PJ. TAp63 and Δnp63 (P40) in Prostate Adenocarcinomas: Δnp63 Associates With a Basal-Like Cancer Stem Cell Population But Not With Metastasis. Virchows Arch (2021) 478(4):627–36. doi: 10.1007/s00428-020-02944-z PubMed DOI
Park BJ, Lee SJ, Kim JI, Lee SJ, Lee CH, Chang SG, et al. . Frequent Alteration of P63 Expression in Human Primary Bladder Carcinomas. Cancer Res (2000) 60(13):3370–4. PubMed
Koga F, Kawakami S, Kumagai J, Takizawa T, Ando N, Arai G, et al. . Impaired Delta Np63 Expression Associates With Reduced Beta-Catenin and Aggressive Phenotypes of Urothelial Neoplasms. Br J Cancer (2003) 88(5):740–7. doi: 10.1038/sj.bjc.6600764 PubMed DOI PMC
Tran MN, Choi W, Wszolek MF, Navai N, Lee ILC, Nitti G, et al. . The P63 Protein Isoform Δnp63α Inhibits Epithelial-Mesenchymal Transition in Human Bladder Cancer Cells: Role of MIR-205. J Biol Chem (2013) 288(5):3275–88. doi: 10.1074/jbc.M112.408104 PubMed DOI PMC
Thurfjell N, Coates PJ, Vojtesek B, Benham-Motlagh P, Eisold M, Nylander K. Endogenous P63 Acts as a Survival Factor for Tumour Cells of SCCHN Origin. Int J Mol Med (2005) 16(6):1065–70. doi: 10.3892/ijmm.16.6.1065 PubMed DOI
Re-appraising the evidence for the source, regulation and function of p53-family isoforms