The role of p63 in cancer, stem cells and cancer stem cells

. 2011 Jun ; 16 (2) : 296-327. [epub] 20110320

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid21442444

The transcription factor p63 has important functions in tumorigenesis, epidermal differentiation and stem cell self-renewal. The TP63 gene encodes multiple protein isoforms that have different or even antagonistic roles in these processes. The balance of p63 isoforms, together with the presence or absence of the other p53 family members, p73 and p53, has a striking biological impact. There is increasing evidence that interactions between p53-family members, whether cooperative or antagonistic, are involved in various cell processes. This review summarizes the current understanding of the role of p63 in tumorigenesis, metastasis, cell migration and senescence. In particular, recent data indicate important roles in adult stem cell and cancer stem cell regulation and in the response of cancer cells to therapy.

Zobrazit více v PubMed

Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J.C., Valent A., Minty A., Chalon P., Lelias J.M., Dumont X., Ferrara P., McKeon F., Caput D. Monoallelically expressed gene related to p53 at 1p63, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90:809–819. PubMed

Yang A.N., Kaghad M., Wang Y.M., Gillett E., Fleming M.D., Dotsch V., Andrews N.C., Caput D., McKeon F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell. 1998;2:305–316. PubMed

Joerger A.C., Rajagopalan S., Natan E., Veprintsev D.B., Robinson C.V., Fersht A.R. Structural evolution of p53, p63, and p73: Implication for heterotetramer formation. Proc. Natl. Acad. Sci. USA. 2009;106:17705–17710. PubMed PMC

Stifanic M., Micic M., Ramsak A., Blaskovic S., Ruso A., Zahn R., Batel R. p63 in Mytilus galloprovincialis and p53 family members in the phylum Mollusca. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2009;154:264–273. PubMed

Dohn M., Zhang S.Z., Chen X.B. p63 alpha and Delta Np63 alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene. 2001;20:3193–3205. PubMed

Wu G., Nomoto S., Hoque M., Dracheva T., Osada M., Lee C., Dong S., Guo Z., Benoit N., Cohen Y., Rechthand P., Califano J., Moon C.S., Ratovitski E., Jen J., Sidransky D., Trink B. Delta Np63 alpha and TAp63 alpha regulate transcription of genes with distinct biological functions in cancer and development. Canc. Res. 2003;63:2351–2357. PubMed

Osada M., Park H.L., Nagakawa Y., Yamashita K., Fomenkov A., Kim M.S., Wu G.J., Nomoto S., Trink B., Sidransky D. Differential recognition of response elements determines target gene specificity for p53 and p63. Mol. Cell. Biol. 2005;25:6077–6089. PubMed PMC

Testoni B., Borrelli S., Tenedini E., Alotto D., Castagnoli C., Piccolo S., Tagliafico E., Ferrari S., Vigano M.A., Mantovani R. Identification of new p63 targets in human keratinocytes. Cell Cycle. 2006;5:2805–2811. PubMed

Yang A., Zhu Z., Kapranov P., McKeon F., Church G.M., Gingeras T.R., Struhl K. Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol. Cell. 2006;24:593–602. PubMed

Vigano M.A., Lamartine J., Testoni B., Merico D., Alotto D., Castagnoli C., Robert A., Candi E., Melino G., Gidrol X., Mantovani R. New p63 targets in keratinocytes identified by a genome-wide approach. EMBO J. 2006;25:5105–5116. PubMed PMC

Mangiulli M., Valletti A., Caratozzolo M.F., Tullo A., Sbisa E., Pesole G., D’Erchia A.M. Identification and functional characterization of two new transcriptional variants of the human p63 gene. Nucl. Acid. Res. 2009;37:6092–6104. PubMed PMC

Thanos C.D., Bowie J.U. p53 Family members p63 and p73 are SAM domain-containing proteins. Prot. Sci. 1999;8:1708–1710. PubMed PMC

Serber Z., Lai H.C., Yang A., Ou H.D., Sigal M.S., Kelly A.E., Darimont B.D., Duijf P.H.G., van Bokhoven H., McKeon F., Dötsch V. A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Mol. Cell. Biol. 2002;22:8601–8611. PubMed PMC

Sayan B.S., Sayan A.E., Yang A.L., Aqeilan R.I., Candi E., Coher G.M., Knight R.A., Croce C.M., Melino G. Cleavage of the transactivationinhibitory domain of p63 by caspases enhances apoptosis. Proc. Natl. Acad. Sci. USA. 2007;104:10871–10876. PubMed PMC

Ghioni P., Bolognese F., Duijf P.H.G., van Bokhoven H., Mantovani R., Guerrini L. Complex transcriptional effects of p63 isoforms: Identification of novel activation and repression domains. Mol. Cell. Biol. 2002;22:8659–8668. PubMed PMC

Helton E.S., Zhu J.H., Chen X.B. The unique NH2-terminally deleted (Delta N) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the Delta N variant of p63. J. Biol. Chem. 2006;281:2533–2542. PubMed

Nylander K., Vojtesek B., Nenutil R., Lindgren B., Roos G., Wang Z.X., Sjostrom B., Dahlqvist A., Coates P.J. Differential expression of p63 isoforms in normal tissues and neoplastic cells. J. Pathol. 2002;198:417–427. PubMed

Reis-Filho J.S., Torio B., Albergaria A., Schmitt F.C. p63 expression in normal skin and usual cutaneous carcinomas. J. Cutan. Pathol. 2002;29:517–523. PubMed

Di Como C.J., Urist M.J., Babayan I., Drobnjak M., Hedvat C.V., Teruya-Feldstein J., Pohar K., Hoos A., Cordon-Cardo C. p63 expression profiles in human normal and tumor tissues. Clin. Canc. Res. 2002;8:494–501. PubMed

Rosenbluth J.M., Johnson K., Tang L.J., Triplett T., Pietenpol J.A. Evaluation of p63 and p73 antibodies for cross-reactivity. Cell Cycle. 2009;8:3702–3706. PubMed

Hedvat C.V., Teruya-Feldstein J., Puig P., Capodieci P., Dudas M., Pica N., Qin J., Cordon-cardo C., Di Como C.J. Expression of p63 in diffuse large B-cell lymphoma. Appl. Immunohistochem. Mol. Morphol. 2005;13:237–242. PubMed

Livera G., Petre-Lazar B., Guerquin M.J., Trautmann E., Coffigny H., Habert R. p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction. 2008;135:3–12. PubMed

Suh E.K., Yang A., Kettenbach A., Bamberger C., Michaelis A.H., Zhu Z., Elvin J.A., Bronson R.T., Crum C.P., McKeon F. p63 protects the female germ line during meiotic arrest. Nature. 2006;444:624–628. PubMed

Nishi H., Isaka K., Sagawa Y., Usuda S., Fujito A., Ito H., Senoo M., Kato H., Takayama M. Mutation and transcription analyses of the p63 gene in cervical carcinoma. Int. J. Oncol. 1999;15:1149–1153. PubMed

Wang T.Y., Chen B.F., Yang Y.C., Chen H., Wang Y., Cviko A., Quade B.J., Sun D., Yang A., McKeon F.D., Crum C.P. Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum. Pathol. 2001;32:479–486. PubMed

Idrees M.T., Schlosshauer P., Li G., Burstein D.E. GLUT1 and p63 expression in endometrial intraepithelial and uterine serous papillary carcinoma. Histopathology. 2006;49:75–81. PubMed

Ito Y., Takeda T., Wakasa K., Tsujimoto M., Sakon M., Matsuura N. Expression of p73 and p63 proteins in pancreatic adenocarcinoma: p73 overexpression is inversely correlated with biological aggressiveness. Int. J. Mol. Med. 2001;8:67–71. PubMed

Harmes D.C., Bresnick E., Lubin E.A., Watson J.K., Heim K.E., Curtin J.C., Suskind A.M., Lamb J., DiRenzo J. Positive and negative regulation of Delta N-p63 promoter activity by p53 and Delta N-p63-alpha contributes to differential regulation of p53 target genes. Oncogene. 2003;22:7607–7616. PubMed

Weinstein M.H., Signoretti S., Loda M. Diagnostic utility of immunohistochemical staining for p63, a sensitive marker of prostatic basal cells. Mod. Pathol. 2002;15:1302–1308. PubMed

Chen B.Y., Liu J.Y., Chang H.H., Chang C.P., Lo W.Y., Kuo W.H., Yang C.R., Lin D. Hedgehog is involved in prostate basal cell hyperplasia formation and its progressing towards tumorigenesis. Biochem. Biophys. Res. Commun. 2007;357:1084–1089. PubMed

Glickman J.N., Yang A., Shahsafaei A., McKeon F., Odze R.D. Expression of p53-related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum. Pathol. 2001;32:1157–1165. PubMed

Basturk O., Khanani F., Sarkar F., Levi E., Cheng J.D., Adsay N.V. DeltaNp63 expression in pancreas and pancreatic neoplasia. Mod. Pathol. 2005;18:1193–1198. PubMed

Koga F., Kawakami S., Fujii Y., Saito K., Ohtsuka Y., Iwai A., Ando N., Takizawa T., Kageyama Y., Kihara K. Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin. Cancer Res. 2003;9:5501–5507. PubMed

Urist M.J., Di Como C.J., Lu M.L., Charytonowicz E., Verbel D., Crum C.P., Ince T.A., McKeon F.D., Cordon-Cardo C. Loss of p63 expression is associated with tumor progression in bladder cancer. Am. J. Pathol. 2002;161:1199–1206. PubMed PMC

Park B.J., Lee S.J., Kim J.I., Lee S.J., Lee C.H., Chang S.G., Park J.H., Chi S.G. Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res. 2000;60:3370–3374. PubMed

Koga F., Kawakami S., Kumagai J., Takizawa T., Ando N., Arai G., Kageyama Y., Kihara K. Impaired Delta Np63 expression assocites with reduced beta-catenin and aggressive phenotypes of urothelial neoplasms. Br. J. Cancer. 2003;88:740–747. PubMed PMC

Yamaguchi K., Wu L., Caballero O.L., Hibi K., Trink B., Resto V., Cairns P., Okami K., Koch W.M., Sidransky D., Jen J. Frequent gain of the p40/p51/p63 gene locus in primary head and neck squamous cell carcinoma. Int. J. Cancer. 2000;86:684–689. PubMed

Thurfjell N., Coates P.J., Uusitalo T., Mahani D., Dabelsteen E., Dahlqvist A., Sjöström B., Roos G., Nylander K. Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck. Int. J. Oncol. 2004;25:27–35. PubMed

Zangen R., Ratovitski E., Sidransky D. DeltaNp63alpha levels correlate with clinical tumor response to cisplatin. Cell Cycle. 2005;4:1313–1315. PubMed

Tannapfel A., Schmelzer S., Benicke M., Klimpfinger M., Kohlhaw K., Mössner J., Engeland K., Wittekind C. Expression of the p53 homologues p63 and p73 in multiple simultaneous gastric cancer. J. Pathol. 2001;195:163–170. PubMed

Massion P.P., Taflan P.M., Jamshedur Rahman S.M., Yildiz P., Shyr Y., Edgerton M.E., Westfall M.D., Roberts J.R., Pietenpol J.A., Carbone D.P., Gonzalez A.L. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res. 2003;63:7113–7121. PubMed

Wang B.Y., Gil J., Kaufman D., Gan L., Kohtz D.S., Burstein D.E. P63 in pulmonary epithelium, pulmonary squamous neoplasms, and other pulmonary tumors. Hum. Pathol. 2002;33:921–926. PubMed

Ying H., Chang D.L., Zheng H., McKeon F., Xiao Z.X. DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol. Cell. Biol. 2005;25:6154–6164. PubMed PMC

Osada M., Inaba R., Shinohara H., Hagiwara M., Nakamura M., Ikawa Y. Regulatory domain of protein stability of human P51/TAP63, a P53 homologue. Biochem. Biophys. Res. Commun. 2001;283:1135–1141. PubMed

Ghioni P., D’Alessandra Y., Mansueto G., Jaffray E., Hay R.T., La Mantia G., Guerrini L. The protein stability and transcriptional activity of p63 alpha are regulated by SUMO-1 conjugation. Cell Cycle. 2005;4:183–190. PubMed

Petitjean A., Ruptier C., Tribollet V., Hautefeuille A., Chardon F., Cavard C., Puisieux A., Hainaut P., de Fromentel C.C. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with Delta Np73. Carcinogenesis. 2008;29:273–281. PubMed

MacPartlin M., Zeng S., Lee H., Stauffer D., Jin Y., Thayer M., Lu H. p300 regulates p63 transcriptional activity. J. Biol. Chem. 2005;280:30604–30610. PubMed

Fomenkov A., Zangen R., Huang Y.P., Osada M., Guo Z., Fomenkov T., Trink B., Sidransky D., Ratovitski E.A. RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle. 2004;3:1285–1295. PubMed

Chatterjee A., Chang X., Sen T., Ravi R., Bedi A., Sidransky D. Regulation of p53 family member isoform ΔNp63α by the nuclear factor-κB targeting kinase IκB kinase β. Cancer Res. 2010;70:1419–1429. PubMed PMC

Wang N., Guo L., Rueda B.R., Tilly J.L. Cables1 protects p63 from proteasomal degradation to ensure deletion of cells after genotoxic stress. EMBO J. 2010;11:633–639. PubMed PMC

Tomlinson, V., Gudmundsdottir, K., Luong, P., Leung, K.-Y., Knebel, A. and Basu, S. JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis.1,e29 (2010) doi:10.1038/cddis.2010.7. PubMed PMC

Kadakia M., Slader C., Berberich S.J. Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol. 2001;20:321–330. PubMed

Little N.A., Jochemsen A.G. Hdmx and Mdm2 can repress transcription activation by p53 but not by p63. Oncogene. 2001;20:4576–4580. PubMed

Calabro V., Mansueto G., Parisi T., Vivo M., Calogero R.A., La Mantia G. The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J. Biol. Chem. 2002;277:2674–2681. PubMed

Galli F., Rossi M., D’Alessandra Y., De Simone M., Lopardo T., Haupt Y., Alsheich-Bartok O., Anzi S., Shaulian E., Calabro V., La Mantia G., Guerrini L. MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation. J. Cell. Sci. 2010;123:2423–2433. PubMed

Lin Y.L., Sengupta S., Gurdziel K., Bell G.W., Jacks T., Flores E.R. p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet. 2009;5:e1000680. PubMed PMC

Lopardo T., Lo Iacono N., Marinari B., Giustizieri M.L., Cyr D.G., Merlo G., Crosti F., Costanzo A., Guerrini L. Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS One. 2008;3:e2715. PubMed PMC

Gressner O., Schilling T., Lorenz K., Schulze Schleithoff E., Koch A., Schulze-Bergkamen H., Lena A.M., Candi E., Terrinoni A., Catani M.V., Oren M., Melino G., Krammer P.H., Stremmel W., Müller M. TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J. 2005;24:2458–2471. PubMed PMC

Antonini D., Dentice M., Mahtani P., De Rosa L., Della Gatta G., Mandinova A., Salvatore D., Stupka E., Missero C. Tprg, a gene predominantly expressed in skin, is a direct target of the transcription factor p63. J. Invest. Dermatol. 2008;128:1676–1685. PubMed

Koster M.I., Dai D., Marinari B., Sano Y., Costanzo A., Karin M., Roop D.R. p63 induces key target genes required for epidermal morphogenesis. Proc. Natl. Acad. Sci. USA. 2007;104:3255–3260. PubMed PMC

Gu X.L., Coates P.J., Boldrup L., Nylander K. p63 contributes to cell invasion and migration in squamous cell carcinoma of the head and neck. Cancer Lett. 2008;263:26–34. PubMed

Ihrie R.A., Marques M.R., Nguyen B.T., Horner J.S., Papazoglu C., Bronson R.T., Mills A.A., Attardi L.D. Perp is a p63-regulated gene essential for epithelial integrity. Cell. 2005;120:843–856. PubMed

Wu G., Nomoto S., Hoque M.O., Dracheva T., Osada M., Lee C.C., Dong S.M., Guo Z., Benoit N., Cohen Y., Rechthand P., Califano J., Moon C.S., Ratovitski E., Jen J., Sidransky D., Trink B. DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res. 2003;63:2351–2357. PubMed

Boldrup L., Coates P.J., Gu X., Nylander K. DeltaNp63 isoforms differentially regulate gene expression in squamous cell carcinoma: identification of Cox-2 as a novel p63 target. J. Pathol. 2009;218:428–436. PubMed

Osada M., Ohba M., Kawahara C., Ishioka C., Kanamaru R., Katoh I., Ikawa Y., Nimura Y., Nakagawara A., Obinata M., Ikawa S. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat. Med. 1998;4:839–843. PubMed

Sunahara M., Shishikura T., Takahashi M., Todo S., Yamamoto N., Kimura H., Kato S., Ishioka C., Ikawa S., Ikawa Y., Nakagawara A. Mutational analysis of p51A/TAp63gamma, a p53 homolog, in non-small cell lung cancer and breast cancer. Oncogene. 1999;18:3761–3765. PubMed

Hibi K., Trink B., Patturajan M., Westra W.H., Caballero O.L., Hill D.E., Ratovitski E.A., Jen J., Sidransky D. AIS is an oncogene amplified in squamous cell carcinoma. Proc. Natl. Sci. USA. 2000;97:5462–5467. PubMed PMC

Flores E.R., Sengupta S., Miller J.B., Newman J.J., Bronson R., Crowley D., Yang A., McKeon F., Jacks T. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell. 2005;7:363–373. PubMed

Keyes W.M., Vogel H., Koster M.I., Guo X.C., Qi Y., Petherbridge K.M., Roop D.R., Bradley A., Mills A.A. p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc. Natl. Acad. Sci. USA. 2006;103:8435–8440. PubMed PMC

Keyes W.M., Wu Y., Vogel H., Guo X.C., Lowe S.W., Mills A.A. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev. 2005;19:1986–1999. PubMed PMC

Djelloul S., Tarunina M., Barnouin K., Mackay A., Jat P.S. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence. Oncogene. 2002;21:981–989. PubMed

Guo X.C., Keyes W.M., Papazoglu C., Zuber J., Li W.Z., Lowe S.W., Vogel H., Mills A.A. TAp63 induces senescence and suppresses tumorigenesis in vivo. Nature Cell Biol. 2009;11:1451–1457. PubMed PMC

Koster M.I., Lu S.L., White L.D., Wang X.J., Roop D.R. Reactivation of developmentally expressed p63 isoforms predisposes to tumor development and progression. Cancer Res. 2006;66:3981–3986. PubMed

Koster M.I., Kim S., Mills A.A., DeMayo F.J., Roop D.R. p63 is the molecular switch for initiation of an epithelial stratification program. Gen. Dev. 2004;18:126–131. PubMed PMC

Mundt H.M., Stremmel W., Melino G., Krammer P.H., Schilling T., Müller M. Dominant negative (DeltaN) p63alpha induces drug resistance in hepatocellular carcinoma by interference with apoptosis signaling pathways. Biochem. Biophys. Res. Commun. 2010;396:335–341. PubMed

Nylander K., Coates P.J., Hall P.A. Characterization of the expression pattern of p63 alpha and delta Np63 alpha in benign and malignant oral epithelial lesions. Int. J. Cancer. 2000;87:368–372. PubMed

Crook T., Nicholls J.M., Brooks L., O’Nions J., Allday M.J. High level expression of deltaNp63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene. 2000;19:3439–3444. PubMed

Tonon G., Brennan C., Protopopov A., Maulik G., Feng B., Zhang Y., Khatry D.B., You M.J., Aguirre A.J., Martin E.S., Yang Z., Ji H., CHin L., Wong K.K., Depinho R.A. Common and contrasting genomic profiles among the major human lung cancer subtypes. Cold Spring Harb. Symp. Quant. Biol. 2005;70:11–24. PubMed

Davison T.S., Vagner C., Kaghad M., Ayed A., Caput D., Arrowsmith C.H. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J. Biol. Chem. 1999;274:18709–18714. PubMed

Gaiddon C., Lokshin M., Ahn J., Zhang T., Prives C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 2001;21:1874–1887. PubMed PMC

Strano S., Fontemaggi G., Costanzo A., Rizzo M.G., Monti O., Baccarini A., Del Sal G., Levrero M., Sacchi A., Oren M., Blandino G. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J. Biol. Chem. 2002;277:18817–18826. PubMed

Yang A., Zhu Z., Kapranov P., McKeon F., Church G.M., Gingeras T.R., Struhl K. Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol. Cell. 2006;24:593–602. PubMed

Romano R.A., Birkaya B., Sinha S. Defining the regulatory elements in the proximal promoter of Delta Np63 in keratinocytes: Potential roles for Sp1/Sp3, NF-Y, and p63. J. Invest. Dermatol. 2006;126:1469–1479. PubMed

Li N., Li H., Cherukuri P., Farzan S., Harmes D.C., DiRenzo J. TA-p63-gamma regulates expression of Delta N-p63 in a manner that is sensitive to p53. Oncogene. 2006;25:2349–2359. PubMed

Lefkimmiatis K., Caratozzolo M.F., Merlo P., D’Erchia A.M., Navarro B., Levrero M., Sbisa E., Tullo A. p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes. Cancer Res. 2009;69:8563–8571. PubMed

Leong C.O., Vidnovic N., DeYoung M.P., Sgroi D., Ellisen L.W. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J. Clin. Invest. 2007;117:1370–1380. PubMed PMC

Silver D.P., Richardson A.L., Eklund A.C., Wang Z.C., Szallasi Z., Li Q., Juul N., Leong C.O., Calogrias D., Buraimoh A., Fatima A., Gelman R.S., Ryan P.D., Tung N.M., De Nicolo A., Ganesan S., Miron A., Colin C., Sgroi D.C., Ellisen L.W., Winer E.P., Garber J.E. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J. Clin. Oncol. 2010;28:1145–1153. PubMed PMC

Rocco J.W., Leong C.O., Kuperwasser N., DeYoung M.P., Ellisen L.W. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell. 2006;9:45–56. PubMed

Thurfjell N., Coates P.J., Vojtesek B., Benham-Motlagh P., Eisold M., Nylander K. Endogenous p63 acts as a survival factor for tumour cells of SCCHN origin. Int. J. Mol. Med. 2005;16:1065–1070. PubMed

Barbieri C.E., Tang L.J., Brown K.A., Pietenpol J.A. Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res. 2006;66:7589–7597. PubMed

Adorno M., Cordenonsi M., Montagner M., Dupont S., Wong C., Hann B., Solari A., Bobisse S., Rondina M.B., Guzzardo V., Parenti A.R., Rosato A., Bicciato S., Balmain A., Piccolo S. A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 2009;137:87–98. PubMed

Carroll D.K., Carroll J.S., Leong C.O., Cheng F., Brown M., Mills A.A., Brugge J.S., Ellisen L.W. p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biol. 2006;8:551–561. PubMed

Su X., Chakravarti D., Cho M.S., Liu L., Gi Y.J., Lin Y.L., Leung M.L., El-Naggar A., Creighton C.J., Suraokar M.B., Wistuba I., Flores E.R. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature. 2010;467:986–990. PubMed PMC

Bamberger C., Hafner A., Schmale H., Werner S. Expression of different p63 variants in healing skin wounds suggests a role of p63 in reepithelialization and muscle repair. Wound Repair Regen. 2005;13:41–50. PubMed

Thurfjell N., Coates P.J., Wahlin Y.B., Arvidsson E., Nylander K. Downregulation of TAp63 and unaffected levels of p63beta distinguishes oral wounds from SCCHN. Cell Cycle. 2006;5:555–557. PubMed

Ma D.K., Bonaguidi M.A., Ming G.L., Song H. Adult neural stem cells in the mammalian central nervous system. Cell. Res. 2009;19:672–682. PubMed PMC

Gibelli B., El-Fattah A., Giugliano G., Proh M., Grosso E. Thyroid stem cells — danger or resource? Acta Otorhinolaryngol. Ital. 2009;29:290–295. PubMed PMC

Wu X., Wang S., Chen B., An X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res. 2010;340:549–567. PubMed

Snyder J.C., Teisanu R.M., Stripp B.R. Endogenous lung stem cells and contribution to disease. J. Pathol. 2009;217:254–264. PubMed PMC

Little M.H., Bertram J.F. Is there such a thing as a renal stem cell? J. Am. Soc. Nephrol. 2009;20:2112–2117. PubMed

Pincelli C., Marconi A. Keratinocyte stem cells: friends and foes. J. Cell. Physiol. 2010;225:310–315. PubMed

Katsumoto K., Shiraki N., Miki R., Kume S. Embryonic and adult stem cell systems in mammals: ontology and regulation. Dev. Growth. Differ. 2010;52:115–129. PubMed

Petersen O.W., Polyak K. Stem cells in the human breast. Cold Spring Harb. Perspect. Biol. 2010;2:a003160. PubMed PMC

Ratajczak M.Z., Zuba-Surma E.K., Machalinski B., Kucia M. Bonemarrow-derived stem cells — our key to longevity? J. Appl. Genet. 2007;48:307–319. PubMed

Beltrami A.P., Barlucchi L., Torella D., Baker M., Limana F., Chimenti S., Kasahara H., Rota M., Musso E., Urbanek K., Leri A., Kajstura J., Nadal-Ginard B., Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–776. PubMed

Tumbar T., Guasch G., Greco V., Blanpain C., Lowry W.E., Rendl M., Fuchs E. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–363. PubMed PMC

Collins C.A., Partridge T.A. Self-renewal of the adult skeletal muscle satellite cell. Cell Cycle. 2005;4:1338–1341. PubMed

Herrera M.B., Bruno S., Buttiglieri S., Tetta C., Gatti S., Deregibus M.C., Bussolati B., Camussi G. Isolation and characterization of a stem cell population from adult human liver. Stem Cells. 2006;24:2840–2850. PubMed

Yang A., Schweitzer R., Sun D.Q., Kaghad M., Walker N., Bronson R.T., Tabin C., Sharpe A., Caput D., Crum C., McKeon F. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398:714–718. PubMed

Mills A.A., Zheng B.H., Wang X.J., Vogel H., Roop D.R., Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398:708–713. PubMed

Pellegrini G., Dellambra E., Golisano O., Martinelli E., Fantozzi I., Bondanza S., Ponzin D., McKeon F., De Luca M. p63 identifies keratinocyte stem cells. Proc. Natl. Acad. Sci. USA. 2001;98:3156–3161. PubMed PMC

Barbieri C.E., Pietenpol J.A. p63 and epithelial biology. Exp. Cell. Res. 2006;312:695–706. PubMed

Dellavalle R.P., Egbert T.B., Marchbank A., Su L.J., Lee L.A., Walsh P. CUSP/p63 expression in rat and human tissues. J. Dermat. Sci. 2001;27:82–87. PubMed

Rizzo S., Attard G., Hudson D.L. Prostate epithelial stem cells. Cell. Prolif. 2005;38:363–374. PubMed PMC

Signoretti S., Waltregny D., Dilks J., Isaac B., Lin D., Garraway L., Yang A., Montironi R., McKeon F., Loda M. p63 is a prostate basal cell marker and is required for prostate development. Am. J. Pathol. 2000;157:1769–1775. PubMed PMC

Signoretti S., Pires M.M., Lindauer M., Horner J.W., Grisanzio C., Dhar S., Majumder P., McKeon F., Kantoff P.W., Sellers W.R., Loda M. p63 regulates commitment to the prostate cell lineage. Proc. Natl. Acad. Sci. USA. 2005;102:11355–11360. PubMed PMC

Senoo M., Pinto F., Crum C.P., McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 2007;129:523–536. PubMed

Laurikkala J., Mikkola M.L., James M., Tummers M., Mills A.A., Thesleff I. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development. 2006;133:1553–1563. PubMed

Mumm J.S., Kopan R. Notch signaling: From the outside in. Dev. Biol. 2000;228:151–165. PubMed

Stylianou S., Clarke R.B., Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006;66:1517–1525. PubMed

Massi D., Tarantini F., Franchi A., Paglierani M., Di Serio C., Pellerito S., Leoncini G., Cirino G., Geppetti P., Santucci M. Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod. Pathol. 2006;19:246–254. PubMed

Rose S.L., Kunnimalaiyaan M., Drenzek J., Seiler N. Notch 1 signaling is active in ovarian cancer. Gynecol. Oncol. 2010;117:130–133. PubMed

Grudzien P., Lo S., Albain K.S., Robinson P., Rajan P., Strack P.R., Golde T.E., Miele L., Foreman K.E. Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res. 2010;30:3853–3867. PubMed

Artavanis-Tsakonas S., Rand M.D., Lake R.J. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–776. PubMed

Lowell S., Jones P., Le Roux I., Dunne J., Watt F.M. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 2000;10:491–500. PubMed

Rangarajan A., Talora C., Okuyama R., Nicolas M., Mammucari C., Oh H., Aster J.C., Krishna S., Metzger D., Chambon P., Miele L., Aguet M., Radtke F., Dotto G.P. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001;20:3427–3436. PubMed PMC

Nickoloff B.J., Qin J.Z., Chaturvedi V., Denning M.F., Bonish B., Miele L. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocates through NF-kappaB and PPARgamma. Cell Death Differ. 2002;9:842–855. PubMed

Talora C., Sgroi D.C., Crum C.P., Dotto G.P. Specific downmodulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002;16:2252–2263. PubMed PMC

Nicolas M., Wolfer A., Raj K., Kummer J.A., Mill P., van Noort M., Hui C.C., Clevers H., Dotto G.P., Radtke F. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet. 2003;33:416–421. PubMed

Okuyama R., Ogawa E., Nagoshi H., Yabuki M., Kurihara A., Terui T., Aiba S., Obinata M., Tagami H., Ikawa S. p53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity. Oncogene. 2007;26:4478–4488. PubMed

Nguyen B.C., Lefort K., Mandinova A., Antonini D., Devgan V., Della Gatta G., Koster M.I., Zhang Z., Wang J., Tommasi di Vignano A., Kitajewski J., Chiorino G., Roop D.R., Missero C., Dotto G.P. Crossregulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 2006;20:1028–1042. PubMed PMC

Yugawa T., Narisawa-Saito M., Yoshimatsu Y., Haga K., Ohno S., Egawa N., Fujita M., Kiyono T. ΔNp63α repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Res. 2010;70:4034–4044. PubMed

Ma J., Meng Y., Kwiatkowski D.J., Chen X., Peng H., Sun Q., Zha X., Wang F., Wang Y., Jing Y., Zhang S., Chen R., Wang L., Wu E., Cai G., Malinowska-Kolodziej I., Liao Q., Liu Y., Zhao Y., Sun Q., Xu K., Dai J., Han J., Wu L., Zhao R.C., Shen H., Zhang H. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J. Clin. Invest. 2010;120:103–114. PubMed PMC

Yalcin-Ozuysal O., Fiche M., Guitierrez M., Wagner K.U., Raffoul W., Brisken C. Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ. 2010;17:1600–1612. PubMed

Bienz M., Clevers H. Linking colorectal cancer to Wnt signaling. Cell. 2000;m103:311–320. PubMed

Logan C.Y., Nusse R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 2004;20:781–810. PubMed

Kléber M., Sommer L. Wnt signaling and the regulation of stem cell function. Curr. Opin. Cell. Biol. 2004;16:681–687. PubMed

Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–850. PubMed

Gu B., Watanabe K., Dai X. Epithelial stem cells: an epigenetic and Wnt-centric perspective. J. Cell. Biochem. 2010;110:1279–1287. PubMed PMC

Drewelus I., Göpfert C., Hippel C., Dickmanns A., Damianitsch K., Pieler T., Dobbelstein M. p63 antagonizes Wnt-induced transcription. Cell Cycle. 2010;9:580–587. PubMed

Iseki S., Araga A., Ohuchi H., Nohno T., Yoshioka H., Hayashi F., Noji S. Sonic hedgehog is expressed in epithelial cells during development of whisker, hair, and tooth. Biochem. Biophys. Res. Commun. 1996;218:688–693. PubMed

Ho K.S., Scott M.P. Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr. Opin. Neurobiol. 2002;12:57–63. PubMed

Freestone S.H., Marker P., Grace O.C., Tomlinson D.C., Cunha G.R., Harnden P., Thomson A.A. Sonic hedgehog regulates prostatic growth and epithelial differentiation. Dev. Biol. 2003;264:352–362. PubMed

Vezina C.M., Bushman A.W. Hedgehog signaling in prostate growth and benign prostate hyperplasia. Curr. Urol. Rep. 2007;8:275–280. PubMed

Ramalho-Santos M., Melton D.A., McMahon A.P. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127:2763–2772. PubMed

Sicklick J.K., Li Y.X., Jayaraman A., Kannangai R., Qi Y., Vivekanandan P., Ludlow J.W., Owzar K., Chen W., Torbenson M.S., Diehl A.M. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis. 2006;27:748–757. PubMed

Yoshikawa K., Shimada M., Miyamoto H., Higashijima J., Miyatani T., Nishioka M., Kurita N., Iwata T., Uehara H. Sonic hedgehog relates to colorectal carcinogenesis. J. Gastroenterol. 2009;44:1113–1117. PubMed

Dormoy V., Danilin S., Lindner V., Thomas L., Rothhut S., Coquard C., Helwig J.J., Jacqmin D., Lang H., Massfelder T. The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth. Mol. Cancer. 2009;8:123. PubMed PMC

Berman D.M., Karhadkar S.S., Hallahan A.R., Pritchard J.I., Eberhart C.G., Watkins D.N., Chen J.K., Cooper M.K., Taipale J., Olson J.M., Beachy P.A. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 2002;297:1559–1561. PubMed

Kubo M., Nakamura M., Tasaki A., Yamanaka N., Nakashima H., Nomura M., Kuroki S., Katano M. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 2004;64:6071–6074. PubMed

Chen X., Horiuchi A., Kikuchi N., Osada R., Yoshida J., Shiozawa T., Konishi I. Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation: it’s inhibition leads to growth suppression and apoptosis. Cancer Sci. 2007;98:68–76. PubMed PMC

Sheng T., Li C., Zhang X., Chi S., He N., Chen K., McCormick F., Gatalica Z., Xie J. Activation of the hedgehog pathway in advanced prostate cancer. Mol. Cancer. 2004;3:29. PubMed PMC

Caserta T.M., Kommagani R., Yuan Z.A., Robbins D.J., Merce r. C.A., Kadakia M.P. p63 overexpression induces the expression of sonic hedgehog. Mol. Cancer Res. 2006;4:759–768. PubMed

Hatsell S.J., Cowin P. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development. 2006;133:3661–3670. PubMed

Liu S., Dontu G., Mantle I.D., Patel S., Ahn N.S., Jackson K.W., Suri P., Wicha M.S. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–6071. PubMed PMC

Kubo M., Nakamura M., Tasaki A., Yamanaka N., Nakashima H., Nomura M., Kuroki S., Katano M. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 2004;64:6071–6074. PubMed

Li N., Singh S., Cherukuri P., Li H., Yuan Z., Ellisen L.W., Wang B., Robbins D., DiRenzo J. Reciprocal intraepithelial interactions between TP63 and hedgehog signaling regulate quiescence and activation of progenitor elaboration by mammary stem cells. Stem Cells. 2008;26:1253–1264. PubMed PMC

Boominathan L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev. 2010;29:613–639. PubMed

Davidson M.R., Larsen J.E., Yang I.A., Hayward N.K., Clarke B.E., Duhig E.E., Passmore L.H., Bowman R.V., Fong K.M. MicroRNA-218 is deleted and downregulated in lung squamous cell carcinoma. PLoS One. 2010;5:e12560. PubMed PMC

Melo, S.A. and Esteller, M. Dysregulation of microRNAs in cancer: Playing with fire. FEBS Lett. (2010) Epub ahead of print. PubMed

Grelier G., Voirin N., Ay A.S., Cox D.G., Chabaud S., Treilleux I., Léon-Goddard S., Rimokh R., Mikaelian I., Venoux C., Puisieux A., Lasset C., Moyret-Lalle C. Prognostic value of Dicer expression in human breast cancer and association with the mesenchymal phenotype. Br. J. Cancer. 2009;101:673–683. PubMed PMC

Wang Y., Medvid R., Melton C., Jaenisch R., Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 2007;39:380–385. PubMed PMC

Cui X.S., Shen X.H., Kim N.H. Dicer1 expression in preimplantation mouse embryos: Involvement of Oct3/4 transcription at the blastocyst stage. Biochem. Biophys. Res. Commun. 2007;352:231–236. PubMed

Yi R., Poy M.N., Stoffel M., Fuchs E. A skin microRNA promotes differentiation by repressing “stemness”. Nature. 2008;452:225–229. PubMed PMC

Scheel A.H., Beyer U., Agami R., Dobbelstein M. Immunofluorescence-based screening identifies germ cell associated microRNA 302 as an antagonist to p63 expression. Cell Cycle. 2009;8:1426–1432. PubMed

Lena A.M., Shalom-Feuerstein R., Rivetti di Val Cervo P., Aberdam D., Knight R.A., Melino G., Candi E. miR-203 represses “stemness” by repressing DeltaNp63. Cell Death Differ. 2008;15:1187–1195. PubMed

Papagiannakopoulos T., Shapiro A., Kosik K.S. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68:8164–8172. PubMed

Manni I., Artuso S., Careccia S., Rizzo M.G., Baserga R., Piaggio G., Sacchi A. The microRNA miR-92 increases proliferation of myeloid cells and by targeting p63 modulates the abundance of its isoforms. FASEB J. 2009;23:3957–3966. PubMed

Chan J.A., Krichevsky A.M., Kosik K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–6033. PubMed

Si M.L., Zhu S., Wu H., Lu Z., Wu F., Mo Y.Y. miR-21-mediated tumor growth. Oncogene. 2007;26:2799–2803. PubMed

Meng F., Henson R., Lang M., Wehbe H., Maheshwari S., Mendell J.T., Jiang J., Schmittgen T.D., Patel T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006;130:2113–2129. PubMed

Craig A.L., Holcakova J., Finlan L.E., Nekulova M., Hrstka R., Gueven N., DiRenzo J., Smith G., Hupp T.R., Vojtesek B. DeltaNp63 transcriptionally regulates ATM to control p53 Serine-15 phosphorylation. Mol. Cancer. 2010;9:195. PubMed PMC

Reya T., Morrison S.J., Clarke M.F., Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. PubMed

Tan B.T., Park C.Y., Ailles L.E., Weissman I.L. The cancer stem cell hypothesis: a work in progress. Lab. Invest. 2006;86:1203–1207. PubMed

Schatton T., Frank N.Y., Frank M.H. Identification and targeting of cancer stem cells. Bioessays. 2009;31:1038–1049. PubMed PMC

Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA. 2003;100:3983–3988. PubMed PMC

Prince M.E., Sivanandan R., Kaczorowski A., Wolf G.T., Kaplan M.J., Dalerba P., Weissman I.L., Clarke M.F., Ailles L.E. Identification of a subpopulation of cells with cancer stem cells properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA. 2007;104:973–978. PubMed PMC

Boldrup L., Coates P.J., Gu X., Nylander K. DeltaNp63 isoforms regulate CD44 and keratins 4, 6, 14 and 19 in squamous cell carcinoma of head and neck. J. Pathol. 2007;213:384–391. PubMed

Du Z., Li J., Wang L., Bian C., Wang Q., Liao L., Dou X., Bian X., Zhao R.C. Overexpression of ΔNp63α induces a stem cell phenotype in MCF7 breast carcinoma cell line through the Notch pathway. Cancer Sci. 2010;101:2417–2424. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Complex and variable regulation of ΔNp63 and TAp63 by TGFβ has implications for the dynamics of squamous cell epithelial to mesenchymal transition

. 2024 Mar 27 ; 14 (1) : 7304. [epub] 20240327

DNA Demethylation Switches Oncogenic ΔNp63 to Tumor Suppressive TAp63 in Squamous Cell Carcinoma

. 2022 ; 12 () : 924354. [epub] 20220714

Identifying pathways regulating the oncogenic p53 family member ΔNp63 provides therapeutic avenues for squamous cell carcinoma

. 2022 Feb 23 ; 27 (1) : 18. [epub] 20220223

TAp63 and ΔNp63 (p40) in prostate adenocarcinomas: ΔNp63 associates with a basal-like cancer stem cell population but not with metastasis

. 2021 Apr ; 478 (4) : 627-636. [epub] 20201010

∆Np63/p40 correlates with the location and phenotype of basal/mesenchymal cancer stem-like cells in human ER+ and HER2+ breast cancers

. 2020 Jan ; 6 (1) : 83-93. [epub] 20191206

STAT3, stem cells, cancer stem cells and p63

. 2018 ; 23 () : 12. [epub] 20180322

p63 isoforms in triple-negative breast cancer: ΔNp63 associates with the basal phenotype whereas TAp63 associates with androgen receptor, lack of BRCA mutation, PTEN and improved survival

. 2018 Mar ; 472 (3) : 351-359. [epub] 20180227

ΔNp63 regulates cell proliferation, differentiation, adhesion, and migration in the BL2 subtype of basal-like breast cancer

. 2016 Aug ; 37 (8) : 10133-40. [epub] 20160129

Characterization of specific p63 and p63-N-terminal isoform antibodies and their application for immunohistochemistry

. 2013 Sep ; 463 (3) : 415-25. [epub] 20130726

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...