The role of p63 in cancer, stem cells and cancer stem cells
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
21442444
PubMed Central
PMC6275999
DOI
10.2478/s11658-011-0009-9
Knihovny.cz E-zdroje
- MeSH
- kmenové buňky metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádorové kmenové buňky metabolismus MeSH
- nádorové supresorové proteiny genetika metabolismus fyziologie MeSH
- nádory metabolismus MeSH
- protein - isoformy genetika metabolismus fyziologie MeSH
- transkripční faktory genetika metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- nádorové supresorové proteiny MeSH
- protein - isoformy MeSH
- TP63 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
The transcription factor p63 has important functions in tumorigenesis, epidermal differentiation and stem cell self-renewal. The TP63 gene encodes multiple protein isoforms that have different or even antagonistic roles in these processes. The balance of p63 isoforms, together with the presence or absence of the other p53 family members, p73 and p53, has a striking biological impact. There is increasing evidence that interactions between p53-family members, whether cooperative or antagonistic, are involved in various cell processes. This review summarizes the current understanding of the role of p63 in tumorigenesis, metastasis, cell migration and senescence. In particular, recent data indicate important roles in adult stem cell and cancer stem cell regulation and in the response of cancer cells to therapy.
Zobrazit více v PubMed
Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J.C., Valent A., Minty A., Chalon P., Lelias J.M., Dumont X., Ferrara P., McKeon F., Caput D. Monoallelically expressed gene related to p53 at 1p63, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90:809–819. PubMed
Yang A.N., Kaghad M., Wang Y.M., Gillett E., Fleming M.D., Dotsch V., Andrews N.C., Caput D., McKeon F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell. 1998;2:305–316. PubMed
Joerger A.C., Rajagopalan S., Natan E., Veprintsev D.B., Robinson C.V., Fersht A.R. Structural evolution of p53, p63, and p73: Implication for heterotetramer formation. Proc. Natl. Acad. Sci. USA. 2009;106:17705–17710. PubMed PMC
Stifanic M., Micic M., Ramsak A., Blaskovic S., Ruso A., Zahn R., Batel R. p63 in Mytilus galloprovincialis and p53 family members in the phylum Mollusca. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2009;154:264–273. PubMed
Dohn M., Zhang S.Z., Chen X.B. p63 alpha and Delta Np63 alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene. 2001;20:3193–3205. PubMed
Wu G., Nomoto S., Hoque M., Dracheva T., Osada M., Lee C., Dong S., Guo Z., Benoit N., Cohen Y., Rechthand P., Califano J., Moon C.S., Ratovitski E., Jen J., Sidransky D., Trink B. Delta Np63 alpha and TAp63 alpha regulate transcription of genes with distinct biological functions in cancer and development. Canc. Res. 2003;63:2351–2357. PubMed
Osada M., Park H.L., Nagakawa Y., Yamashita K., Fomenkov A., Kim M.S., Wu G.J., Nomoto S., Trink B., Sidransky D. Differential recognition of response elements determines target gene specificity for p53 and p63. Mol. Cell. Biol. 2005;25:6077–6089. PubMed PMC
Testoni B., Borrelli S., Tenedini E., Alotto D., Castagnoli C., Piccolo S., Tagliafico E., Ferrari S., Vigano M.A., Mantovani R. Identification of new p63 targets in human keratinocytes. Cell Cycle. 2006;5:2805–2811. PubMed
Yang A., Zhu Z., Kapranov P., McKeon F., Church G.M., Gingeras T.R., Struhl K. Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol. Cell. 2006;24:593–602. PubMed
Vigano M.A., Lamartine J., Testoni B., Merico D., Alotto D., Castagnoli C., Robert A., Candi E., Melino G., Gidrol X., Mantovani R. New p63 targets in keratinocytes identified by a genome-wide approach. EMBO J. 2006;25:5105–5116. PubMed PMC
Mangiulli M., Valletti A., Caratozzolo M.F., Tullo A., Sbisa E., Pesole G., D’Erchia A.M. Identification and functional characterization of two new transcriptional variants of the human p63 gene. Nucl. Acid. Res. 2009;37:6092–6104. PubMed PMC
Thanos C.D., Bowie J.U. p53 Family members p63 and p73 are SAM domain-containing proteins. Prot. Sci. 1999;8:1708–1710. PubMed PMC
Serber Z., Lai H.C., Yang A., Ou H.D., Sigal M.S., Kelly A.E., Darimont B.D., Duijf P.H.G., van Bokhoven H., McKeon F., Dötsch V. A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Mol. Cell. Biol. 2002;22:8601–8611. PubMed PMC
Sayan B.S., Sayan A.E., Yang A.L., Aqeilan R.I., Candi E., Coher G.M., Knight R.A., Croce C.M., Melino G. Cleavage of the transactivationinhibitory domain of p63 by caspases enhances apoptosis. Proc. Natl. Acad. Sci. USA. 2007;104:10871–10876. PubMed PMC
Ghioni P., Bolognese F., Duijf P.H.G., van Bokhoven H., Mantovani R., Guerrini L. Complex transcriptional effects of p63 isoforms: Identification of novel activation and repression domains. Mol. Cell. Biol. 2002;22:8659–8668. PubMed PMC
Helton E.S., Zhu J.H., Chen X.B. The unique NH2-terminally deleted (Delta N) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the Delta N variant of p63. J. Biol. Chem. 2006;281:2533–2542. PubMed
Nylander K., Vojtesek B., Nenutil R., Lindgren B., Roos G., Wang Z.X., Sjostrom B., Dahlqvist A., Coates P.J. Differential expression of p63 isoforms in normal tissues and neoplastic cells. J. Pathol. 2002;198:417–427. PubMed
Reis-Filho J.S., Torio B., Albergaria A., Schmitt F.C. p63 expression in normal skin and usual cutaneous carcinomas. J. Cutan. Pathol. 2002;29:517–523. PubMed
Di Como C.J., Urist M.J., Babayan I., Drobnjak M., Hedvat C.V., Teruya-Feldstein J., Pohar K., Hoos A., Cordon-Cardo C. p63 expression profiles in human normal and tumor tissues. Clin. Canc. Res. 2002;8:494–501. PubMed
Rosenbluth J.M., Johnson K., Tang L.J., Triplett T., Pietenpol J.A. Evaluation of p63 and p73 antibodies for cross-reactivity. Cell Cycle. 2009;8:3702–3706. PubMed
Hedvat C.V., Teruya-Feldstein J., Puig P., Capodieci P., Dudas M., Pica N., Qin J., Cordon-cardo C., Di Como C.J. Expression of p63 in diffuse large B-cell lymphoma. Appl. Immunohistochem. Mol. Morphol. 2005;13:237–242. PubMed
Livera G., Petre-Lazar B., Guerquin M.J., Trautmann E., Coffigny H., Habert R. p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction. 2008;135:3–12. PubMed
Suh E.K., Yang A., Kettenbach A., Bamberger C., Michaelis A.H., Zhu Z., Elvin J.A., Bronson R.T., Crum C.P., McKeon F. p63 protects the female germ line during meiotic arrest. Nature. 2006;444:624–628. PubMed
Nishi H., Isaka K., Sagawa Y., Usuda S., Fujito A., Ito H., Senoo M., Kato H., Takayama M. Mutation and transcription analyses of the p63 gene in cervical carcinoma. Int. J. Oncol. 1999;15:1149–1153. PubMed
Wang T.Y., Chen B.F., Yang Y.C., Chen H., Wang Y., Cviko A., Quade B.J., Sun D., Yang A., McKeon F.D., Crum C.P. Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum. Pathol. 2001;32:479–486. PubMed
Idrees M.T., Schlosshauer P., Li G., Burstein D.E. GLUT1 and p63 expression in endometrial intraepithelial and uterine serous papillary carcinoma. Histopathology. 2006;49:75–81. PubMed
Ito Y., Takeda T., Wakasa K., Tsujimoto M., Sakon M., Matsuura N. Expression of p73 and p63 proteins in pancreatic adenocarcinoma: p73 overexpression is inversely correlated with biological aggressiveness. Int. J. Mol. Med. 2001;8:67–71. PubMed
Harmes D.C., Bresnick E., Lubin E.A., Watson J.K., Heim K.E., Curtin J.C., Suskind A.M., Lamb J., DiRenzo J. Positive and negative regulation of Delta N-p63 promoter activity by p53 and Delta N-p63-alpha contributes to differential regulation of p53 target genes. Oncogene. 2003;22:7607–7616. PubMed
Weinstein M.H., Signoretti S., Loda M. Diagnostic utility of immunohistochemical staining for p63, a sensitive marker of prostatic basal cells. Mod. Pathol. 2002;15:1302–1308. PubMed
Chen B.Y., Liu J.Y., Chang H.H., Chang C.P., Lo W.Y., Kuo W.H., Yang C.R., Lin D. Hedgehog is involved in prostate basal cell hyperplasia formation and its progressing towards tumorigenesis. Biochem. Biophys. Res. Commun. 2007;357:1084–1089. PubMed
Glickman J.N., Yang A., Shahsafaei A., McKeon F., Odze R.D. Expression of p53-related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum. Pathol. 2001;32:1157–1165. PubMed
Basturk O., Khanani F., Sarkar F., Levi E., Cheng J.D., Adsay N.V. DeltaNp63 expression in pancreas and pancreatic neoplasia. Mod. Pathol. 2005;18:1193–1198. PubMed
Koga F., Kawakami S., Fujii Y., Saito K., Ohtsuka Y., Iwai A., Ando N., Takizawa T., Kageyama Y., Kihara K. Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin. Cancer Res. 2003;9:5501–5507. PubMed
Urist M.J., Di Como C.J., Lu M.L., Charytonowicz E., Verbel D., Crum C.P., Ince T.A., McKeon F.D., Cordon-Cardo C. Loss of p63 expression is associated with tumor progression in bladder cancer. Am. J. Pathol. 2002;161:1199–1206. PubMed PMC
Park B.J., Lee S.J., Kim J.I., Lee S.J., Lee C.H., Chang S.G., Park J.H., Chi S.G. Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res. 2000;60:3370–3374. PubMed
Koga F., Kawakami S., Kumagai J., Takizawa T., Ando N., Arai G., Kageyama Y., Kihara K. Impaired Delta Np63 expression assocites with reduced beta-catenin and aggressive phenotypes of urothelial neoplasms. Br. J. Cancer. 2003;88:740–747. PubMed PMC
Yamaguchi K., Wu L., Caballero O.L., Hibi K., Trink B., Resto V., Cairns P., Okami K., Koch W.M., Sidransky D., Jen J. Frequent gain of the p40/p51/p63 gene locus in primary head and neck squamous cell carcinoma. Int. J. Cancer. 2000;86:684–689. PubMed
Thurfjell N., Coates P.J., Uusitalo T., Mahani D., Dabelsteen E., Dahlqvist A., Sjöström B., Roos G., Nylander K. Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck. Int. J. Oncol. 2004;25:27–35. PubMed
Zangen R., Ratovitski E., Sidransky D. DeltaNp63alpha levels correlate with clinical tumor response to cisplatin. Cell Cycle. 2005;4:1313–1315. PubMed
Tannapfel A., Schmelzer S., Benicke M., Klimpfinger M., Kohlhaw K., Mössner J., Engeland K., Wittekind C. Expression of the p53 homologues p63 and p73 in multiple simultaneous gastric cancer. J. Pathol. 2001;195:163–170. PubMed
Massion P.P., Taflan P.M., Jamshedur Rahman S.M., Yildiz P., Shyr Y., Edgerton M.E., Westfall M.D., Roberts J.R., Pietenpol J.A., Carbone D.P., Gonzalez A.L. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res. 2003;63:7113–7121. PubMed
Wang B.Y., Gil J., Kaufman D., Gan L., Kohtz D.S., Burstein D.E. P63 in pulmonary epithelium, pulmonary squamous neoplasms, and other pulmonary tumors. Hum. Pathol. 2002;33:921–926. PubMed
Ying H., Chang D.L., Zheng H., McKeon F., Xiao Z.X. DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol. Cell. Biol. 2005;25:6154–6164. PubMed PMC
Osada M., Inaba R., Shinohara H., Hagiwara M., Nakamura M., Ikawa Y. Regulatory domain of protein stability of human P51/TAP63, a P53 homologue. Biochem. Biophys. Res. Commun. 2001;283:1135–1141. PubMed
Ghioni P., D’Alessandra Y., Mansueto G., Jaffray E., Hay R.T., La Mantia G., Guerrini L. The protein stability and transcriptional activity of p63 alpha are regulated by SUMO-1 conjugation. Cell Cycle. 2005;4:183–190. PubMed
Petitjean A., Ruptier C., Tribollet V., Hautefeuille A., Chardon F., Cavard C., Puisieux A., Hainaut P., de Fromentel C.C. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with Delta Np73. Carcinogenesis. 2008;29:273–281. PubMed
MacPartlin M., Zeng S., Lee H., Stauffer D., Jin Y., Thayer M., Lu H. p300 regulates p63 transcriptional activity. J. Biol. Chem. 2005;280:30604–30610. PubMed
Fomenkov A., Zangen R., Huang Y.P., Osada M., Guo Z., Fomenkov T., Trink B., Sidransky D., Ratovitski E.A. RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle. 2004;3:1285–1295. PubMed
Chatterjee A., Chang X., Sen T., Ravi R., Bedi A., Sidransky D. Regulation of p53 family member isoform ΔNp63α by the nuclear factor-κB targeting kinase IκB kinase β. Cancer Res. 2010;70:1419–1429. PubMed PMC
Wang N., Guo L., Rueda B.R., Tilly J.L. Cables1 protects p63 from proteasomal degradation to ensure deletion of cells after genotoxic stress. EMBO J. 2010;11:633–639. PubMed PMC
Tomlinson, V., Gudmundsdottir, K., Luong, P., Leung, K.-Y., Knebel, A. and Basu, S. JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis.1,e29 (2010) doi:10.1038/cddis.2010.7. PubMed PMC
Kadakia M., Slader C., Berberich S.J. Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol. 2001;20:321–330. PubMed
Little N.A., Jochemsen A.G. Hdmx and Mdm2 can repress transcription activation by p53 but not by p63. Oncogene. 2001;20:4576–4580. PubMed
Calabro V., Mansueto G., Parisi T., Vivo M., Calogero R.A., La Mantia G. The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J. Biol. Chem. 2002;277:2674–2681. PubMed
Galli F., Rossi M., D’Alessandra Y., De Simone M., Lopardo T., Haupt Y., Alsheich-Bartok O., Anzi S., Shaulian E., Calabro V., La Mantia G., Guerrini L. MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation. J. Cell. Sci. 2010;123:2423–2433. PubMed
Lin Y.L., Sengupta S., Gurdziel K., Bell G.W., Jacks T., Flores E.R. p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet. 2009;5:e1000680. PubMed PMC
Lopardo T., Lo Iacono N., Marinari B., Giustizieri M.L., Cyr D.G., Merlo G., Crosti F., Costanzo A., Guerrini L. Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS One. 2008;3:e2715. PubMed PMC
Gressner O., Schilling T., Lorenz K., Schulze Schleithoff E., Koch A., Schulze-Bergkamen H., Lena A.M., Candi E., Terrinoni A., Catani M.V., Oren M., Melino G., Krammer P.H., Stremmel W., Müller M. TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J. 2005;24:2458–2471. PubMed PMC
Antonini D., Dentice M., Mahtani P., De Rosa L., Della Gatta G., Mandinova A., Salvatore D., Stupka E., Missero C. Tprg, a gene predominantly expressed in skin, is a direct target of the transcription factor p63. J. Invest. Dermatol. 2008;128:1676–1685. PubMed
Koster M.I., Dai D., Marinari B., Sano Y., Costanzo A., Karin M., Roop D.R. p63 induces key target genes required for epidermal morphogenesis. Proc. Natl. Acad. Sci. USA. 2007;104:3255–3260. PubMed PMC
Gu X.L., Coates P.J., Boldrup L., Nylander K. p63 contributes to cell invasion and migration in squamous cell carcinoma of the head and neck. Cancer Lett. 2008;263:26–34. PubMed
Ihrie R.A., Marques M.R., Nguyen B.T., Horner J.S., Papazoglu C., Bronson R.T., Mills A.A., Attardi L.D. Perp is a p63-regulated gene essential for epithelial integrity. Cell. 2005;120:843–856. PubMed
Wu G., Nomoto S., Hoque M.O., Dracheva T., Osada M., Lee C.C., Dong S.M., Guo Z., Benoit N., Cohen Y., Rechthand P., Califano J., Moon C.S., Ratovitski E., Jen J., Sidransky D., Trink B. DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res. 2003;63:2351–2357. PubMed
Boldrup L., Coates P.J., Gu X., Nylander K. DeltaNp63 isoforms differentially regulate gene expression in squamous cell carcinoma: identification of Cox-2 as a novel p63 target. J. Pathol. 2009;218:428–436. PubMed
Osada M., Ohba M., Kawahara C., Ishioka C., Kanamaru R., Katoh I., Ikawa Y., Nimura Y., Nakagawara A., Obinata M., Ikawa S. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat. Med. 1998;4:839–843. PubMed
Sunahara M., Shishikura T., Takahashi M., Todo S., Yamamoto N., Kimura H., Kato S., Ishioka C., Ikawa S., Ikawa Y., Nakagawara A. Mutational analysis of p51A/TAp63gamma, a p53 homolog, in non-small cell lung cancer and breast cancer. Oncogene. 1999;18:3761–3765. PubMed
Hibi K., Trink B., Patturajan M., Westra W.H., Caballero O.L., Hill D.E., Ratovitski E.A., Jen J., Sidransky D. AIS is an oncogene amplified in squamous cell carcinoma. Proc. Natl. Sci. USA. 2000;97:5462–5467. PubMed PMC
Flores E.R., Sengupta S., Miller J.B., Newman J.J., Bronson R., Crowley D., Yang A., McKeon F., Jacks T. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell. 2005;7:363–373. PubMed
Keyes W.M., Vogel H., Koster M.I., Guo X.C., Qi Y., Petherbridge K.M., Roop D.R., Bradley A., Mills A.A. p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc. Natl. Acad. Sci. USA. 2006;103:8435–8440. PubMed PMC
Keyes W.M., Wu Y., Vogel H., Guo X.C., Lowe S.W., Mills A.A. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev. 2005;19:1986–1999. PubMed PMC
Djelloul S., Tarunina M., Barnouin K., Mackay A., Jat P.S. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence. Oncogene. 2002;21:981–989. PubMed
Guo X.C., Keyes W.M., Papazoglu C., Zuber J., Li W.Z., Lowe S.W., Vogel H., Mills A.A. TAp63 induces senescence and suppresses tumorigenesis in vivo. Nature Cell Biol. 2009;11:1451–1457. PubMed PMC
Koster M.I., Lu S.L., White L.D., Wang X.J., Roop D.R. Reactivation of developmentally expressed p63 isoforms predisposes to tumor development and progression. Cancer Res. 2006;66:3981–3986. PubMed
Koster M.I., Kim S., Mills A.A., DeMayo F.J., Roop D.R. p63 is the molecular switch for initiation of an epithelial stratification program. Gen. Dev. 2004;18:126–131. PubMed PMC
Mundt H.M., Stremmel W., Melino G., Krammer P.H., Schilling T., Müller M. Dominant negative (DeltaN) p63alpha induces drug resistance in hepatocellular carcinoma by interference with apoptosis signaling pathways. Biochem. Biophys. Res. Commun. 2010;396:335–341. PubMed
Nylander K., Coates P.J., Hall P.A. Characterization of the expression pattern of p63 alpha and delta Np63 alpha in benign and malignant oral epithelial lesions. Int. J. Cancer. 2000;87:368–372. PubMed
Crook T., Nicholls J.M., Brooks L., O’Nions J., Allday M.J. High level expression of deltaNp63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene. 2000;19:3439–3444. PubMed
Tonon G., Brennan C., Protopopov A., Maulik G., Feng B., Zhang Y., Khatry D.B., You M.J., Aguirre A.J., Martin E.S., Yang Z., Ji H., CHin L., Wong K.K., Depinho R.A. Common and contrasting genomic profiles among the major human lung cancer subtypes. Cold Spring Harb. Symp. Quant. Biol. 2005;70:11–24. PubMed
Davison T.S., Vagner C., Kaghad M., Ayed A., Caput D., Arrowsmith C.H. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J. Biol. Chem. 1999;274:18709–18714. PubMed
Gaiddon C., Lokshin M., Ahn J., Zhang T., Prives C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 2001;21:1874–1887. PubMed PMC
Strano S., Fontemaggi G., Costanzo A., Rizzo M.G., Monti O., Baccarini A., Del Sal G., Levrero M., Sacchi A., Oren M., Blandino G. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J. Biol. Chem. 2002;277:18817–18826. PubMed
Yang A., Zhu Z., Kapranov P., McKeon F., Church G.M., Gingeras T.R., Struhl K. Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol. Cell. 2006;24:593–602. PubMed
Romano R.A., Birkaya B., Sinha S. Defining the regulatory elements in the proximal promoter of Delta Np63 in keratinocytes: Potential roles for Sp1/Sp3, NF-Y, and p63. J. Invest. Dermatol. 2006;126:1469–1479. PubMed
Li N., Li H., Cherukuri P., Farzan S., Harmes D.C., DiRenzo J. TA-p63-gamma regulates expression of Delta N-p63 in a manner that is sensitive to p53. Oncogene. 2006;25:2349–2359. PubMed
Lefkimmiatis K., Caratozzolo M.F., Merlo P., D’Erchia A.M., Navarro B., Levrero M., Sbisa E., Tullo A. p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes. Cancer Res. 2009;69:8563–8571. PubMed
Leong C.O., Vidnovic N., DeYoung M.P., Sgroi D., Ellisen L.W. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J. Clin. Invest. 2007;117:1370–1380. PubMed PMC
Silver D.P., Richardson A.L., Eklund A.C., Wang Z.C., Szallasi Z., Li Q., Juul N., Leong C.O., Calogrias D., Buraimoh A., Fatima A., Gelman R.S., Ryan P.D., Tung N.M., De Nicolo A., Ganesan S., Miron A., Colin C., Sgroi D.C., Ellisen L.W., Winer E.P., Garber J.E. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J. Clin. Oncol. 2010;28:1145–1153. PubMed PMC
Rocco J.W., Leong C.O., Kuperwasser N., DeYoung M.P., Ellisen L.W. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell. 2006;9:45–56. PubMed
Thurfjell N., Coates P.J., Vojtesek B., Benham-Motlagh P., Eisold M., Nylander K. Endogenous p63 acts as a survival factor for tumour cells of SCCHN origin. Int. J. Mol. Med. 2005;16:1065–1070. PubMed
Barbieri C.E., Tang L.J., Brown K.A., Pietenpol J.A. Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res. 2006;66:7589–7597. PubMed
Adorno M., Cordenonsi M., Montagner M., Dupont S., Wong C., Hann B., Solari A., Bobisse S., Rondina M.B., Guzzardo V., Parenti A.R., Rosato A., Bicciato S., Balmain A., Piccolo S. A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 2009;137:87–98. PubMed
Carroll D.K., Carroll J.S., Leong C.O., Cheng F., Brown M., Mills A.A., Brugge J.S., Ellisen L.W. p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biol. 2006;8:551–561. PubMed
Su X., Chakravarti D., Cho M.S., Liu L., Gi Y.J., Lin Y.L., Leung M.L., El-Naggar A., Creighton C.J., Suraokar M.B., Wistuba I., Flores E.R. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature. 2010;467:986–990. PubMed PMC
Bamberger C., Hafner A., Schmale H., Werner S. Expression of different p63 variants in healing skin wounds suggests a role of p63 in reepithelialization and muscle repair. Wound Repair Regen. 2005;13:41–50. PubMed
Thurfjell N., Coates P.J., Wahlin Y.B., Arvidsson E., Nylander K. Downregulation of TAp63 and unaffected levels of p63beta distinguishes oral wounds from SCCHN. Cell Cycle. 2006;5:555–557. PubMed
Ma D.K., Bonaguidi M.A., Ming G.L., Song H. Adult neural stem cells in the mammalian central nervous system. Cell. Res. 2009;19:672–682. PubMed PMC
Gibelli B., El-Fattah A., Giugliano G., Proh M., Grosso E. Thyroid stem cells — danger or resource? Acta Otorhinolaryngol. Ital. 2009;29:290–295. PubMed PMC
Wu X., Wang S., Chen B., An X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res. 2010;340:549–567. PubMed
Snyder J.C., Teisanu R.M., Stripp B.R. Endogenous lung stem cells and contribution to disease. J. Pathol. 2009;217:254–264. PubMed PMC
Little M.H., Bertram J.F. Is there such a thing as a renal stem cell? J. Am. Soc. Nephrol. 2009;20:2112–2117. PubMed
Pincelli C., Marconi A. Keratinocyte stem cells: friends and foes. J. Cell. Physiol. 2010;225:310–315. PubMed
Katsumoto K., Shiraki N., Miki R., Kume S. Embryonic and adult stem cell systems in mammals: ontology and regulation. Dev. Growth. Differ. 2010;52:115–129. PubMed
Petersen O.W., Polyak K. Stem cells in the human breast. Cold Spring Harb. Perspect. Biol. 2010;2:a003160. PubMed PMC
Ratajczak M.Z., Zuba-Surma E.K., Machalinski B., Kucia M. Bonemarrow-derived stem cells — our key to longevity? J. Appl. Genet. 2007;48:307–319. PubMed
Beltrami A.P., Barlucchi L., Torella D., Baker M., Limana F., Chimenti S., Kasahara H., Rota M., Musso E., Urbanek K., Leri A., Kajstura J., Nadal-Ginard B., Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–776. PubMed
Tumbar T., Guasch G., Greco V., Blanpain C., Lowry W.E., Rendl M., Fuchs E. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–363. PubMed PMC
Collins C.A., Partridge T.A. Self-renewal of the adult skeletal muscle satellite cell. Cell Cycle. 2005;4:1338–1341. PubMed
Herrera M.B., Bruno S., Buttiglieri S., Tetta C., Gatti S., Deregibus M.C., Bussolati B., Camussi G. Isolation and characterization of a stem cell population from adult human liver. Stem Cells. 2006;24:2840–2850. PubMed
Yang A., Schweitzer R., Sun D.Q., Kaghad M., Walker N., Bronson R.T., Tabin C., Sharpe A., Caput D., Crum C., McKeon F. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398:714–718. PubMed
Mills A.A., Zheng B.H., Wang X.J., Vogel H., Roop D.R., Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398:708–713. PubMed
Pellegrini G., Dellambra E., Golisano O., Martinelli E., Fantozzi I., Bondanza S., Ponzin D., McKeon F., De Luca M. p63 identifies keratinocyte stem cells. Proc. Natl. Acad. Sci. USA. 2001;98:3156–3161. PubMed PMC
Barbieri C.E., Pietenpol J.A. p63 and epithelial biology. Exp. Cell. Res. 2006;312:695–706. PubMed
Dellavalle R.P., Egbert T.B., Marchbank A., Su L.J., Lee L.A., Walsh P. CUSP/p63 expression in rat and human tissues. J. Dermat. Sci. 2001;27:82–87. PubMed
Rizzo S., Attard G., Hudson D.L. Prostate epithelial stem cells. Cell. Prolif. 2005;38:363–374. PubMed PMC
Signoretti S., Waltregny D., Dilks J., Isaac B., Lin D., Garraway L., Yang A., Montironi R., McKeon F., Loda M. p63 is a prostate basal cell marker and is required for prostate development. Am. J. Pathol. 2000;157:1769–1775. PubMed PMC
Signoretti S., Pires M.M., Lindauer M., Horner J.W., Grisanzio C., Dhar S., Majumder P., McKeon F., Kantoff P.W., Sellers W.R., Loda M. p63 regulates commitment to the prostate cell lineage. Proc. Natl. Acad. Sci. USA. 2005;102:11355–11360. PubMed PMC
Senoo M., Pinto F., Crum C.P., McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 2007;129:523–536. PubMed
Laurikkala J., Mikkola M.L., James M., Tummers M., Mills A.A., Thesleff I. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development. 2006;133:1553–1563. PubMed
Mumm J.S., Kopan R. Notch signaling: From the outside in. Dev. Biol. 2000;228:151–165. PubMed
Stylianou S., Clarke R.B., Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006;66:1517–1525. PubMed
Massi D., Tarantini F., Franchi A., Paglierani M., Di Serio C., Pellerito S., Leoncini G., Cirino G., Geppetti P., Santucci M. Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod. Pathol. 2006;19:246–254. PubMed
Rose S.L., Kunnimalaiyaan M., Drenzek J., Seiler N. Notch 1 signaling is active in ovarian cancer. Gynecol. Oncol. 2010;117:130–133. PubMed
Grudzien P., Lo S., Albain K.S., Robinson P., Rajan P., Strack P.R., Golde T.E., Miele L., Foreman K.E. Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res. 2010;30:3853–3867. PubMed
Artavanis-Tsakonas S., Rand M.D., Lake R.J. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–776. PubMed
Lowell S., Jones P., Le Roux I., Dunne J., Watt F.M. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 2000;10:491–500. PubMed
Rangarajan A., Talora C., Okuyama R., Nicolas M., Mammucari C., Oh H., Aster J.C., Krishna S., Metzger D., Chambon P., Miele L., Aguet M., Radtke F., Dotto G.P. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001;20:3427–3436. PubMed PMC
Nickoloff B.J., Qin J.Z., Chaturvedi V., Denning M.F., Bonish B., Miele L. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocates through NF-kappaB and PPARgamma. Cell Death Differ. 2002;9:842–855. PubMed
Talora C., Sgroi D.C., Crum C.P., Dotto G.P. Specific downmodulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002;16:2252–2263. PubMed PMC
Nicolas M., Wolfer A., Raj K., Kummer J.A., Mill P., van Noort M., Hui C.C., Clevers H., Dotto G.P., Radtke F. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet. 2003;33:416–421. PubMed
Okuyama R., Ogawa E., Nagoshi H., Yabuki M., Kurihara A., Terui T., Aiba S., Obinata M., Tagami H., Ikawa S. p53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity. Oncogene. 2007;26:4478–4488. PubMed
Nguyen B.C., Lefort K., Mandinova A., Antonini D., Devgan V., Della Gatta G., Koster M.I., Zhang Z., Wang J., Tommasi di Vignano A., Kitajewski J., Chiorino G., Roop D.R., Missero C., Dotto G.P. Crossregulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 2006;20:1028–1042. PubMed PMC
Yugawa T., Narisawa-Saito M., Yoshimatsu Y., Haga K., Ohno S., Egawa N., Fujita M., Kiyono T. ΔNp63α repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Res. 2010;70:4034–4044. PubMed
Ma J., Meng Y., Kwiatkowski D.J., Chen X., Peng H., Sun Q., Zha X., Wang F., Wang Y., Jing Y., Zhang S., Chen R., Wang L., Wu E., Cai G., Malinowska-Kolodziej I., Liao Q., Liu Y., Zhao Y., Sun Q., Xu K., Dai J., Han J., Wu L., Zhao R.C., Shen H., Zhang H. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J. Clin. Invest. 2010;120:103–114. PubMed PMC
Yalcin-Ozuysal O., Fiche M., Guitierrez M., Wagner K.U., Raffoul W., Brisken C. Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ. 2010;17:1600–1612. PubMed
Bienz M., Clevers H. Linking colorectal cancer to Wnt signaling. Cell. 2000;m103:311–320. PubMed
Logan C.Y., Nusse R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 2004;20:781–810. PubMed
Kléber M., Sommer L. Wnt signaling and the regulation of stem cell function. Curr. Opin. Cell. Biol. 2004;16:681–687. PubMed
Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–850. PubMed
Gu B., Watanabe K., Dai X. Epithelial stem cells: an epigenetic and Wnt-centric perspective. J. Cell. Biochem. 2010;110:1279–1287. PubMed PMC
Drewelus I., Göpfert C., Hippel C., Dickmanns A., Damianitsch K., Pieler T., Dobbelstein M. p63 antagonizes Wnt-induced transcription. Cell Cycle. 2010;9:580–587. PubMed
Iseki S., Araga A., Ohuchi H., Nohno T., Yoshioka H., Hayashi F., Noji S. Sonic hedgehog is expressed in epithelial cells during development of whisker, hair, and tooth. Biochem. Biophys. Res. Commun. 1996;218:688–693. PubMed
Ho K.S., Scott M.P. Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr. Opin. Neurobiol. 2002;12:57–63. PubMed
Freestone S.H., Marker P., Grace O.C., Tomlinson D.C., Cunha G.R., Harnden P., Thomson A.A. Sonic hedgehog regulates prostatic growth and epithelial differentiation. Dev. Biol. 2003;264:352–362. PubMed
Vezina C.M., Bushman A.W. Hedgehog signaling in prostate growth and benign prostate hyperplasia. Curr. Urol. Rep. 2007;8:275–280. PubMed
Ramalho-Santos M., Melton D.A., McMahon A.P. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127:2763–2772. PubMed
Sicklick J.K., Li Y.X., Jayaraman A., Kannangai R., Qi Y., Vivekanandan P., Ludlow J.W., Owzar K., Chen W., Torbenson M.S., Diehl A.M. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis. 2006;27:748–757. PubMed
Yoshikawa K., Shimada M., Miyamoto H., Higashijima J., Miyatani T., Nishioka M., Kurita N., Iwata T., Uehara H. Sonic hedgehog relates to colorectal carcinogenesis. J. Gastroenterol. 2009;44:1113–1117. PubMed
Dormoy V., Danilin S., Lindner V., Thomas L., Rothhut S., Coquard C., Helwig J.J., Jacqmin D., Lang H., Massfelder T. The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth. Mol. Cancer. 2009;8:123. PubMed PMC
Berman D.M., Karhadkar S.S., Hallahan A.R., Pritchard J.I., Eberhart C.G., Watkins D.N., Chen J.K., Cooper M.K., Taipale J., Olson J.M., Beachy P.A. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 2002;297:1559–1561. PubMed
Kubo M., Nakamura M., Tasaki A., Yamanaka N., Nakashima H., Nomura M., Kuroki S., Katano M. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 2004;64:6071–6074. PubMed
Chen X., Horiuchi A., Kikuchi N., Osada R., Yoshida J., Shiozawa T., Konishi I. Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation: it’s inhibition leads to growth suppression and apoptosis. Cancer Sci. 2007;98:68–76. PubMed PMC
Sheng T., Li C., Zhang X., Chi S., He N., Chen K., McCormick F., Gatalica Z., Xie J. Activation of the hedgehog pathway in advanced prostate cancer. Mol. Cancer. 2004;3:29. PubMed PMC
Caserta T.M., Kommagani R., Yuan Z.A., Robbins D.J., Merce r. C.A., Kadakia M.P. p63 overexpression induces the expression of sonic hedgehog. Mol. Cancer Res. 2006;4:759–768. PubMed
Hatsell S.J., Cowin P. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development. 2006;133:3661–3670. PubMed
Liu S., Dontu G., Mantle I.D., Patel S., Ahn N.S., Jackson K.W., Suri P., Wicha M.S. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–6071. PubMed PMC
Kubo M., Nakamura M., Tasaki A., Yamanaka N., Nakashima H., Nomura M., Kuroki S., Katano M. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 2004;64:6071–6074. PubMed
Li N., Singh S., Cherukuri P., Li H., Yuan Z., Ellisen L.W., Wang B., Robbins D., DiRenzo J. Reciprocal intraepithelial interactions between TP63 and hedgehog signaling regulate quiescence and activation of progenitor elaboration by mammary stem cells. Stem Cells. 2008;26:1253–1264. PubMed PMC
Boominathan L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev. 2010;29:613–639. PubMed
Davidson M.R., Larsen J.E., Yang I.A., Hayward N.K., Clarke B.E., Duhig E.E., Passmore L.H., Bowman R.V., Fong K.M. MicroRNA-218 is deleted and downregulated in lung squamous cell carcinoma. PLoS One. 2010;5:e12560. PubMed PMC
Melo, S.A. and Esteller, M. Dysregulation of microRNAs in cancer: Playing with fire. FEBS Lett. (2010) Epub ahead of print. PubMed
Grelier G., Voirin N., Ay A.S., Cox D.G., Chabaud S., Treilleux I., Léon-Goddard S., Rimokh R., Mikaelian I., Venoux C., Puisieux A., Lasset C., Moyret-Lalle C. Prognostic value of Dicer expression in human breast cancer and association with the mesenchymal phenotype. Br. J. Cancer. 2009;101:673–683. PubMed PMC
Wang Y., Medvid R., Melton C., Jaenisch R., Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 2007;39:380–385. PubMed PMC
Cui X.S., Shen X.H., Kim N.H. Dicer1 expression in preimplantation mouse embryos: Involvement of Oct3/4 transcription at the blastocyst stage. Biochem. Biophys. Res. Commun. 2007;352:231–236. PubMed
Yi R., Poy M.N., Stoffel M., Fuchs E. A skin microRNA promotes differentiation by repressing “stemness”. Nature. 2008;452:225–229. PubMed PMC
Scheel A.H., Beyer U., Agami R., Dobbelstein M. Immunofluorescence-based screening identifies germ cell associated microRNA 302 as an antagonist to p63 expression. Cell Cycle. 2009;8:1426–1432. PubMed
Lena A.M., Shalom-Feuerstein R., Rivetti di Val Cervo P., Aberdam D., Knight R.A., Melino G., Candi E. miR-203 represses “stemness” by repressing DeltaNp63. Cell Death Differ. 2008;15:1187–1195. PubMed
Papagiannakopoulos T., Shapiro A., Kosik K.S. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68:8164–8172. PubMed
Manni I., Artuso S., Careccia S., Rizzo M.G., Baserga R., Piaggio G., Sacchi A. The microRNA miR-92 increases proliferation of myeloid cells and by targeting p63 modulates the abundance of its isoforms. FASEB J. 2009;23:3957–3966. PubMed
Chan J.A., Krichevsky A.M., Kosik K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–6033. PubMed
Si M.L., Zhu S., Wu H., Lu Z., Wu F., Mo Y.Y. miR-21-mediated tumor growth. Oncogene. 2007;26:2799–2803. PubMed
Meng F., Henson R., Lang M., Wehbe H., Maheshwari S., Mendell J.T., Jiang J., Schmittgen T.D., Patel T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006;130:2113–2129. PubMed
Craig A.L., Holcakova J., Finlan L.E., Nekulova M., Hrstka R., Gueven N., DiRenzo J., Smith G., Hupp T.R., Vojtesek B. DeltaNp63 transcriptionally regulates ATM to control p53 Serine-15 phosphorylation. Mol. Cancer. 2010;9:195. PubMed PMC
Reya T., Morrison S.J., Clarke M.F., Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. PubMed
Tan B.T., Park C.Y., Ailles L.E., Weissman I.L. The cancer stem cell hypothesis: a work in progress. Lab. Invest. 2006;86:1203–1207. PubMed
Schatton T., Frank N.Y., Frank M.H. Identification and targeting of cancer stem cells. Bioessays. 2009;31:1038–1049. PubMed PMC
Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA. 2003;100:3983–3988. PubMed PMC
Prince M.E., Sivanandan R., Kaczorowski A., Wolf G.T., Kaplan M.J., Dalerba P., Weissman I.L., Clarke M.F., Ailles L.E. Identification of a subpopulation of cells with cancer stem cells properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA. 2007;104:973–978. PubMed PMC
Boldrup L., Coates P.J., Gu X., Nylander K. DeltaNp63 isoforms regulate CD44 and keratins 4, 6, 14 and 19 in squamous cell carcinoma of head and neck. J. Pathol. 2007;213:384–391. PubMed
Du Z., Li J., Wang L., Bian C., Wang Q., Liao L., Dou X., Bian X., Zhao R.C. Overexpression of ΔNp63α induces a stem cell phenotype in MCF7 breast carcinoma cell line through the Notch pathway. Cancer Sci. 2010;101:2417–2424. PubMed PMC
DNA Demethylation Switches Oncogenic ΔNp63 to Tumor Suppressive TAp63 in Squamous Cell Carcinoma
STAT3, stem cells, cancer stem cells and p63