Identifying pathways regulating the oncogenic p53 family member ΔNp63 provides therapeutic avenues for squamous cell carcinoma

. 2022 Feb 23 ; 27 (1) : 18. [epub] 20220223

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35196980

Grantová podpora
GACR 19-06530S Grantová Agentura České Republiky
ENOCH European Regional Development Fund
CZ.02.1.01/0.0/16_019/0000868 European Regional Development Fund
MMCI Ministerstvo Zdravotnictví Ceské Republiky
00209805 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 35196980
PubMed Central PMC8903560
DOI 10.1186/s11658-022-00323-x
PII: 10.1186/s11658-022-00323-x
Knihovny.cz E-zdroje

BACKGROUND: ΔNp63 overexpression is a common event in squamous cell carcinoma (SCC) that contributes to tumorigenesis, making ΔNp63 a potential target for therapy. METHODS: We created inducible TP63-shRNA cells to study the effects of p63-depletion in SCC cell lines and non-malignant HaCaT keratinocytes. DNA damaging agents, growth factors, signaling pathway inhibitors, histone deacetylase inhibitors, and metabolism-modifying drugs were also investigated for their ability to influence ΔNp63 protein and mRNA levels. RESULTS: HaCaT keratinocytes, FaDu and SCC-25 cells express high levels of ΔNp63. HaCaT and FaDu inducible TP63-shRNA cells showed reduced proliferation after p63 depletion, with greater effects on FaDu than HaCaT cells, compatible with oncogene addiction in SCC. Genotoxic insults and histone deacetylase inhibitors variably reduced ΔNp63 levels in keratinocytes and SCC cells. Growth factors that regulate proliferation/survival of squamous cells (IGF-1, EGF, amphiregulin, KGF, and HGF) and PI3K, mTOR, MAPK/ERK or EGFR inhibitors showed lesser and inconsistent effects, with dual inhibition of PI3K and mTOR or EGFR inhibition selectively reducing ΔNp63 levels in HaCaT cells. In contrast, the antihyperlipidemic drug lovastatin selectively increased ΔNp63 in HaCaT cells. CONCLUSIONS: These data confirm that ΔNp63-positive SCC cells require p63 for continued growth and provide proof of concept that p63 reduction is a therapeutic option for these tumors. Investigations of ΔNp63 regulation identified agent-specific and cell-specific pathways. In particular, dual inhibition of the PI3K and mTOR pathways reduced ΔNp63 more effectively than single pathway inhibition, and broad-spectrum histone deacetylase inhibitors showed a time-dependent biphasic response, with high level downregulation at the transcriptional level within 24 h. In addition to furthering our understanding of ΔNp63 regulation in squamous cells, these data identify novel drug combinations that may be useful for p63-based therapy of SCC.

Zobrazit více v PubMed

Dotto GP, Rustgi AK. Squamous cell cancers: a unified perspective on biology and genetics. Cancer Cell. 2016;29:622–637. doi: 10.1016/j.ccell.2016.04.004. PubMed DOI PMC

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Sgaramella N, Gu X, Boldrup L, Coates PJ, Fahraeus R, Califano L, Tartaro G, Colella G, Spaak LN, Strom A, et al. Searching for new targets and treatments in the battle against squamous cell carcinoma of the head and neck, with specific focus on tumours of the tongue. Curr Top Med Chem. 2018;18:214–218. doi: 10.2174/1568026618666180116121624. PubMed DOI

Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primer. 2020;6:92. doi: 10.1038/s41572-020-00224-3. PubMed DOI PMC

Campbell JD, Yau C, Bowlby R, Liu Y, Brennan K, Fan H, Taylor AM, Wang C, Walter V, Akbani R, et al. Genomic, pathway network, and immunologic features distinguishing squamous carcinomas. Cell Rep. 2018;23:194–212.e6. doi: 10.1016/j.celrep.2018.03.063. PubMed DOI PMC

Cancer Genome Atlas Research Network Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–525. doi: 10.1038/nature11404. PubMed DOI PMC

Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE, Ratovitski EA, Jen J, Sidransky D. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci U S A. 2000;97:5462–5467. doi: 10.1073/pnas.97.10.5462. PubMed DOI PMC

Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME, Westfall MD, Roberts JR, Pietenpol JA, Carbone DP, et al. Significance of P63 amplification and overexpression in lung cancer development and prognosis. Cancer Res. 2003;63:7113–7121. PubMed

Redon R, Muller D, Caulee K, Wanherdrick K, Abecassis J, du Manoir S. A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not P63 gene as a likely target of 3q26-Qter gains. Cancer Res. 2001;61:4122–4129. PubMed

Moses MA, George AL, Sakakibara N, Mahmood K, Ponnamperuma RM, King KE, Weinberg WC. Molecular mechanisms of P63-mediated squamous cancer pathogenesis. Int J Mol Sci. 2019 doi: 10.3390/ijms20143590. PubMed DOI PMC

Fisher ML, Balinth S, Mills AA. P63-related signaling at a glance. J Cell Sci. 2020 doi: 10.1242/jcs.228015. PubMed DOI PMC

Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of P63 isoform regulation in normal cells and cancer. J Pathol. 2021;254:454–473. doi: 10.1002/path.5656. PubMed DOI

Lo Muzio L, Santarelli A, Caltabiano R, Rubini C, Pieramici T, Trevisiol L, Carinci F, Leonardi R, De Lillo A, Lanzafame S, et al. P63 overexpression associates with poor prognosis in head and neck squamous cell carcinoma. Hum Pathol. 2005;36:187–194. doi: 10.1016/j.humpath.2004.12.003. PubMed DOI

Moergel M, Abt E, Stockinger M, Kunkel M. Overexpression of P63 is associated with radiation resistance and prognosis in oral squamous cell carcinoma. Oral Oncol. 2010;46:667–671. doi: 10.1016/j.oraloncology.2010.06.012. PubMed DOI

Loljung L, Coates PJ, Nekulova M, Laurell G, Wahlgren M, Wilms T, Widlöf M, Hansel A, Nylander K. High expression of P63 is correlated to poor prognosis in squamous cell carcinoma of the tongue. J Oral Pathol Med. 2014;43:14–19. doi: 10.1111/jop.12074. PubMed DOI

Thurfjell N, Coates PJ, Vojtesek B, Benham-Motlagh P, Eisold M, Nylander K. Endogenous P63 acts as a survival factor for tumour cells of SCCHN origin. Int J Mol Med. 2005;16:1065–1070. PubMed

Rocco JW, Leong C-O, Kuperwasser N, DeYoung MP, Ellisen LW. P63 mediates survival in squamous cell carcinoma by suppression of P73-dependent apoptosis. Cancer Cell. 2006;9:45–56. doi: 10.1016/j.ccr.2005.12.013. PubMed DOI

Bretz AC, Gittler MP, Charles JP, Gremke N, Eckhardt I, Mernberger M, Mandic R, Thomale J, Nist A, Wanzel M, et al. ΔNp63 activates the fanconi anemia DNA repair pathway and limits the efficacy of cisplatin treatment in squamous cell carcinoma. Nucleic Acids Res. 2016;44:3204–3218. doi: 10.1093/nar/gkw036. PubMed DOI PMC

Hao T, Gan Y-H. ΔNp63α promotes the expression and nuclear translocation of PTEN, leading to cisplatin resistance in oral cancer cells. Am J Transl Res. 2020;12:6187–6203. PubMed PMC

Liefer KM, Koster MI, Wang XJ, Yang A, McKeon F, Roop DR. Down-Regulation of P63 is required for epidermal UV-B-induced apoptosis. Cancer Res. 2000;60:4016–4020. PubMed

Yoh K, Prywes R. Pathway regulation of P63, a director of epithelial cell fate. Front Endocrinol. 2015;6:51. doi: 10.3389/fendo.2015.00051. PubMed DOI PMC

Rangan SR. A new human cell line (FaDu) from a hypopharyngeal carcinoma. Cancer. 1972;29:117–121. doi: 10.1002/1097-0142(197201)29:1<117::aid-cncr2820290119>3.0.co;2-r. PubMed DOI

Rheinwald JG, Beckett MA. Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas. Cancer Res. 1981;41:1657–1663. PubMed

Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC

Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC

Orzol P, Nekulova M, Holcakova J, Muller P, Votesek B, Coates PJ. ΔNp63 regulates cell proliferation, differentiation, adhesion, and migration in the BL2 subtype of basal-like breast cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2016;37:10133–10140. doi: 10.1007/s13277-016-4880-x. PubMed DOI

Liu Y, Nekulova M, Nenutil R, Horakova I, Appleyard MV, Murray K, Holcakova J, Galoczova M, Quinlan P, Jordan LB, et al. ∆Np63/P40 correlates with the location and phenotype of basal/mesenchymal cancer stem-like cells in human ER+ and HER2+ breast cancers. J Pathol Clin Res. 2020;6:83–93. doi: 10.1002/cjp2.149. PubMed DOI PMC

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Nylander K, Coates PJ, Hall PA. Characterization of the expression pattern of P63 alpha and delta Np63 alpha in benign and malignant oral epithelial lesions. Int J Cancer. 2000;87:368–372. doi: 10.1002/1097-0215(20000801)87:3<368::AID-IJC9>3.0.CO;2-J. PubMed DOI

Sethi I, Romano R-A, Gluck C, Smalley K, Vojtesek B, Buck MJ, Sinha S. A Global analysis of the complex landscape of isoforms and regulatory networks of P63 in human cells and tissues. BMC Genomics. 2015;16:584. doi: 10.1186/s12864-015-1793-9. PubMed DOI PMC

Abraham CG, Ludwig MP, Andrysik Z, Pandey A, Joshi M, Galbraith MD, Sullivan KD, Espinosa JM. ΔNp63α suppresses TGFB2 expression and RHOA activity to drive cell proliferation in squamous cell carcinomas. Cell Rep. 2018;24:3224–3236. doi: 10.1016/j.celrep.2018.08.058. PubMed DOI PMC

Yi Y, Chen D, Ao J, Sun S, Wu M, Li X, Bergholz J, Zhang Y, Xiao Z-X. Metformin promotes AMP-activated protein kinase-independent suppression of ΔNp63α protein expression and inhibits cancer cell viability. J Biol Chem. 2017;292:5253–5261. doi: 10.1074/jbc.M116.769141. PubMed DOI PMC

He Y, Tai S, Deng M, Fan Z, Ping F, He L, Zhang C, Huang Y, Cheng B, Xia J. Metformin and 4SC-202 synergistically promote intrinsic cell apoptosis by accelerating ΔNp63 ubiquitination and degradation in oral squamous cell carcinoma. Cancer Med. 2019;8:3479–3490. doi: 10.1002/cam4.2206. PubMed DOI PMC

Restelli M, Molinari E, Marinari B, Conte D, Gnesutta N, Costanzo A, Merlo GR, Guerrini L. FGF8, c-Abl and P300 participate in a pathway that controls stability and function of the ΔNp63α protein. Hum Mol Genet. 2015;24:4185–4197. doi: 10.1093/hmg/ddv151. PubMed DOI PMC

Napoli M, Venkatanarayan A, Raulji P, Meyers BA, Norton W, Mangala LS, Sood AK, Rodriguez-Aguayo C, Lopez-Berestein G, Vin H, et al. ΔNp63/DGCR8-dependent micrornas mediate therapeutic efficacy of HDAC inhibitors in cancer. Cancer Cell. 2016;29:874–888. doi: 10.1016/j.ccell.2016.04.016. PubMed DOI PMC

Nekulova M, Holcakova J, Coates P, Vojtesek B. The role of P63 in cancer, stem cells and cancer stem cells. Cell Mol Biol Lett. 2011;16:296–327. doi: 10.2478/s11658-011-0009-9. PubMed DOI PMC

Orzol P, Holcakova J, Nekulova M, Nenutil R, Vojtesek B, Coates PJ. The diverse oncogenic and tumour suppressor roles of P63 and P73 in cancer: a review by cancer site. Histol Histopathol. 2015;30:503–521. doi: 10.14670/HH-30.503. PubMed DOI

Galoczova M, Coates P, Vojtesek B. STAT3, Stem cells, cancer stem cells and P63. Cell Mol Biol Lett. 2018;23:12. doi: 10.1186/s11658-018-0078-0. PubMed DOI PMC

Devos M, Gilbert B, Denecker G, Leurs K, Mc Guire C, Lemeire K, Hochepied T, Vuylsteke M, Lambert J, Van Den Broecke C, et al. Elevated ΔNp63α levels facilitate epidermal and biliary oncogenic transformation. J Invest Dermatol. 2017;137:494–505. doi: 10.1016/j.jid.2016.09.026. PubMed DOI

Ramsey MR, Wilson C, Ory B, Rothenberg SM, Faquin W, Mills AA, Ellisen LW. FGFR2 signaling underlies P63 oncogenic function in squamous cell carcinoma. J Clin Invest. 2013;123:3525–3538. doi: 10.1172/JCI68899. PubMed DOI PMC

Leonard MK, Kommagani R, Payal V, Mayo LD, Shamma HN, Kadakia MP. ΔNp63α regulates keratinocyte proliferation by controlling PTEN expression and localization. Cell Death Differ. 2011;18:1924–1933. doi: 10.1038/cdd.2011.73. PubMed DOI PMC

Walter V, Yin X, Wilkerson MD, Cabanski CR, Zhao N, Du Y, Ang MK, Hayward MC, Salazar AH, Hoadley KA, et al. Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLoS ONE. 2013;8:e56823. doi: 10.1371/journal.pone.0056823. PubMed DOI PMC

Armstrong SR, Wu H, Wang B, Abuetabh Y, Sergi C, Leng RP. The regulation of tumor suppressor P63 by the ubiquitin-proteasome system. Int J Mol Sci. 2016 doi: 10.3390/ijms17122041. PubMed DOI PMC

Bamberger C, Pankow S, Yates JR. SMG1 and CDK12 Link ΔNp63α phosphorylation to RNA surveillance in keratinocytes. J Proteome Res. 2021 doi: 10.1021/acs.jproteome.1c00427. PubMed DOI PMC

Prieto-Garcia C, Hartmann O, Reissland M, Fischer T, Maier CR, Rosenfeldt M, Schülein-Völk C, Klann K, Kalb R, Dikic I, et al. Inhibition of USP28 overcomes cisplatin-resistance of squamous tumors by suppression of the fanconi anemia pathway. Cell Death Differ. 2021 doi: 10.1038/s41418-021-00875-z. PubMed DOI PMC

Rentoft M, Laurell G, Coates PJ, Sjöström B, Nylander K. Gene expression profiling of archival tongue squamous cell carcinomas provides sub-classification based on DNA repair genes. Int J Oncol. 2009;35:1321–1330. doi: 10.3892/ijo_00000450. PubMed DOI

Holcakova J, Nekulova M, Orzol P, Nenutil R, Podhorec J, Svoboda M, Dvorakova P, Pjechova M, Hernychova L, Vojtesek B, et al. ΔNp63 activates EGFR signaling to induce loss of adhesion in triple-negative basal-like breast cancer cells. Breast Cancer Res Treat. 2017;163:475–484. doi: 10.1007/s10549-017-4216-6. PubMed DOI

Citro S, Bellini A, Miccolo C, Ghiani L, Carey TE, Chiocca S. Synergistic antitumour activity of HDAC inhibitor SAHA and EGFR inhibitor gefitinib in head and neck cancer: a key role for ΔNp63α. Br J Cancer. 2019;120:658–667. doi: 10.1038/s41416-019-0394-9. PubMed DOI PMC

Segrelles C, Moral M, Lara MF, Ruiz S, Santos M, Leis H, García-Escudero R, Martínez-Cruz AB, Martínez-Palacio J, Hernández P, et al. Molecular determinants of Akt-induced keratinocyte transformation. Oncogene. 2006;25:1174–1185. doi: 10.1038/sj.onc.1209155. PubMed DOI

Matheny KE, Barbieri CE, Sniezek JC, Arteaga CL, Pietenpol JA. Inhibition of epidermal growth factor receptor signaling decreases P63 expression in head and neck squamous carcinoma cells. Laryngoscope. 2003;113:936–939. doi: 10.1097/00005537-200306000-00004. PubMed DOI

Barbieri CE, Barton CE, Pietenpol JA. Delta Np63 alpha expression is regulated by the phosphoinositide 3-kinase pathway. J Biol Chem. 2003;278:51408–51414. doi: 10.1074/jbc.M309943200. PubMed DOI

Ripamonti F, Albano L, Rossini A, Borrelli S, Fabris S, Mantovani R, Neri A, Balsari A, Magnifico A, Tagliabue E. EGFR through STAT3 modulates ΔN63α expression to sustain tumor-initiating cell proliferation in squamous cell carcinomas. J Cell Physiol. 2013;228:871–878. doi: 10.1002/jcp.24238. PubMed DOI

Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, Wu M, Sun S, Zhang H, You H, et al. ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A. 2017;114:E3964–E3973. doi: 10.1073/pnas.1617816114. PubMed DOI PMC

Yoh KE, Regunath K, Guzman A, Lee S-M, Pfister NT, Akanni O, Kaufman LJ, Prives C, Prywes R. Repression of P63 and Induction of EMT by mutant Ras in mammary epithelial cells. Proc Natl Acad Sci U S A. 2016;113:E6107–E6116. doi: 10.1073/pnas.1613417113. PubMed DOI PMC

Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24. doi: 10.1038/nrc3860. PubMed DOI PMC

Longo J, van Leeuwen JE, Elbaz M, Branchard E, Penn LZ. Statins as anticancer agents in the era of precision medicine. Clin Cancer Res. 2020;26:5791–5800. doi: 10.1158/1078-0432.CCR-20-1967. PubMed DOI

Scheller EL, Baldwin CM, Kuo S, D’Silva NJ, Feinberg SE, Krebsbach PH, Edwards PC. Bisphosphonates inhibit expression of P63 by oral keratinocytes. J Dent Res. 2011;90:894–899. doi: 10.1177/0022034511407918. PubMed DOI PMC

Ziegler V, Albers A, Fritz G. Lovastatin protects keratinocytes from DNA damage-related pro-apoptotic stress responses stimulated by anticancer therapeutics. Biochim Biophys Acta. 2016;1863:1082–1092. doi: 10.1016/j.bbamcr.2016.02.009. PubMed DOI

Castilho RM, Squarize CH, Almeida LO. Epigenetic modifications and head and neck cancer: implications for tumor progression and resistance to therapy. Int J Mol Sci. 2017 doi: 10.3390/ijms18071506. PubMed DOI PMC

Pan L, Lu J, Wang X, Han L, Zhang Y, Han S, Huang B. Histone deacetylase inhibitor trichostatin a potentiates doxorubicin-induced apoptosis by up-regulating PTEN expression. Cancer. 2007;109:1676–1688. doi: 10.1002/cncr.22585. PubMed DOI

Ogawa E, Okuyama R, Ikawa S, Nagoshi H, Egawa T, Kurihara A, Yabuki M, Tagami H, Obinata M, Aiba S. P51/P63 inhibits ultraviolet B-induced apoptosis via Akt activation. Oncogene. 2008;27:848–856. doi: 10.1038/sj.onc.1210682. PubMed DOI

Zangen R, Ratovitski E, Sidransky D. DeltaNp63alpha levels correlate with clinical tumor response to cisplatin. Cell Cycle Georget Tex. 2005;4:1313–1315. doi: 10.4161/cc.4.10.2066. PubMed DOI

Rocca A, Viale G, Gelber RD, Bottiglieri L, Gelber S, Pruneri G, Ghisini R, Balduzzi A, Pietri E, D’Alessandro C, et al. Pathologic complete remission rate after cisplatin-based primary chemotherapy in breast cancer: correlation with P63 expression. Cancer Chemother Pharmacol. 2008;61:965–971. doi: 10.1007/s00280-007-0551-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...