CLAUSA Is a MYB Transcription Factor That Promotes Leaf Differentiation by Attenuating Cytokinin Signaling
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27385816
PubMed Central
PMC4981134
DOI
10.1105/tpc.16.00211
PII: tpc.16.00211
Knihovny.cz E-zdroje
- MeSH
- cytokininy metabolismus MeSH
- geneticky modifikované rostliny genetika metabolismus MeSH
- listy rostlin genetika metabolismus MeSH
- mutace genetika MeSH
- regulace genové exprese u rostlin genetika fyziologie MeSH
- rostlinné proteiny genetika metabolismus MeSH
- signální transdukce genetika fyziologie MeSH
- Solanum lycopersicum genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- rostlinné proteiny MeSH
- transkripční faktory MeSH
Leaf morphogenesis and differentiation are highly flexible processes, resulting in a large diversity of leaf forms. The development of compound leaves involves an extended morphogenesis stage compared with that of simple leaves, and the tomato (Solanum lycopersicum) mutant clausa (clau) exposes a potential for extended morphogenesis in tomato leaves. Here, we report that the CLAU gene encodes a MYB transcription factor that has evolved a unique role in compound-leaf species to promote an exit from the morphogenetic phase of tomato leaf development. We show that CLAU attenuates cytokinin signaling, and that clau plants have increased cytokinin sensitivity. The results suggest that flexible leaf patterning involves a coordinated interplay between transcription factors and hormones.
Zobrazit více v PubMed
Avivi Y., Lev-Yadun S., Morozova N., Libs L., Williams L., Zhao J., Varghese G., Grafi G. (2000). Clausa, a tomato mutant with a wide range of phenotypic perturbations, displays a cell type-dependent expression of the homeobox gene LeT6/TKn2. Plant Physiol. 124: 541–552. PubMed PMC
Bar M., Ben-Herzel O., Kohay H., Shtein I., Ori N. (2015). CLAUSA restricts tomato leaf morphogenesis and GOBLET expression. Plant J. 83: 888–902. PubMed
Bar M., Ori N. (2014). Leaf development and morphogenesis. Development 141: 4219–4230. PubMed
Barkoulas M., Galinha C., Grigg S.P., Tsiantis M. (2007). From genes to shape: regulatory interactions in leaf development. Curr. Opin. Plant Biol. 10: 660–666. PubMed
Barth S., Geier T., Eimert K., Watillon B., Sangwan R.S., Gleissberg S. (2009). KNOX overexpression in transgenic Kohleria (Gesneriaceae) prolongs the activity of proximal leaf blastozones and drastically alters segment fate. Planta 230: 1081–1091. PubMed
Ben-Gera H., Shwartz I., Shao M.R., Shani E., Estelle M., Ori N. (2012). ENTIRE and GOBLET promote leaflet development in tomato by modulating auxin response. Plant J. 70: 903–915. PubMed
Berger Y., Harpaz-Saad S., Brand A., Melnik H., Sirding N., Alvarez J.P., Zinder M., Samach A., Eshed Y., Ori N. (2009). The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136: 823–832. PubMed
Bharathan G., Goliber T.E., Moore C., Kessler S., Pham T., Sinha N.R. (2002). Homologies in leaf form inferred from KNOXI gene expression during development. Science 296: 1858–1860. PubMed
Blein T., Hasson A., Laufs P. (2010). Leaf development: what it needs to be complex. Curr. Opin. Plant Biol. 13: 75–82. PubMed
Bolduc N., Hake S. (2009). The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21: 1647–1658. PubMed PMC
Brand A., Shirding N., Shleizer S., Ori N. (2007). Meristem maintenance and compound-leaf patterning utilize common genetic mechanisms in tomato. Planta 226: 941–951. PubMed
Brandstatter I., Kieber J.J. (1998). Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10: 1009–1019. PubMed PMC
Burko Y., Ori N. (2013). The tomato leaf as a model system for organogenesis. Methods Mol. Biol. 959: 1–19. PubMed
Burko Y., Shleizer-Burko S., Yanai O., Shwartz I., Zelnik I.D., Jacob-Hirsch J., Kela I., Eshed-Williams L., Ori N. (2013). A role for APETALA1/fruitfull transcription factors in tomato leaf development. Plant Cell 25: 2070–2083. PubMed PMC
Busch B.L., Schmitz G., Rossmann S., Piron F., Ding J., Bendahmane A., Theres K. (2011). Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. Plant Cell 23: 3595–3609. PubMed PMC
Canales C., Barkoulas M., Galinha C., Tsiantis M. (2010). Weeds of change: Cardamine hirsuta as a new model system for studying dissected leaf development. J. Plant Res. 123: 25–33. PubMed
Coenen C., Lomax T.L. (1998). The diageotropica gene differentially affects auxin and cytokinin responses throughout development in tomato. Plant Physiol. 117: 63–72. PubMed PMC
D’Agostino I.B., Kieber J.J. (1999). Phosphorelay signal transduction: the emerging family of plant response regulators. Trends Biochem. Sci. 24: 452–456. PubMed
Dengler N.G., Tsukaya H. (2001). Leaf morphogenesis in dicotyledons: Current issues. Int. J. Plant Sci. 162: 459–464.
DePristo M.A., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43: 491–498. PubMed PMC
Edgar R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792–1797. PubMed PMC
Efroni I., Blum E., Goldshmidt A., Eshed Y. (2008). A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20: 2293–2306. PubMed PMC
Efroni I., Eshed Y., Lifschitz E. (2010). Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22: 1019–1032. PubMed PMC
Efroni I., Han S.K., Kim H.J., Wu M.F., Steiner E., Birnbaum K.D., Hong J.C., Eshed Y., Wagner D. (2013). Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev. Cell 24: 438–445. PubMed PMC
Fleishon S., Shani E., Ori N., Weiss D. (2011). Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytol. 190: 609–617. PubMed
Hagemann W., Gleissberg S. (1996). Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Syst. Evol. 199: 121–152.
Hake S., Smith H.M., Holtan H., Magnani E., Mele G., Ramirez J. (2004). The role of knox genes in plant development. Annu. Rev. Cell Dev. Biol. 20: 125–151. PubMed
Hareven D., Gutfinger T., Parnis A., Eshed Y., Lifschitz E. (1996). The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84: 735–744. PubMed
Hay A., Kaur H., Phillips A., Hedden P., Hake S., Tsiantis M. (2002). The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr. Biol. 12: 1557–1565. PubMed
Hay A., Tsiantis M. (2006). The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat. Genet. 38: 942–947. PubMed
Hiratsu K., Matsui K., Koyama T., Ohme-Takagi M. (2003). Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34: 733–739. PubMed
Janssen B.J., Lund L., Sinha N. (1998). Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol. 117: 771–786. PubMed PMC
Jasinski S., Kaur H., Tattersall A., Tsiantis M. (2007). Negative regulation of KNOX expression in tomato leaves. Planta 226: 1255–1263. PubMed
Jasinski S., Tattersall A., Piazza P., Hay A., Martinez-Garcia J.F., Schmitz G., Theres K., McCormick S., Tsiantis M. (2008). PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato. Plant J. 56: 603–612. PubMed
Jones D.T., Taylor W.R., Thornton J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8: 275–282. PubMed
Kaplan D.R. (2001). Fundamental concepts of leaf morphology and morphogenesis: a contribution to the interpretation of molecular genetic mutants. Int. J. Plant Sci. 162: 465–474.
Keshishian E.A., Rashotte A.M. (2015). Plant cytokinin signalling. Essays Biochem. 58: 13–27. PubMed
Khush G., Rick C. (1967). Studies on the linkage map of chromosome 4 of the tomato and on the transmission of induced deficiencies. Genetica 38: 74–94.
Kiba T., Aoki K., Sakakibara H., Mizuno T. (2004). Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol. 45: 1063–1077. PubMed
Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14: R36. PubMed PMC
Kimura S., Koenig D., Kang J., Yoong F.Y., Sinha N. (2008). Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr. Biol. 18: 672–677. PubMed
Kumar S., Stecher G., Tamura K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874. PubMed PMC
Lee D.J., Kim S., Ha Y.-M., Kim J. (2008). Phosphorylation of Arabidopsis response regulator 7 (ARR7) at the putative phospho-accepting site is required for ARR7 to act as a negative regulator of cytokinin signaling. Planta 227: 577–587. PubMed
Lifschitz E., Ayre B.G., Eshed Y. (2014). Florigen and anti-florigen - a systemic mechanism for coordinating growth and termination in flowering plants. Front. Plant Sci. 5: 465. PubMed PMC
Lifschitz E., Eviatar T., Rozman A., Shalit A., Goldshmidt A., Amsellem Z., Alvarez J.P., Eshed Y. (2006). The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. USA 103: 6398–6403. PubMed PMC
Luo M., Yu C.W., Chen F.F., Zhao L., Tian G., Liu X., Cui Y., Yang J.Y., Wu K. (2012). Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis. PLoS Genet. 8: e1003114. PubMed PMC
Menda N., Semel Y., Peled D., Eshed Y., Zamir D. (2004). In silico screening of a saturated mutation library of tomato. Plant J. 38: 861–872. PubMed
Moore I., Gälweiler L., Grosskopf D., Schell J., Palme K. (1998). A transcription activation system for regulated gene expression in transgenic plants. Proc. Natl. Acad. Sci. USA 95: 376–381. PubMed PMC
Naz A.A., Raman S., Martinez C.C., Sinha N.R., Schmitz G., Theres K. (2013). Trifoliate encodes an MYB transcription factor that modulates leaf and shoot architecture in tomato. Proc. Natl. Acad. Sci. USA 110: 2401–2406. PubMed PMC
Novák O., Hauserová E., Amakorová P., Dolezal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69: 2214–2224. PubMed
Novák O., Tarkowski P., Tarkowská D., Doležal K., Lenobel R., Strnad M. (2003). Quantitative analysis of cytokinins in plants by liquid chromatography–single-quadrupole mass spectrometry. Anal. Chim. Acta 480: 207–218.
Ori N., et al. (2007). Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat. Genet. 39: 787–791. PubMed
Palatnik J.F., Allen E., Wu X., Schommer C., Schwab R., Carrington J.C., Weigel D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425: 257–263. PubMed
Rast-Somssich M.I., et al. (2015). Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta. Genes Dev. 29: 2391–2404. PubMed PMC
Rittenberg D., Foster G.L. (1940). A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J. Biol. Chem. 133: 737–744.
Rossmann S., Kohlen W., Hasson A., Theres K. (2015). Lateral suppressor and Goblet act in hierarchical order to regulate ectopic meristem formation at the base of tomato leaflets. Plant J. 81: 837–848. PubMed
Sakamoto T., Sakakibara H., Kojima M., Yamamoto Y., Nagasaki H., Inukai Y., Sato Y., Matsuoka M. (2006). Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol. 142: 54–62. PubMed PMC
Scofield S., Dewitte W., Nieuwland J., Murray J.A. (2013). The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity. Plant J. 75: 53–66. PubMed
Shalit A., Rozman A., Goldshmidt A., Alvarez J.P., Bowman J.L., Eshed Y., Lifschitz E. (2009). The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl. Acad. Sci. USA 106: 8392–8397. PubMed PMC
Shani E., Ben-Gera H., Shleizer-Burko S., Burko Y., Weiss D., Ori N. (2010). Cytokinin regulates compound leaf development in tomato. Plant Cell 22: 3206–3217. PubMed PMC
Shani E., Burko Y., Ben-Yaakov L., Berger Y., Amsellem Z., Goldshmidt A., Sharon E., Ori N. (2009). Stage-specific regulation of Solanum lycopersicum leaf maturation by class 1 KNOTTED1-LIKE HOMEOBOX proteins. Plant Cell 21: 3078–3092. PubMed PMC
Shi X., Gupta S., Lindquist I.E., Cameron C.T., Mudge J., Rashotte A.M. (2013). Transcriptome analysis of cytokinin response in tomato leaves. PLoS One 8: e55090. PubMed PMC
Shleizer-Burko S., Burko Y., Ben-Herzel O., Ori N. (2011). Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning. Development 138: 695–704. PubMed
Sluis A., Hake S. (2015). Organogenesis in plants: initiation and elaboration of leaves. Trends Genet. 31: 300–306. PubMed
Steiner E., Efroni I., Gopalraj M., Saathoff K., Tseng T.S., Kieffer M., Eshed Y., Olszewski N., Weiss D. (2012). The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 24: 96–108. PubMed PMC
Steiner E., Livne S., Kobinson-Katz T., Tal L., Pri-Tal O., Mosquna A., Tarkowská D., Muller B., Tarkowski P., Weiss D. (2016). SPINDLY inhibits class I TCP proteolysis to promote sensitivity to cytokinin. Plant Physiol. 171: 1485–1494. PubMed PMC
To J.P., Haberer G., Ferreira F.J., Deruère J., Mason M.G., Schaller G.E., Alonso J.M., Ecker J.R., Kieber J.J. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16: 658–671. PubMed PMC
Van Tuinen A., Peters A.H.L.J., Kendrick R.E., Zeevaart J.A.D., Koornneef M. (1999). Characterisation of the procera mutant of tomato and the interaction of gibberellins with end-of-day far-red light treatments. Physiol. Plant. 106: 121–128.
Wang K., Li M., Hakonarson H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38: e164. PubMed PMC
Yanai O., Shani E., Russ D., Ori N. (2011). Gibberellin partly mediates LANCEOLATE activity in tomato. Plant J. 68: 571–582. PubMed
Zürcher E., Tavor-Deslex D., Lituiev D., Enkerli K., Tarr P.T., Müller B. (2013). A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol. 161: 1066–1075. PubMed PMC