Shielding effect of monovalent and divalent cations on solid-phase DNA hybridization: surface plasmon resonance biosensor study

. 2010 Nov ; 38 (20) : 7343-51. [epub] 20100712

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20624817

Solid-phase hybridization, i.e. the process of recognition between DNA probes immobilized on a solid surface and complementary targets in a solution is a central process in DNA microarray and biosensor technologies. In this work, we investigate the simultaneous effect of monovalent and divalent cations on the hybridization of fully complementary or partly mismatched DNA targets to DNA probes immobilized on the surface of a surface plasmon resonance sensor. Our results demonstrate that the hybridization process is substantially influenced by the cation shielding effect and that this effect differs substantially for solid-phase hybridization, due to the high surface density of negatively charged probes, and hybridization in a solution. In our study divalent magnesium is found to be much more efficient in duplex stabilization than monovalent sodium (15 mM Mg2+ in buffer led to significantly higher hybridization than even 1 M Na+). This trend is opposite to that established for oligonucleotides in a solution. It is also shown that solid-phase duplex destabilization substantially increases with the length of the involved oligonucleotides. Moreover, it is demonstrated that the use of a buffer with the appropriate cation composition can improve the discrimination of complementary and point mismatched DNA targets.

Zobrazit více v PubMed

Levicky R, Horgan A. Physicochemical perspectives on DNA microarray and biosensor technologies. Trends Biotechnol. 2005;23:143–149. PubMed

Mir KU, Southern EM. Sequence variation in genes and genomic DNA: methods for large-scale analysis. Ann. Rev. Genomics Hum. Genet. 2000;1:329–360. PubMed

Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008;108:462–493. PubMed

Zhang L, Wu CL, Carta R, Zhao HT. Free energy of DNA duplex formation on short oligonucleotide microarrays. Nucleic Acids Res. 2007;35:e18. PubMed PMC

Piliarik M, Párova L, Homola J. High-throughput SPR sensor for food safety. Biosens. Bioelectron. 2009;24:1399–1404. PubMed

Fish DJ, Horne MT, Brewood GP, Goodarzi JP, Alemayehu S, Bhandiwad A, Searles RP, Benight AS. DNA multiplex hybridization on microarrays and thermodynamic stability in solution: a direct comparison. Nucleic Acids Res. 2007;35:7197–7208. PubMed PMC

Fotin AV, Drobyshev AL, Proudnikov DY, Perov AN, MIrzabekov AD. Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips. Nucleic Acids Res. 1998;26:1515–1521. PubMed PMC

Gao Y, Wolf LK, Georgiadis RM. Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids Res. 2006;34:3370–3377. PubMed PMC

Yu F, Yao DF, Knoll W. Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS) Nucleic Acids Res. 2004;32:e75. PubMed PMC

Okahata Y, Kawase M, Niikura K, Ohtake F, Furusawa H, Ebara Y. Kinetic measurements of DNA hybridisation an an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Anal. Chem. 1998;70:1288–1296. PubMed

Peterson AW, Heaton RJ, Georgiadis RM. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 2001;29:5163–5168. PubMed PMC

Cho YK, Kim S, Kim YA, Lim HK, Lee K, Yoon DS, Lim G, Pak YE, Ha TH, Kim K. Characterization of DNA immobilization and subsequent hybridization using in situ quartz crystal microbalance, fluorescence spectroscopy, and surface plasmon resonance. J. Colloid Inter. Sci. 2004;278:44–52. PubMed

Vainrub A, Pettitt BM. Coulomb blockage of hybridization in two-dimensional DNA arrays. Phys. Rev. E. 2002;66 art. no. 041905. PubMed

Halperin A, Buhot A, Zhulina EB. Sensitivity, specificity, and the hybridization isotherms of DNA chips. Biophys. J. 2004;86:718–730. PubMed PMC

Breslauer KJ, Frank R, Blocker H, Marky LA. Predicting DNA duplex stability from the base sequence. Proc. Natl Acad. Sci. USA. 1986;83:3746–3750. PubMed PMC

Nakano S, Fujimoto M, Hara H, Sugimoto N. Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res. 1999;27:2957–2965. PubMed PMC

Owczarzy R, Moreira BG, You Y, Behlke MA, Walder JA. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry. 2008;47:5336–5353. PubMed

SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. 3Proc. Natl Acad. Sci. USA. 1998;95:1460–1465. PubMed PMC

SantaLucia J, Allawi HT, Seneviratne A. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry. 1996;35:3555–3562. PubMed

Tan ZJ, Chen SJ. Nucleic acid helix stability: effects of salt concentration, cation valence and size, and chain length. Biophys. J. 2006;90:1175–1190. PubMed PMC

Tan ZJ, Chen SJ. Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. J. Chem. Phys. 2005;122 art. no. 044903. PubMed PMC

Vaisocherová H, Snášel J, Špringer T, Šípová H, Rosenberg I, Štěpánek J, Homola J. Surface plasmon resonance study on HIV-1 integrase strand transfer activity. Anal. Bioanal. Chem. 2009;393:1165–1172. PubMed

Vaisocherová H, Zítová A, Lachmanová M, Štěpánek J, Králíková S, Liboška R, Rejman D, Rosenberg I, Homola J. Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method. Biopolymers. 2006;82:394–398. PubMed

Homola J. Surface Plasmon Resonance Based Sensors. Germany, Berlin: Springer-Verlag; 2006.

Tan ZJ, Chen SJ. RNA helix stability in mixed Na+/Mg2+ solution. Biophys. J. 2007:227A–227A. PubMed PMC

Gong P, Levicky R. DNA surface hybridization regimes. Proc. Natl Acad. Sci. USA. 2008;105:5301–5306. PubMed PMC

Record MT. Effects of Na+ and Mg++ ions on helix-coil transition of DNA. Biopolymers. 1975;14:2137–2158.

Korolev N, Lyubartsev AP, Nordenskiold L. Application of polyelectrolyte theories for analysis of DNA melting in the presence of Na+ and Mg2+ ions. Biophys. J. 1998;75:3041–3056. PubMed PMC

Egli M. DNA-cation interactions: quo vadis? Chem. Biol. 2002;9:277–286. PubMed

Peterson AW, Wolf LK, Georgiadis RM. Hybridization of mismatched or partially matched DNA at surfaces. J. Am. Chem. Soc. 2002;124:14601–14607. PubMed

Misra VK, Draper DE. The interpretation of Mg2+ binding isotherms for nucleic acids using Poisson-Boltzmann theory. J. Mol. Biol. 1999;294:1135–1147. PubMed

Bloomfield VA. DNA condensation by multivalent cations. Biopolymers. 1997;44:269–282. PubMed

Raspaud E, Chaperon I, Leforestier A, Livolant F. Spermine-induced aggregation of DNA, nucleosome, and chromatin. Biophys. J. 1999;77:1547–1555. PubMed PMC

Sarkar T, Conwell CC, Harvey LC, Santai CT, Hud NV. Condensation of oligonucleotides assembled into nicked and gapped duplexes: potential structures for oligonucleotide delivery. Nucleic Acids Res. 2005;33:143–151. PubMed PMC

Rincon E, Jaque P, Toro-Labbe A. Reaction force analysis of the effect of Mg(II) on the 1,3 intramolecular hydrogen transfer in thymine. J. Phys. Chem. A. 2006;110:9478–9485. PubMed

Matveeva OV, Shabalina SA, Nemtsov VA, Tsodikov AD, Gesteland RF, Atkins JF. Thermodynamic calculations and statistical correlations for oligo-probes design. Nucleic Acids Res. 2003;31:4211–4217. PubMed PMC

Ray J, Manning GS. Effect of counterion valence and polymer charge density on the pair potential of two polyions. Macromolecules. 1997;30:5739–5744.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...