Duplex Electrochemical DNA Sensor to Detect Bacillus anthracis CAP and PAG DNA Targets Based on the Incorporation of Tailed Primers and Ferrocene-Labeled dATP
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31891068
PubMed Central
PMC6933787
DOI
10.1021/acsomega.9b02890
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We report the duplex amplification of two plasmid DNA markers involved in the virulence of Bacillus anthracis, CAP and PAG, and the direct electrochemical detection of these amplicons. The method consists of the simultaneous amplification of the two targets in a single-pot reaction via polymerase chain reaction (PCR) using tailed primers and ferrocene-labeled dATP. Following amplification, the PCR products hybridize to probes immobilized on electrodes in a microfabricated electrode array chip. The incorporated ferrocene labeled dATP is then detected using square wave voltammetry. We evaluated the effect of electrolyte cations, anions, and concentration to condense, bend, and shrink double-stranded DNA and their effect on the intensity of the ferrocene signal. We obtained detection limits of 0.8 and 3.4 fM for CAP and PAG targets, respectively. We successfully developed a method to detect the presence of both targets in genomic DNA extracted from real samples.
Friedrich Loeffler Institut Naumburger Str 96a 07743 Jena Germany
Institució Catalana de Recerca i Estudis Avançats Passeig Lluís Companys 23 08010 Barcelona Spain
Zobrazit více v PubMed
WHO . Anthrax in Humans and Animals; World Organisation for Animal Health, 2008; p 219.
Mock M.; Fouet A. Anthrax. Annu. Rev. Microbiol. 2001, 55, 647–671. 10.1146/annurev.micro.55.1.647. PubMed DOI
Rao S. S.; Mohan K. V. K.; Atreya C. D. Detection Technologies for Bacillus Anthracis: Prospects and Challenges. J. Microbiol. Methods 2010, 82, 1–10. 10.1016/j.mimet.2010.04.005. PubMed DOI
Straub T.; Baird C.; Bartholomew R. A.; Colburn H.; Seiner D.; Victry K.; Zhang L.; Bruckner-Lea C. J. Estimated Copy Number of Bacillus Anthracis Plasmids PXO1 and PXO2 Using Digital PCR. J. Microbiol. Methods 2013, 92, 9–10. 10.1016/j.mimet.2012.10.013. PubMed DOI
Manzanares-palenzuela C. L.; Martín-Fernández B.; Sánchez-Paniagua López M.; López-Ruiz B. Trends in Analytical Chemistry Electrochemical Genosensors as Innovative Tools for Detection of Genetically Modified Organisms. Trends Anal. Chem. 2015, 66, 19–31. 10.1016/j.trac.2014.10.006. DOI
Wang J. Towards Genoelectronics: Electrochemical Biosensing of DNA Hybridization. Chem.—Eur. J. 1999, 5, 1681–1685. 10.1002/(sici)1521-3765(19990604)5:6<1681::aid-chem1681>3.0.co;2-u. DOI
Tosar J. P.; Brañas G.; Laíz J. Electrochemical DNA Hybridization Sensors Applied to Real and Complex Biological Samples. Biosens. Bioelectron. 2010, 26, 1205–1217. 10.1016/j.bios.2010.08.053. PubMed DOI
Svobodová M.; Pinto A.; Nadal P.; O’Sullivan C. K. Comparison of Different Methods for Generation of Single-Stranded DNA for SELEX Processes. Anal. Bioanal. Chem. 2012, 404, 835–842. 10.1007/s00216-012-6183-4. PubMed DOI
Jauset-Rubio M.; Svobodová M.; Mairal T.; McNeil C.; Keegan N.; El-Shahawi M. S.; Bashammakh A. S.; Alyoubi A. O.; O’Sullivan C. K. Aptamer Lateral Flow Assays for Ultrasensitive Detection of β-Conglutin Combining Recombinase Polymerase Amplification and Tailed Primers. Anal. Chem. 2016, 88, 10701–10709. 10.1021/acs.analchem.6b03256. PubMed DOI
Jauset-Rubio M.; Svobodová M.; Mairal T.; McNeil C.; Keegan N.; Saeed A.; Abbas M. N.; El-Shahawi M. S.; Bashammakh A. S.; Alyoubi A. O.; et al. Ultrasensitive, Rapid and Inexpensive Detection of DNA Using Paper Based Lateral Flow Assay. Sci. Rep. 2016, 6, 37732.10.1038/srep37732. PubMed DOI PMC
Jauset-Rubio M.; Tomaso H.; El-Shahawi M. S.; Bashammakh A. S.; Al-youbi A. O.; O’Sullivan C. K. Duplex Lateral Flow Assay for the Simultaneous Detection of Yersinia Pestis and Francisella Tularensis. Anal. Chem. 2018, 90, 12745–12751. 10.1021/acs.analchem.8b03105. PubMed DOI
Al-madhagi S.; Joda H.; Jauset-rubio M.; Ortiz M.; Katakis I.; O’Sullivan C. K. Isothermal Amplification Using Modi Fi Ed Primers for Rapid Electrochemical Analysis of Coeliac Disease Associated DQB1*02 HLA Allele. Anal. Biochem. 2018, 556, 16–22. 10.1016/j.ab.2018.06.013. PubMed DOI
Joda H.; Beni V.; Willems A.; Frank R.; Höth J.; Lind K.; Strömbom L.; Katakis I.; O’Sullivan C. K. Modified Primers for Rapid and Direct Electrochemical Analysis of Coeliac Disease Associated HLA Alleles. Biosens. Bioelectron. 2015, 73, 64–70. 10.1016/j.bios.2015.05.048. PubMed DOI
Ferapontova E. E. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. Annu. Rev. Anal. Chem. 2018, 11, 197–218. 10.1146/annurev-anchem-061417-125811. PubMed DOI
Kerman K.; Kobayashi M.; Tamiya E. Recent Trends in Electrochemical DNA Biosensor Technology. Meas. Sci. Technol. 2004, 15, R1–R11. 10.1088/0957-0233/15/2/r01. DOI
Brázdilová P.; Vrábel M.; Pohl R.; Pivoňková H.; Havran L.; Hocek M.; Fojta M. Ferrocenylethynyl Derivatives of Nucleoside Triphosphates: Synthesis, Incorporation, Electrochemistry, and Bioanalytical Applications. Chem.—Eur. J. 2007, 13, 9527–9533. 10.1002/chem.200701249. PubMed DOI
Balintová J.; Pohl R.; Horáková P.; Vidláková P.; Havran L.; Fojta M.; Hocek M. Anthraquinone as a Redox Label for DNA: Synthesis, Enzymatic Incorporation, and Electrochemistry of Anthraquinone-Modified Nucleosides, Nucleotides, and DNA. Chem.—Eur. J. 2011, 17, 14063–14073. 10.1002/chem.201101883. PubMed DOI
Balintová J.; Plucnara M.; Vidláková P.; Pohl R.; Havran L.; Fojta M.; Hocek M. Benzofurazane as a New Redox Label for Electrochemical Detection of DNA: Towards Multipotential Redox Coding of DNA Bases. Chem.—Eur. J. 2013, 19, 12720–12731. 10.1002/chem.201301868. PubMed DOI
Ortiz M.; Debela A. M.; Svobodova M.; Thorimbert S.; Lesage D.; Cole R. B.; Hasenknopf B.; O’Sullivan C. K. PCR Incorporation of Polyoxometalate Modified Deoxynucleotide Triphosphates and Their Application in Molecular Electrochemical Sensing of Yersinia Pestis. Chem.—Eur. J. 2017, 23, 10597–10603. 10.1002/chem.201701295. PubMed DOI
Wlassoff W. A.; King G. C. Ferrocene Conjugates of DUTP for Enzymatic Redox Labelling of DNA. Nucleic Acids Res. 2002, 30, e5810.1093/nar/gnf058. PubMed DOI PMC
Kielkowski P.; Fanfrlík J.; Hocek M. 7-Aryl-7-Deazaadenine 2′-Deoxyribonucleoside Triphosphates (DNTPs): Better Substrates for DNA Polymerases than DATP in Competitive Incorporations. Angew. Chem., Int. Ed. 2014, 53, 7552–7555. 10.1002/anie.201404742. PubMed DOI
Magriñá I.; Toldrà A.; Campàs M.; Ortiz M.; Simonova A.; Katakis I.; Hocek M.; O’Sullivan C. K. Electrochemical Genosensor for the Direct Detection of Tailed PCR Amplicons Incorporating Ferrocene Labelled DATP. Biosens. Bioelectron. 2019, 134, 76–82. 10.1016/j.bios.2019.03.060. PubMed DOI
Zhu Z.; Waggoner A. S. Molecular Mechanism Controlling the Incorporation of Fluorescent Nucleotides into DNA by PCR. Cytometry 1997, 28, 206–211. 10.1002/(sici)1097-0320(19970701)28:3<206::aid-cyto4>3.0.co;2-b. PubMed DOI
Tongu C.; Kenmotsu T.; Yoshikawa Y.; Zinchenko A. A.; Chen N.; Yoshikawa K.. Competitive Effects of 2 + and 3 + Cations on DNA Compaction. 1–15. 2016. PubMed
Rouzina I.; Bloomfield V. A. DNA Bending by Small, Mobile Multivalent Cations. Biophys. J. 1998, 74, 3152–3164. 10.1016/s0006-3495(98)78021-x. PubMed DOI PMC
Špringer T.; Sípová H.; Vaisocherová H.; Stepánek J.; Homola J. Shielding Effect of Monovalent and Divalent Cations on Solid-Phase DNA Hybridization: Surface Plasmon Resonance Biosensor Study. Nucleic Acids Res. 2010, 38, 7343–7351. 10.1093/nar/gkq577. PubMed DOI PMC
Auffinger P.; Bielecki L.; Westhof E. Anion Binding to Nucleic Acids. Structure 2004, 12, 379–388. 10.1016/j.str.2004.02.015. PubMed DOI
Volokhov D.; Pomerantsev A.; Kivovich V.; Rasooly A.; Chizhikov V. Identification of Bacillus Anthracis by Multiprobe Microarray Hybridization. Diagn. Microbiol. Infect. Dis. 2004, 49, 163–171. 10.1016/j.diagmicrobio.2004.03.015. PubMed DOI
Olsen J. S.; Skogan G.; Fykse E. M.; Rawlinson E. L.; Tomaso H.; Granum P. E.; Blatny J. M. Genetic Distribution of 295 Bacillus Cereus Group Members Based on Adk-Screening in Combination with MLST (Multilocus Sequence Typing) Used for Validating a Primer Targeting a Chromosomal Locus in B. Anthracis. J. Microbiol. Methods 2007, 71, 265–274. 10.1016/j.mimet.2007.10.001. PubMed DOI
Hurtle W.; Bode E.; Kulesh D. A.; Kaplan R. S.; Garrison J.; Bridge D.; House M.; Frye M. S.; Loveless B.; Norwood D. Detection of the Bacillus Anthracis GyrA Gene by Using a Minor Groove Binder Probe. J. Clin. Microbiol. 2004, 42, 179–185. 10.1128/jcm.42.1.179-185.2004. PubMed DOI PMC
Almeida J. L.; Harper B.; Cole K. D. Bacillus Anthracis Spore Suspensions: Determination of Stability and Comparison of Enumeration Techniques. J. Appl. Microbiol. 2008, 104, 1442–1448. 10.1111/j.1365-2672.2007.03684.x. PubMed DOI
Gierczyński R.; Zasada A. A.; Raddadi N.; Merabishvili M.; Daffonchio D.; Rastawicki W.; Jagielski M. Specific Bacillus Anthracis Identification by a PlcR-Targeted Restriction Site Insertion-PCR (RSI-PCR) Assay. FEMS Microbiol. Lett. 2007, 272, 55–59. 10.1111/j.1574-6968.2007.00741.x. PubMed DOI
Cherif A.; Borin S.; Rizzi A.; Ouzari H.; Boudabous A.; Daffonchio D. Characterization of a Repetitive Element Polymorphism-Polymerase Chain Reaction Chromosomal Marker That Discriminates Bacillus Anthracis from Related Species. J. Appl. Microbiol. 2002, 93, 456–462. 10.1046/j.1365-2672.2002.01712.x. PubMed DOI
Jackson P. J.; Walthers E. A.; Kalif A. S.; Richmond K. L.; Adair D. M.; Hill K. K.; Kuske C. R.; Andersen G. L.; Wilson K. H.; Hugh-Jones M. E.; et al. Characterization of the Variable-Number Tandem Repeats in VrrA from Different Bacillus Anthracis Isolates. Appl. Environ. Microbiol. 1997, 63, 1400–1405. PubMed PMC
Das R.; Goel A. K.; Sharma M. K.; Upadhyay S. Electrochemical DNA Sensor for Anthrax Toxin Activator Gene AtxA-Detection of PCR Amplicons. Biosens. Bioelectron. 2015, 74, 939–946. 10.1016/j.bios.2015.07.066. PubMed DOI
Bentahir M.; Ambroise J.; Delcorps C.; Pilo P.; Gala J.-L. Sensitive and Specific Recombinase Polymerase Amplification Assays for Fast Screening, Detection, and Identification of Bacillus Anthracis in a Field Setting. Appl. Environ. Microbiol. 2018, 84, e0050610.1128/aem.00506-18. PubMed DOI PMC
Matero P.; Hemmilä H.; Tomaso H.; Piiparinen H.; Rantakokko-Jalava K.; Nuotio L.; Nikkari S. Rapid Field Detection Assays for Bacillus Anthracis, Brucella Spp., Francisella Tularensis and Yersinia Pestis. Clin. Microbiol. Infect. 2011, 17, 34–43. 10.1111/j.1469-0691.2010.03178.x. PubMed DOI
Skottman T.; Piiparinen H.; Hyytiäinen H.; Myllys V.; Skurnik M.; Nikkari S. Simultaneous Real-Time PCR Detection of Bacillus Anthracis , Francisella Tularensis and Yersinia Pestis. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 26, 207–211. 10.1007/s10096-007-0262-z. PubMed DOI
del Río J. S.; Svobodova M.; Bustos P.; Conejeros P.; O’Sullivan C. K. Electrochemical Detection of Piscirickettsia Salmonis Genomic DNA from Salmon Samples Using Solid-Phase Recombinase Polymerase Amplification. Anal. Bioanal. Chem. 2016, 408, 8611–8620. 10.1007/s00216-016-9639-0. PubMed DOI