Duplex Electrochemical DNA Sensor to Detect Bacillus anthracis CAP and PAG DNA Targets Based on the Incorporation of Tailed Primers and Ferrocene-Labeled dATP

. 2019 Dec 24 ; 4 (26) : 21900-21908. [epub] 20191211

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31891068

We report the duplex amplification of two plasmid DNA markers involved in the virulence of Bacillus anthracis, CAP and PAG, and the direct electrochemical detection of these amplicons. The method consists of the simultaneous amplification of the two targets in a single-pot reaction via polymerase chain reaction (PCR) using tailed primers and ferrocene-labeled dATP. Following amplification, the PCR products hybridize to probes immobilized on electrodes in a microfabricated electrode array chip. The incorporated ferrocene labeled dATP is then detected using square wave voltammetry. We evaluated the effect of electrolyte cations, anions, and concentration to condense, bend, and shrink double-stranded DNA and their effect on the intensity of the ferrocene signal. We obtained detection limits of 0.8 and 3.4 fM for CAP and PAG targets, respectively. We successfully developed a method to detect the presence of both targets in genomic DNA extracted from real samples.

Zobrazit více v PubMed

WHO . Anthrax in Humans and Animals; World Organisation for Animal Health, 2008; p 219.

Mock M.; Fouet A. Anthrax. Annu. Rev. Microbiol. 2001, 55, 647–671. 10.1146/annurev.micro.55.1.647. PubMed DOI

Rao S. S.; Mohan K. V. K.; Atreya C. D. Detection Technologies for Bacillus Anthracis: Prospects and Challenges. J. Microbiol. Methods 2010, 82, 1–10. 10.1016/j.mimet.2010.04.005. PubMed DOI

Straub T.; Baird C.; Bartholomew R. A.; Colburn H.; Seiner D.; Victry K.; Zhang L.; Bruckner-Lea C. J. Estimated Copy Number of Bacillus Anthracis Plasmids PXO1 and PXO2 Using Digital PCR. J. Microbiol. Methods 2013, 92, 9–10. 10.1016/j.mimet.2012.10.013. PubMed DOI

Manzanares-palenzuela C. L.; Martín-Fernández B.; Sánchez-Paniagua López M.; López-Ruiz B. Trends in Analytical Chemistry Electrochemical Genosensors as Innovative Tools for Detection of Genetically Modified Organisms. Trends Anal. Chem. 2015, 66, 19–31. 10.1016/j.trac.2014.10.006. DOI

Wang J. Towards Genoelectronics: Electrochemical Biosensing of DNA Hybridization. Chem.—Eur. J. 1999, 5, 1681–1685. 10.1002/(sici)1521-3765(19990604)5:6<1681::aid-chem1681>3.0.co;2-u. DOI

Tosar J. P.; Brañas G.; Laíz J. Electrochemical DNA Hybridization Sensors Applied to Real and Complex Biological Samples. Biosens. Bioelectron. 2010, 26, 1205–1217. 10.1016/j.bios.2010.08.053. PubMed DOI

Svobodová M.; Pinto A.; Nadal P.; O’Sullivan C. K. Comparison of Different Methods for Generation of Single-Stranded DNA for SELEX Processes. Anal. Bioanal. Chem. 2012, 404, 835–842. 10.1007/s00216-012-6183-4. PubMed DOI

Jauset-Rubio M.; Svobodová M.; Mairal T.; McNeil C.; Keegan N.; El-Shahawi M. S.; Bashammakh A. S.; Alyoubi A. O.; O’Sullivan C. K. Aptamer Lateral Flow Assays for Ultrasensitive Detection of β-Conglutin Combining Recombinase Polymerase Amplification and Tailed Primers. Anal. Chem. 2016, 88, 10701–10709. 10.1021/acs.analchem.6b03256. PubMed DOI

Jauset-Rubio M.; Svobodová M.; Mairal T.; McNeil C.; Keegan N.; Saeed A.; Abbas M. N.; El-Shahawi M. S.; Bashammakh A. S.; Alyoubi A. O.; et al. Ultrasensitive, Rapid and Inexpensive Detection of DNA Using Paper Based Lateral Flow Assay. Sci. Rep. 2016, 6, 37732.10.1038/srep37732. PubMed DOI PMC

Jauset-Rubio M.; Tomaso H.; El-Shahawi M. S.; Bashammakh A. S.; Al-youbi A. O.; O’Sullivan C. K. Duplex Lateral Flow Assay for the Simultaneous Detection of Yersinia Pestis and Francisella Tularensis. Anal. Chem. 2018, 90, 12745–12751. 10.1021/acs.analchem.8b03105. PubMed DOI

Al-madhagi S.; Joda H.; Jauset-rubio M.; Ortiz M.; Katakis I.; O’Sullivan C. K. Isothermal Amplification Using Modi Fi Ed Primers for Rapid Electrochemical Analysis of Coeliac Disease Associated DQB1*02 HLA Allele. Anal. Biochem. 2018, 556, 16–22. 10.1016/j.ab.2018.06.013. PubMed DOI

Joda H.; Beni V.; Willems A.; Frank R.; Höth J.; Lind K.; Strömbom L.; Katakis I.; O’Sullivan C. K. Modified Primers for Rapid and Direct Electrochemical Analysis of Coeliac Disease Associated HLA Alleles. Biosens. Bioelectron. 2015, 73, 64–70. 10.1016/j.bios.2015.05.048. PubMed DOI

Ferapontova E. E. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. Annu. Rev. Anal. Chem. 2018, 11, 197–218. 10.1146/annurev-anchem-061417-125811. PubMed DOI

Kerman K.; Kobayashi M.; Tamiya E. Recent Trends in Electrochemical DNA Biosensor Technology. Meas. Sci. Technol. 2004, 15, R1–R11. 10.1088/0957-0233/15/2/r01. DOI

Brázdilová P.; Vrábel M.; Pohl R.; Pivoňková H.; Havran L.; Hocek M.; Fojta M. Ferrocenylethynyl Derivatives of Nucleoside Triphosphates: Synthesis, Incorporation, Electrochemistry, and Bioanalytical Applications. Chem.—Eur. J. 2007, 13, 9527–9533. 10.1002/chem.200701249. PubMed DOI

Balintová J.; Pohl R.; Horáková P.; Vidláková P.; Havran L.; Fojta M.; Hocek M. Anthraquinone as a Redox Label for DNA: Synthesis, Enzymatic Incorporation, and Electrochemistry of Anthraquinone-Modified Nucleosides, Nucleotides, and DNA. Chem.—Eur. J. 2011, 17, 14063–14073. 10.1002/chem.201101883. PubMed DOI

Balintová J.; Plucnara M.; Vidláková P.; Pohl R.; Havran L.; Fojta M.; Hocek M. Benzofurazane as a New Redox Label for Electrochemical Detection of DNA: Towards Multipotential Redox Coding of DNA Bases. Chem.—Eur. J. 2013, 19, 12720–12731. 10.1002/chem.201301868. PubMed DOI

Ortiz M.; Debela A. M.; Svobodova M.; Thorimbert S.; Lesage D.; Cole R. B.; Hasenknopf B.; O’Sullivan C. K. PCR Incorporation of Polyoxometalate Modified Deoxynucleotide Triphosphates and Their Application in Molecular Electrochemical Sensing of Yersinia Pestis. Chem.—Eur. J. 2017, 23, 10597–10603. 10.1002/chem.201701295. PubMed DOI

Wlassoff W. A.; King G. C. Ferrocene Conjugates of DUTP for Enzymatic Redox Labelling of DNA. Nucleic Acids Res. 2002, 30, e5810.1093/nar/gnf058. PubMed DOI PMC

Kielkowski P.; Fanfrlík J.; Hocek M. 7-Aryl-7-Deazaadenine 2′-Deoxyribonucleoside Triphosphates (DNTPs): Better Substrates for DNA Polymerases than DATP in Competitive Incorporations. Angew. Chem., Int. Ed. 2014, 53, 7552–7555. 10.1002/anie.201404742. PubMed DOI

Magriñá I.; Toldrà A.; Campàs M.; Ortiz M.; Simonova A.; Katakis I.; Hocek M.; O’Sullivan C. K. Electrochemical Genosensor for the Direct Detection of Tailed PCR Amplicons Incorporating Ferrocene Labelled DATP. Biosens. Bioelectron. 2019, 134, 76–82. 10.1016/j.bios.2019.03.060. PubMed DOI

Zhu Z.; Waggoner A. S. Molecular Mechanism Controlling the Incorporation of Fluorescent Nucleotides into DNA by PCR. Cytometry 1997, 28, 206–211. 10.1002/(sici)1097-0320(19970701)28:3<206::aid-cyto4>3.0.co;2-b. PubMed DOI

Tongu C.; Kenmotsu T.; Yoshikawa Y.; Zinchenko A. A.; Chen N.; Yoshikawa K.. Competitive Effects of 2 + and 3 + Cations on DNA Compaction. 1–15. 2016. PubMed

Rouzina I.; Bloomfield V. A. DNA Bending by Small, Mobile Multivalent Cations. Biophys. J. 1998, 74, 3152–3164. 10.1016/s0006-3495(98)78021-x. PubMed DOI PMC

Špringer T.; Sípová H.; Vaisocherová H.; Stepánek J.; Homola J. Shielding Effect of Monovalent and Divalent Cations on Solid-Phase DNA Hybridization: Surface Plasmon Resonance Biosensor Study. Nucleic Acids Res. 2010, 38, 7343–7351. 10.1093/nar/gkq577. PubMed DOI PMC

Auffinger P.; Bielecki L.; Westhof E. Anion Binding to Nucleic Acids. Structure 2004, 12, 379–388. 10.1016/j.str.2004.02.015. PubMed DOI

Volokhov D.; Pomerantsev A.; Kivovich V.; Rasooly A.; Chizhikov V. Identification of Bacillus Anthracis by Multiprobe Microarray Hybridization. Diagn. Microbiol. Infect. Dis. 2004, 49, 163–171. 10.1016/j.diagmicrobio.2004.03.015. PubMed DOI

Olsen J. S.; Skogan G.; Fykse E. M.; Rawlinson E. L.; Tomaso H.; Granum P. E.; Blatny J. M. Genetic Distribution of 295 Bacillus Cereus Group Members Based on Adk-Screening in Combination with MLST (Multilocus Sequence Typing) Used for Validating a Primer Targeting a Chromosomal Locus in B. Anthracis. J. Microbiol. Methods 2007, 71, 265–274. 10.1016/j.mimet.2007.10.001. PubMed DOI

Hurtle W.; Bode E.; Kulesh D. A.; Kaplan R. S.; Garrison J.; Bridge D.; House M.; Frye M. S.; Loveless B.; Norwood D. Detection of the Bacillus Anthracis GyrA Gene by Using a Minor Groove Binder Probe. J. Clin. Microbiol. 2004, 42, 179–185. 10.1128/jcm.42.1.179-185.2004. PubMed DOI PMC

Almeida J. L.; Harper B.; Cole K. D. Bacillus Anthracis Spore Suspensions: Determination of Stability and Comparison of Enumeration Techniques. J. Appl. Microbiol. 2008, 104, 1442–1448. 10.1111/j.1365-2672.2007.03684.x. PubMed DOI

Gierczyński R.; Zasada A. A.; Raddadi N.; Merabishvili M.; Daffonchio D.; Rastawicki W.; Jagielski M. Specific Bacillus Anthracis Identification by a PlcR-Targeted Restriction Site Insertion-PCR (RSI-PCR) Assay. FEMS Microbiol. Lett. 2007, 272, 55–59. 10.1111/j.1574-6968.2007.00741.x. PubMed DOI

Cherif A.; Borin S.; Rizzi A.; Ouzari H.; Boudabous A.; Daffonchio D. Characterization of a Repetitive Element Polymorphism-Polymerase Chain Reaction Chromosomal Marker That Discriminates Bacillus Anthracis from Related Species. J. Appl. Microbiol. 2002, 93, 456–462. 10.1046/j.1365-2672.2002.01712.x. PubMed DOI

Jackson P. J.; Walthers E. A.; Kalif A. S.; Richmond K. L.; Adair D. M.; Hill K. K.; Kuske C. R.; Andersen G. L.; Wilson K. H.; Hugh-Jones M. E.; et al. Characterization of the Variable-Number Tandem Repeats in VrrA from Different Bacillus Anthracis Isolates. Appl. Environ. Microbiol. 1997, 63, 1400–1405. PubMed PMC

Das R.; Goel A. K.; Sharma M. K.; Upadhyay S. Electrochemical DNA Sensor for Anthrax Toxin Activator Gene AtxA-Detection of PCR Amplicons. Biosens. Bioelectron. 2015, 74, 939–946. 10.1016/j.bios.2015.07.066. PubMed DOI

Bentahir M.; Ambroise J.; Delcorps C.; Pilo P.; Gala J.-L. Sensitive and Specific Recombinase Polymerase Amplification Assays for Fast Screening, Detection, and Identification of Bacillus Anthracis in a Field Setting. Appl. Environ. Microbiol. 2018, 84, e0050610.1128/aem.00506-18. PubMed DOI PMC

Matero P.; Hemmilä H.; Tomaso H.; Piiparinen H.; Rantakokko-Jalava K.; Nuotio L.; Nikkari S. Rapid Field Detection Assays for Bacillus Anthracis, Brucella Spp., Francisella Tularensis and Yersinia Pestis. Clin. Microbiol. Infect. 2011, 17, 34–43. 10.1111/j.1469-0691.2010.03178.x. PubMed DOI

Skottman T.; Piiparinen H.; Hyytiäinen H.; Myllys V.; Skurnik M.; Nikkari S. Simultaneous Real-Time PCR Detection of Bacillus Anthracis , Francisella Tularensis and Yersinia Pestis. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 26, 207–211. 10.1007/s10096-007-0262-z. PubMed DOI

del Río J. S.; Svobodova M.; Bustos P.; Conejeros P.; O’Sullivan C. K. Electrochemical Detection of Piscirickettsia Salmonis Genomic DNA from Salmon Samples Using Solid-Phase Recombinase Polymerase Amplification. Anal. Bioanal. Chem. 2016, 408, 8611–8620. 10.1007/s00216-016-9639-0. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...