Ferrocene-Containing DNA Monolayers: Influence of Electrostatics on the Electron Transfer Dynamics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33705153
PubMed Central
PMC8819689
DOI
10.1021/acs.langmuir.0c03485
Knihovny.cz E-zdroje
- MeSH
- DNA * genetika MeSH
- elektrody MeSH
- elektrony * MeSH
- metaloceny MeSH
- statická elektřina MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA * MeSH
- metaloceny MeSH
A 153-mer target DNA was amplified using ethynyl ferrocene dATP and a tailed forward primer resulting in a duplex with a single-stranded DNA tail for hybridization to a surface-tethered probe. A thiolated probe containing the sequence complementary to the tail as well as a 15 polythimine vertical spacer with a (CH2)6 spacer was immobilized on the surface of a gold electrode and hybridized to the ferrocene-modified complementary strand. Potential step chronoamperometry and cyclic voltammetry were used to probe the potential of zero charge, PZC, and the rate of heterogeneous electron transfer between the electrode and the immobilized ferrocene moieties. Chronoamperometry gives three, well-resolved exponential current-time decays corresponding to ferrocene centers located within 13 Å (4 bases) along the duplex. Significantly, the apparent standard heterogeneous electron transfer rate constant, kappo, observed depends on the initial potential, i.e., the rate of electron transfer at zero driving force is not the same for oxidation and reduction of the ferrocene labels. Moreover, the presence of ions, such as Sr2+, that strongly ion pair with the negatively charged DNA backbone modulates the electron transfer rate significantly. Specifically, kappo = 246 ± 23.5 and 14 ± 1.2 s-1 for reduction and oxidation, respectively, where the Sr2+ concentration is 10 mM, but the corresponding values in 1 M Sr2+ are 8 ± 0.8 and 150 ± 12 s-1. While other factors may be involved, these results are consistent with a model in which a low Sr2+ concentration and an initial potential that is negative of the PZC lead to electrostatic repulsion of the negatively charged DNA backbone and the negatively charged electrode. This leads to the DNA adopting an extended configuration (concertina open), resulting in a slow rate of heterogeneous electron transfer. In contrast, for ferrocene reduction, the initial potential is positive of PZC and the negatively charged DNA is electrostatically attracted to the electrode (concertina closed), giving a shorter electron transfer distance and a higher rate of heterogeneous electron transfer. When the Sr2+ concentration is high, the charge on the DNA backbone is compensated by the electrolyte and the charge on the electrode dominates the electron transfer dynamics and the opposite potential dependence is observed. These results open up the possibility of electromechanical switching using DNA superstructures.
Zobrazit více v PubMed
Zhai J.; Hong C.; Ruifu Y. DNA based biosensors. Biotechnol. Adv. 1997, 15, 43–58. 10.1016/S0734-9750(97)00003-7. PubMed DOI
Liu D.; Cheng E.; Yang Z. DNA-based switchable devices and materials. NPG Asia Mater. 2011, 3, 109–114. 10.1038/asiamat.2011.147. DOI
Liu D.; Balasubramanian S. A Proton-Fuelled DNA Nanomachine. Angew. Chem., Int. Ed. 2003, 42, 5734–5736. 10.1002/anie.200352402. PubMed DOI
Wang S.; et al. Enthalpy-Driven Three-State Switching of a Superhydrophilic/Superhydrophobic Surface. Angew. Chem., Int. Ed. 2007, 3915–3917. 10.1002/anie.200700439. PubMed DOI
Mao Y.; Liu D.; Wang S.; Luo S.; Wang W.; Yang Y.; Ouyang Q.; Jiang L. Alternating-electric-field-enhanced reversible switching of DNA nanocontainers with pH. Nucleic Acids Res. 2007, 35, e3310.1093/nar/gkl1161. PubMed DOI PMC
Xia F.; Guo W.; Mao Y.; Hou X.; Xue J.; Xia H.; Wang L.; Song Y.; Ji H.; Ouyang Q.; Wang Y.; Jiang L. Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. J. Am. Chem. Soc. 2008, 8345–8350. 10.1021/ja800266p. PubMed DOI
Macdonald C. J.; Abdelhamid M. A. S.; Waller A. E.; Cheesman R.; Gates A. J.; Waller Z. A. E. Redox-dependent control of i-Motif DNA structure using copper cations. Nucleic Acids Res. 2018, 46, 5886–5893. 10.1093/nar/gky390. PubMed DOI PMC
Day H. A.; Huguin C.; Waller Z. A. E. Silver cations fold i-motif at neutral pH. Chem. Commun. 2013, 49, 7696–7698. 10.1039/c3cc43495h. PubMed DOI
Wang Z. G.; Elbaz J.; Willner I. DNA machines: Bipedal walker and stepper. Nano Lett. 2011, 11, 304–309. 10.1021/nl104088s. PubMed DOI
Rouzina I.; Bloomfield V. A. DNA bending by small, mobile multivalent cations. Biophys. J. 1998, 74, 3152–3164. 10.1016/S0006-3495(98)78021-X. PubMed DOI PMC
Samanta D.; Iscen A.; Laramy C. R.; Ebrahimi S. B.; Bujold K. E.; Schatz G. C.; Mirkin C. A. Multivalent Cation-Induced Actuation of DNA-Mediated Colloidal Superlattices. J. Am. Chem. Soc. 2019, 141, 19973–19977. 10.1021/jacs.9b09900. PubMed DOI PMC
Kelley S. O.; Barton J. K.; Jackson N. M.; McPherson L. D.; Potter A. B.; Spain E. M.; Allen M. J.; Hill M. G. Orienting DNA helices on gold using applied electric fields. Langmuir 1998, 14, 6781–6784. 10.1021/la980874n. DOI
Brázdilová P.; Vrábel M.; Pohl R.; Pivoňková H.; Havran L.; Hocek M.; Fojta M. Ferrocenylethynyl derivatives of nucleoside triphosphates: Synthesis, incorporation, electrochemistry, and bioanalytical applications. Chem. - Eur. J. 2007, 13, 9527–9533. 10.1002/chem.200701249. PubMed DOI
Magriñá I.; Toldrà A.; Campàs M.; Ortiz M.; Simonova A.; Katakis I.; Hocek M.; O’Sullivan C. K. Electrochemical genosensor for the direct detection of tailed PCR amplicons incorporating ferrocene labelled dATP. Biosens. Bioelectron. 2019, 134, 76–82. 10.1016/j.bios.2019.03.060. PubMed DOI
Kelley S. O.; Barton J. K.; Jackson N. M.; Hill M. G. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjugate Chem. 1997, 8, 31–37. 10.1021/bc960070o. PubMed DOI
Kelley S. O.; Boon E. M.; Barton J. K.; Jackson N. M.; Hill M. G. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 1999, 27, 4830–4837. 10.1093/nar/27.24.4830. PubMed DOI PMC
Gorodetsky A. A.; Green O.; Yavin E.; Barton J. K. Coupling into the base pair stack is necessary for DNA-mediated electrochemistry. Bioconjugate Chem. 2007, 18, 1434–1441. 10.1021/bc0700483. PubMed DOI
Slinker J. D.; Muren N. B.; Renfrew S. E.; Barton J. K. DNA charge transport over 34 nm. Nat. Chem. 2011, 3, 228–233. 10.1038/nchem.982. PubMed DOI PMC
Abi A.; Ferapontova E. E. Unmeadiated by DNA electron transfer in redox-labeled DNA duplexes end-tethered to gold electrode. J. Am. Chem. Soc. 2012, 134, 14499–14507. 10.1021/ja304864w. PubMed DOI
Xiao Y.; Qu X.; Plaxco K. W.; Heeger A. J. Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. J. Am. Chem. Soc. 2007, 129, 11896–11897. 10.1021/ja074218y. PubMed DOI
Anne A.; Bouchardon A.; Moiroux J. 3′-ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces: Novel model systems for exploring flexibility of short DNA using cyclic voltammetry. J. Am. Chem. Soc. 2003, 125, 1112–1113. 10.1021/ja028640k. PubMed DOI
Anne A.; Demaille C. Electron transport by molecular motion of redox-DNA strands: Unexpectedly slow rotational dynamics of 20-mer ds-DNA chains end-grafted onto surfaces via C6 linkers. J. Am. Chem. Soc. 2008, 130, 9812–9823. 10.1021/ja801074m. PubMed DOI
Rant U.; Arinaga K.; Fujita S.; Yokoyama N.; Abstreiter G.; Tornow M. Electrical manipulation of oligonucleotides grafted to charged surfaces. Org. Biomol. Chem. 2006, 4, 3448–3455. 10.1039/b605712h. PubMed DOI
Rant U. Sensing with electro-switchable biosurfaces. Bioanal. Rev. 2012, 4, 97–114. 10.1007/s12566-012-0030-0. DOI
Rant U.; Arinaga K.; Fujita S.; Yokoyama N.; Abstreiter G.; Tornow M. Dynamic electrical switching of DNA layers on a metal surface. Nano Lett. 2004, 4, 2441–2445. 10.1021/nl0484494. DOI
Gelbart W. M.; Bruinsma R. F.; Pincus P. A.; Adrian Parsegian V. DNA-inspired electrostatics. Phys. Today 2000, 53, 38–44. 10.1063/1.1325230. DOI
Guéroult M.; Boittin O.; Mauffret O.; Etchebest C.; Hartmann B. Mg2+ in the major groove modulates b-dna structure and dynamics. PLoS One 2012, 7, e4170410.1371/journal.pone.0041704. PubMed DOI PMC
Zwang T. J.; Hürlimann S.; Hil M. G.; Barton J. K. Helix-Dependent Spin Filtering through the DNA Duplex. J. Am. Chem. Soc. 2016, 138, 15551–15554. 10.1021/jacs.6b10538. PubMed DOI PMC
Chiu T. K.; Dickerson R. E. 1 Å crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. J. Mol. Biol. 2000, 301, 915–945. 10.1006/jmbi.2000.4012. PubMed DOI
Ahmad R.; Arakawa H.; Tajmir-Riahi H. A. A comparative study of DNA complexation with Mg(II) and Ca(II) in aqueous solution: Major and minor grooves bindings. Biophys. J. 2003, 84, 2460–2466. 10.1016/S0006-3495(03)75050-4. PubMed DOI PMC
Magriñá I.; Jauset-Rubio M.; Ortiz M.; Tomaso H.; Simonova A.; Hocek M.; O’Sullivan C. K. Duplex Electrochemical DNA Sensor to Detect Bacillus anthracis CAP and PAG DNA Targets Based on the Incorporation of Tailed Primers and Ferrocene-Labeled dATP. ACS Omega 2019, 4, 21900–21908. 10.1021/acsomega.9b02890. PubMed DOI PMC
Rant U.; Arinaga K.; Scherer S.; Pringsheim E.; Fujita S.; Yokoyama N.; Tornow M.; Abstreiter G. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17364–17369. 10.1073/pnas.0703974104. PubMed DOI PMC
Henry O. Y. F.; Perez J. G.; Sanchez J. L. A.; O’Sullivan C. K. Electrochemcial characterisation and hybridisation efficiency of co-assembled monolayers of PEGylated ssDNA and mercaptohexanol on planar gold electrodes. Biosens. Bioelectron. 2010, 25, 978–983. 10.1016/j.bios.2009.09.007. PubMed DOI
Ohshima H.; Ohki S. Donnan Potential and Surface Potential of a Charged Membrane. Biophys. J. 1985, 47, 673–678. 10.1016/S0006-3495(85)83963-1. PubMed DOI PMC
Nielson R. M.; McManis G. E.; Safford L. K.; Weaver M. J. Solvent and electrolyte effects on the kinetics of ferrocenium-ferrocene self-exchange: A reevaluation. J. Phys. Chem. A 1989, 93, 2152–2157. 10.1021/j100342a086. DOI
Ju H.; Leech D. Effect of electrolytes on the electrochemical behaviour of 11- (ferrocenylcarbonyloxy)undecanethiol SAMs on gold disk electrodes. Phys. Chem. Chem. Phys. 1999, 1, 1549–1554. 10.1039/a809754b. DOI
Haymond S.; Babcock G. T.; Swain G. M. Electron transfer kinetics of ferrocene at microcrystalline boron-doped diamond electrodes: Effect of solvent and electrolyte. Electroanalysis 2003, 15, 249–253. 10.1002/elan.200390031. DOI
Eckermann A. L.; Feld D. J.; Shaw J. A.; Meade T. J. Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 2010, 254, 1769–1802. 10.1016/j.ccr.2009.12.023. PubMed DOI PMC
Mirčeski V.; Tomovski Ž. Modeling of a voltammetric experiment in a limiting diffusion space. J. Solid State Electrochem. 2011, 15, 197–204. 10.1007/s10008-010-1090-0. DOI
Smith C. P.; White H. S. Voltammetry of Molecular Films Containing Acid/Base Groups. Langmuir 1993, 9, 1–3. 10.1021/la00025a001. DOI
Ramírez P.; Andreu R.; Cuesta A.; Mulder W. H.; Calvente J. J. Potential of zero charge of Au (111) modified with ω -mercaptoalkanoic acid monolayers. Anal. Chem. 2007, 79, 6473–6479. 10.1021/ac071341z. PubMed DOI
Bard A. J.; Faulkner L.. Electrochemical methods: Fundamental Applications; Wiley & Sons Inc., 2001.
Long Y. T.; Li C. Z.; Sutherland T. C.; Chahma M.; Lee J. S.; Kraatz H. B. A comparison of electron-transfer rates of ferrocenoyl-linked DNA. J. Am. Chem. Soc. 2003, 125, 8724–8725. 10.1021/ja034684x. PubMed DOI
Leung K. K.; Martens I.; Yu H. Z.; Bizzotto D. Measuring and Controlling the Local Environment of Surface-Bound DNA in Self-Assembled Monolayers on Gold When Prepared Using Potential-Assisted Deposition. Langmuir 2020, 36, 6837–6847. 10.1021/acs.langmuir.9b03970. PubMed DOI