Electrochemical Detection of Single-Nucleotide Polymorphism Associated with Rifampicin Resistance in Mycobacterium tuberculosis Using Solid-Phase Primer Elongation with Ferrocene-Linked Redox-Labeled Nucleotides
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34797987
PubMed Central
PMC8715531
DOI
10.1021/acssensors.1c01710
Knihovny.cz E-zdroje
- Klíčová slova
- Klenow (exo-) DNA polymerase, ferrocene-labeled nucleotides, nucleoside triphosphates, single-nucleotide polymorphism (SNP), single-point mutation, solid-phase primer elongation,
- MeSH
- jednonukleotidový polymorfismus MeSH
- metaloceny MeSH
- Mycobacterium tuberculosis * genetika MeSH
- oxidace-redukce MeSH
- rifampin farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- metaloceny MeSH
- rifampin MeSH
Here, we report the electrochemical detection of single-point mutations using solid-phase isothermal primer elongation with redox-labeled oligonucleotides. A single-base mutation associated with resistance to rifampicin, an antibiotic commonly used for the treatment of Mycobacterium tuberculosis, was used as a model system to demonstrate a proof-of-concept of the approach. Four 5'-thiolated primers, designed to be complementary with the same fragment of the target sequence and differing only in the last base, addressing the polymorphic site, were self-assembled via chemisorption on individual gold electrodes of an array. Following hybridization with single-stranded DNA, Klenow (exo-) DNA polymerase-mediated primer extension with ferrocene-labeled 2'-deoxyribonucleoside triphosphates (dNFcTPs) was only observed to proceed at the electrode where there was full complementarity between the surface-tethered probe and the target DNA being interrogated. We tested all four ferrocenylethynyl-linked dNTPs and optimized the ratio of labeled/natural nucleotides to achieve maximum sensitivity. Following a 20 min hybridization step, Klenow (exo-) DNA polymerase-mediated primer elongation at 37 °C for 5 min was optimal for the enzymatic incorporation of a ferrocene-labeled nucleotide, achieving unequivocal electrochemical detection of a single-point mutation in 14 samples of genomic DNA extracted from Mycobacterium tuberculosis strains. The approach is rapid, cost-effective, facile, and can be extended to multiplexed electrochemical single-point mutation genotyping.
Zobrazit více v PubMed
Kumar S.; Banks T. W.; Cloutier S. SNP Discovery through Next-Generation Sequencing and Its Applications. Int. J. Plant Genomics 2012, 2012, 83146010.1155/2012/831460. PubMed DOI PMC
Woodford N.; Ellington M. J. The Emergence of Antibiotic Resistance by Mutation. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2007, 13, 5–18. 10.1111/j.1469-0691.2006.01492.x. PubMed DOI
Arega B.; Menbere F.; Getachew Y. Prevalence of Rifampicin Resistant Mycobacterium Tuberculosis among Presumptive Tuberculosis Patients in Selected Governmental Hospitals in Addis Ababa, Ethiopia. BMC Infect. Dis. 2019, 19, 30710.1186/s12879-019-3943-1. PubMed DOI PMC
Dreesman A.; Dirix V.; Smits K.; Corbière V.; Van Praet A.; Debulpaep S.; De Schutter I.; Felderhof M.-K.; Malfroot A.; Singh M.; Locht C.; Mouchet F.; Mascart F. Identification of Mycobacterium Tuberculosis Infection in Infants and Children With Partial Discrimination Between Active Disease and Asymptomatic Infection. Front. Pediatr. 2019, 7, 31110.3389/fped.2019.00311. PubMed DOI PMC
Cole S. T.; Brosch R.; Parkhill J.; Garnier T.; Churcher C.; Harris D.; Gordon S. V.; Eiglmeier K.; Gas S.; Barry C. E. 3rd; Tekaia F.; Badcock K.; Basham D.; Brown D.; Chillingworth T.; Connor R.; Davies R.; Devlin K.; Feltwell T.; Gentles S.; Hamlin N.; Holroyd S.; Hornsby T.; Jagels K.; Krogh A.; McLean J.; Moule S.; Murphy L.; Oliver K.; Osborne J.; Quail M. A.; Rajandream M. A.; Rogers J.; Rutter S.; Seeger K.; Skelton J.; Squares R.; Squares S.; Sulston J. E.; Taylor K.; Whitehead S.; Barrell B. G. Deciphering the Biology of Mycobacterium Tuberculosis from the Complete Genome Sequence. Nature 1998, 393, 537–544. 10.1038/31159. PubMed DOI
Ao W.; Aldous S.; Woodruff E.; Hicke B.; Rea L.; Kreiswirth B.; Jenison R. Rapid Detection of RpoB Gene Mutations Conferring Rifampin Resistance in Mycobacterium Tuberculosis. J. Clin. Microbiol. 2012, 50, 2433–2440. 10.1128/JCM.00208-12. PubMed DOI PMC
Yue J.; Shi W.; Xie J.; Li Y.; Zeng E.; Wang H. Mutations in the RpoB Gene of Multidrug-Resistant Mycobacterium Tuberculosis Isolates from China. J. Clin. Microbiol. 2003, 41, 2209–2212. 10.1128/JCM.41.5.2209-2212.2003. PubMed DOI PMC
Helb D.; Jones M.; Story E.; Boehme C.; Wallace E.; Ho K.; Kop J.; Owens M. R.; Rodgers R.; Banada P.; Safi H.; Blakemore R.; Lan N. T. N.; Jones-López E. C.; Levi M.; Burday M.; Ayakaka I.; Mugerwa R. D.; McMillan B.; Winn-Deen E.; Christel L.; Dailey P.; Perkins M. D.; Persing D. H.; Alland D. Rapid Detection of Mycobacterium Tuberculosis and Rifampin Resistance by Use of On-Demand, near-Patient Technology. J. Clin. Microbiol. 2010, 48, 229–237. 10.1128/JCM.01463-09. PubMed DOI PMC
Qazi O.; Rahman H.; Tahir Z.; Qasim M.; Khan S.; Ahmad Anjum A.; Yaqub T.; Tayyab M.; Ali N.; Firyal S. Mutation Pattern in Rifampicin Resistance Determining Region of RpoB Gene in Multidrug-Resistant Mycobacterium Tuberculosis Isolates from Pakistan. Int. J. Mycobacteriology 2014, 3, 173–177. 10.1016/j.ijmyco.2014.06.004. PubMed DOI
Rodwell T. C.; Valafar F.; Douglas J.; Qian L.; Garfein R. S.; Chawla A.; Torres J.; Zadorozhny V.; Kim M. S.; Hoshide M.; Catanzaro D.; Jackson L.; Lin G.; Desmond E.; Rodrigues C.; Eisenach K.; Victor T. C.; Ismail N.; Crudu V.; Gler M. T.; Catanzaro A. Predicting Extensively Drug-Resistant Mycobacterium Tuberculosis Phenotypes with Genetic Mutations. J. Clin. Microbiol. 2014, 52, 781–789. 10.1128/JCM.02701-13. PubMed DOI PMC
Zaw M. T.; Emran N. A.; Lin Z. Mutations inside Rifampicin-Resistance Determining Region of RpoB Gene Associated with Rifampicin-Resistance in Mycobacterium Tuberculosis. J. Infect. Public Health 2018, 11, 605–610. 10.1016/j.jiph.2018.04.005. PubMed DOI
World Health Organization. Global Tuberculosis Report 2020. https://www.who.int/tb/publications/global_report/archive/ (accessed on 2 July 2021).
World Health Organization. Global Tuberculosis Report 2010. https://www.who.int/tb/publications/global_report/archive/ (accessed on 2 July 2021).
Batz H.-G.; Cooke G. S.; Reid S. D.. Lab-Free Tuberculosis Diag-Nosism. WHO-TDR 2011.
World Health Organization, Xpert MTB/RIF Implementation Manual. Technical and Operational ‘How-to’: Practical Considerations. 2014. PubMed
Tortajada-Genaro L. A.; Mena S.; Niñoles R.; Puigmule M.; Viladevall L.; Maquieira Á. Genotyping of Single Nucleotide Polymorphisms Related to Attention-Deficit Hyperactivity Disorder. Anal. Bioanal. Chem. 2016, 408, 2339–2345. 10.1007/s00216-016-9332-3. PubMed DOI
Matsuda K. PCR-Based Detection Methods for Single-Nucleotide Polymorphism or Mutation: Real-Time PCR and Its Substantial Contribution Toward Technological Refinement. Adv. Clin. Chem. 2017, 80, 45–72. 10.1016/bs.acc.2016.11.002. PubMed DOI
Lung J.; Hung M.-S.; Lin Y.-C.; Jiang Y. Y.; Fang Y.-H.; Lu M.-S.; Hsieh C.-C.; Wang C.-S.; Kuan F.-C.; Lu C.-H.; Chen P.-T.; Lin C.-M.; Chou Y.-L.; Lin C.-K.; Yang T.-M.; Chen F. F.; Lin P. Y.; Hsieh M.-J.; Tsai Y. H. A Highly Sensitive and Specific Real-Time Quantitative PCR for BRAF V600E/K Mutation Screening. Sci. Rep. 2020, 10, 1694310.1038/s41598-020-72809-7. PubMed DOI PMC
Shapero M. H.; Leuther K. K.; Nguyen A.; Scott M.; Jones K. W. SNP Genotyping by Multiplexed Solid-Phase Amplification and Fluorescent Minisequencing. Genome Res. 2001, 11, 1926–1934. 10.1101/gr.205001. PubMed DOI PMC
Liu H.; Li S.; Wang Z.; Ji M.; Nie L.; He N. High-Throughput SNP Genotyping Based on Solid-Phase PCR on Magnetic Nanoparticles with Dual-Color Hybridization. J. Biotechnol. 2007, 131, 217–222. 10.1016/j.jbiotec.2007.06.023. PubMed DOI
Huang H.; Xiao P.; Qi Z.; Bu Y.; Liu W.; Zhou G. A Gel-Based Solid-Phase Amplification and Its Application for SNP Typing and Sequencing on-Chip. Analyst 2009, 134, 2434–2440. 10.1039/b915121d. PubMed DOI
Iwamoto T.; Sonobe T.; Hayashi K. Loop-Mediated Isothermal Amplification for Direct Detection of Mycobacterium Tuberculosis Complex, M. Avium, and M. Intracellulare in Sputum Samples. J. Clin. Microbiol. 2003, 41, 2616–2622. 10.1128/JCM.41.6.2616-2622.2003. PubMed DOI PMC
Yamanaka E. S.; Tortajada-Genaro L. A.; Maquieira Á. Low-Cost Genotyping Method Based on Allele-Specific Recombinase Polymerase Amplification and Colorimetric Microarray Detection. Microchim. Acta 2017, 184, 1453–1462. 10.1007/s00604-017-2144-0. DOI
Lázaro A.; Yamanaka E.; Maquieira A.; Tortajada-Genaro L. Allele-Specific Ligation and Recombinase Polymerase Amplification for the Detection of Single Nucleotide Polymorphisms. Sens. Actuators, B 2019, 298, 12687710.1016/j.snb.2019.126877. DOI
Sanger F.; Nicklen S.; Coulson A. R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 5463–5467. 10.1073/pnas.74.12.5463. PubMed DOI PMC
Sokolov B. P. Primer Extension Technique for the Detection of Single Nucleotide in Genomic DNA. Nucleic Acids Res. 1990, 18, 367110.1093/nar/18.12.3671. PubMed DOI PMC
Kuppuswamy M. N.; Hoffmann J. W.; Kasper C. K.; Spitzer S. G.; Groce S. L.; Bajaj S. P. Single Nucleotide Primer Extension to Detect Genetic Diseases: Experimental Application to Hemophilia B (Factor IX) and Cystic Fibrosis. Genes. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 1143–1147. 10.1073/pnas.88.4.1143. PubMed DOI PMC
Picketts D. J.; Cameron C.; Taylor S. A.; Deugau K. V.; Lillicrap D. P. Differential Termination of Primer Extension: A Novel, Quantifiable Method for Detection of Point Mutations. Hum. Genet. 1992, 89, 155–157. 10.1007/BF00217115. PubMed DOI
Bentley D. R.; Balasubramanian S.; Swerdlow H. P.; Smith G. P.; Milton J.; Brown C. G.; Hall K. P.; Evers D. J.; Barnes C. L.; Bignell H. R.; Boutell J. M.; Bryant J.; Carter R. J.; Keira Cheetham R.; Cox A. J.; Ellis D. J.; Flatbush M. R.; Gormley N. A.; Humphray S. J.; Irving L. J.; Karbelashvili M. S.; Kirk S. M.; Li H.; Liu X.; Maisinger K. S.; Murray L. J.; Obradovic B.; Ost T.; Parkinson M. L.; Pratt M. R.; Rasolonjatovo I. M. J.; Reed M. T.; Rigatti R.; Rodighiero C.; Ross M. T.; Sabot A.; Sankar S. V.; Scally A.; Schroth G. P.; Smith M. E.; Smith V. P.; Spiridou A.; Torrance P. E.; Tzonev S. S.; Vermaas E. H.; Walter K.; Wu X.; Zhang L.; Alam M. D.; Anastasi C.; Aniebo I. C.; Bailey D. M. D.; Bancarz I. R.; Banerjee S.; Barbour S. G.; Baybayan P. A.; Benoit V. A.; Benson K. F.; Bevis C.; Black P. J.; Boodhun A.; Brennan J. S.; Bridgham J. A.; Brown R. C.; Brown A. A.; Buermann D. H.; Bundu A. A.; Burrows J. C.; Carter N. P.; Castillo N.; Chiara E.; Catenazzi M.; Chang S.; Neil Cooley R.; Crake N. R.; Dada O. O.; Diakoumakos K. D.; Dominguez-Fernandez B.; Earnshaw D. J.; Egbujor U. C.; Elmore D. W.; Etchin S. S.; Ewan M. R.; Fedurco M.; Fraser L. J.; Fuentes Fajardo K. V.; Scott Furey W.; George D.; Gietzen K. J.; Goddard C. P.; Golda G. S.; Granieri P. A.; Green D. E.; Gustafson D. L.; Hansen N. F.; Harnish K.; Haudenschild C. D.; Heyer N. I.; Hims M. M.; Ho J. T.; Horgan A. M.; Hoschler K.; Hurwitz S.; Ivanov D. V.; Johnson M. Q.; James T.; Huw Jones T. A.; Kang G.-D.; Kerelska T. H.; Kersey A. D.; Khrebtukova I.; Kindwall A. P.; Kingsbury Z.; Kokko-Gonzales P. I.; Kumar A.; Laurent M. A.; Lawley C. T.; Lee S. E.; Lee X.; Liao A. K.; Loch J. A.; Lok M.; Luo S.; Mammen R. M.; Martin J. W.; McCauley P. G.; McNitt P.; Mehta P.; Moon K. W.; Mullens J. W.; Newington T.; Ning Z.; Ling Ng B.; Novo S. M.; O’Neill M. J.; Osborne M. A.; Osnowski A.; Ostadan O.; Paraschos L. L.; Pickering L.; Pike A. C.; Pike A. C.; Chris Pinkard D.; Pliskin D. P.; Podhasky J.; Quijano V. J.; Raczy C.; Rae V. H.; Rawlings S. R.; Chiva Rodriguez A.; Roe P. M.; Rogers J.; Rogert Bacigalupo M. C.; Romanov N.; Romieu A.; Roth R. K.; Rourke N. J.; Ruediger S. T.; Rusman E.; Sanches-Kuiper R. M.; Schenker M. R.; Seoane J. M.; Shaw R. J.; Shiver M. K.; Short S. W.; Sizto N. L.; Sluis J. P.; Smith M. A.; Ernest Sohna Sohna J.; Spence E. J.; Stevens K.; Sutton N.; Szajkowski L.; Tregidgo C. L.; Turcatti G.; vandeVondele S.; Verhovsky Y.; Virk S. M.; Wakelin S.; Walcott G. C.; Wang J.; Worsley G. J.; Yan J.; Yau L.; Zuerlein M.; Rogers J.; Mullikin J. C.; Hurles M. E.; McCooke N. J.; West J. S.; Oaks F. L.; Lundberg P. L.; Klenerman D.; Durbin R.; Smith A. J. Accurate Whole Human Genome Sequencing Using Reversible Terminator Chemistry. Nature 2008, 456, 53–59. 10.1038/nature07517. PubMed DOI PMC
Syvänen A. C.; Aalto-Setälä K.; Harju L.; Kontula K.; Söderlund H. A Primer-Guided Nucleotide Incorporation Assay in the Genotyping of Apolipoprotein E. Genomics 1990, 8, 684–692. 10.1016/0888-7543(90)90255-s. PubMed DOI
Syvänen A. C.; Sajantila A.; Lukka M. Identification of Individuals by Analysis of Biallelic DNA Markers, Using PCR and Solid-Phase Minisequencing. Am. J. Hum. Genet. 1993, 52, 46–59. PubMed PMC
Pastinen T.; Partanen J.; Syvänen A. C. Multiplex, Fluorescent, Solid-Phase Minisequencing for Efficient Screening of DNA Sequence Variation. Clin. Chem. 1996, 42, 1391–1397. 10.1093/clinchem/42.9.1391. PubMed DOI
Shumaker J. M.; Metspalu A.; Caskey C. T. Mutation Detection by Solid Phase Primer Extension. Hum. Mutat. 1996, 7, 346–354. 10.1002/(SICI)1098-1004(1996)7:4<346::AID-HUMU9>3.0.CO;2-6. PubMed DOI
Pastinen T.; Kurg A.; Metspalu A.; Peltonen L.; Syvänen A. C. Minisequencing: A Specific Tool for DNA Analysis and Diagnostics on Oligonucleotide Arrays. Genome Res. 1997, 7, 606–614. 10.1101/gr.7.6.606. PubMed DOI
van Staveren D. R.; Metzler-Nolte N. Bioorganometallic Chemistry of Ferrocene. Chem. Rev. 2004, 104, 5931–5985. 10.1021/cr0101510. PubMed DOI
Brazill S. A.; Kuhr W. G. A Single Base Extension Technique for the Analysis of Known Mutations Utilizing Capillary Gel Electrophoreisis with Electrochemical Detection. Anal. Chem. 2002, 74, 3421–3428. 10.1021/ac025569s. PubMed DOI
Brazill S.; Hebert N. E.; Kuhr W. G. Use of an Electrochemically Labeled Nucleotide Terminator for Known Point Mutation Analysis. Electrophoresis 2003, 24, 2749–2757. 10.1002/elps.200305554. PubMed DOI
Hebert N. E.; Brazill S. A. Microchip Capillary Gel Electrophoresis with Electrochemical Detection for the Analysis of Known SNPs. Lab Chip 2003, 3, 241–247. 10.1039/B306811K. PubMed DOI
Debela A. M.; Thorimbert S.; Hasenknopf B.; O’Sullivan C. K.; Ortiz M. Electrochemical Primer Extension for the Detection of Single Nucleotide Polymorphisms in the Cardiomyopathy Associated MYH7 Gene. Chem. Commun. 2016, 52, 757–759. 10.1039/c5cc07762a. PubMed DOI
Chahin N.; Uribe L. A.; Debela A. M.; Thorimbert S.; Hasenknopf B.; Ortiz M.; Katakis I.; O’Sullivan C. K. Electrochemical Primer Extension Based on Polyoxometalate Electroactive Labels for Multiplexed Detection of Single Nucleotide Polymorphisms. Biosens. Bioelectron. 2018, 117, 201–206. 10.1016/j.bios.2018.06.014. PubMed DOI
Kodr D.; Yenice C. P.; Simonova A.; Saftić D. P.; Pohl R.; Sýkorová V.; Ortiz M.; Havran L.; Fojta M.; Lesnikowski Z. J.; O’Sullivan C. K.; Hocek M. Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of All Four DNA Bases for Electrochemical Analysis and Sequencing. J. Am. Chem. Soc. 2021, 143, 7124–7134. 10.1021/jacs.1c02222. PubMed DOI
Erdogan F.; Kirchner R.; Mann W.; Ropers H. H.; Nuber U. A. Detection of Mitochondrial Single Nucleotide Polymorphisms Using a Primer Elongation Reaction on Oligonucleotide Microarrays. Nucleic Acids Res. 2001, 29, 36e10.1093/nar/29.7.e36. PubMed DOI PMC
Huber M.; Losert D.; Hiller R.; Harwanegg C.; Mueller M. W.; Schmidt W. M. Detection of Single Base Alterations in Genomic DNA by Solid Phase Polymerase Chain Reaction on Oligonucleotide Microarrays. Anal. Biochem. 2001, 299, 24–30. 10.1006/abio.2001.5355. PubMed DOI
Trau D.; Lee T. M. H.; Lao A. I. K.; Lenigk R.; Hsing I.-M.; Ip N. Y.; Carles M. C.; Sucher N. J. Genotyping on a Complementary Metal Oxide Semiconductor Silicon Polymerase Chain Reaction Chip with Integrated DNA Microarray. Anal. Chem. 2002, 74, 3168–3173. 10.1021/ac020053u. PubMed DOI
Gunderson K. L.; Steemers F. J.; Lee G.; Mendoza L. G.; Chee M. S. A Genome-Wide Scalable SNP Genotyping Assay Using Microarray Technology. Nat. Genet. 2005, 37, 549–554. 10.1038/ng1547. PubMed DOI
Gaster J.; Rangam G.; Marx A. Increased Single Nucleotide Discrimination in Arrayed Primer Elongation by 4’C-Modified Primer Probes. Chem. Commun. 2007, 17, 1692–1694. 10.1039/b616129d. PubMed DOI
Wu G.; Yang N.; Zhang T.; Wang Z.; Lu X.; Kang J. Fabrication and Application of a New DNA Biosensor Based on On-Substrate PCR and Electrochemistry. Sens. Actuators, B 2011, 160, 598–603. 10.1016/j.snb.2011.08.034. DOI
Fragoso A.; Laboria N.; Latta D.; O’Sullivan C. K. Electron Permeable Self-Assembled Monolayers of Dithiolated Aromatic Scaffolds on Gold for Biosensor Applications. Anal. Chem. 2008, 80, 2556–2563. 10.1021/ac702195v. PubMed DOI
Brázdilová P.; Vrábel M.; Pohl R.; Pivoňková H.; Havran L.; Hocek M.; Fojta M. Ferrocenylethynyl Derivatives of Nucleoside Triphosphates: Synthesis, Incorporation, Electrochemistry, and Bioanalytical Applications. Chem. - A Eur. J. 2007, 13, 9527–9533. 10.1002/chem.200701249. PubMed DOI
Ménová P.; Raindlová V.; Hocek M. Scope and Limitations of the Nicking Enzyme Amplification Reaction for the Synthesis of Base-Modified Oligonucleotides and Primers for PCR. Bioconjug. Chem. 2013, 24, 1081–1093. 10.1021/bc400149q. PubMed DOI
Simonova A.; Magriñá I.; Sýkorová V.; Pohl R.; Ortiz M.; Havran L.; Fojta M.; O’Sullivan C. K.; Hocek M. Tuning of Oxidation Potential of Ferrocene for Ratiometric Redox Labeling and Coding of Nucleotides and DNA. Chem. - Eur. J. 2020, 26, 1286–1291. 10.1002/chem.201904700. PubMed DOI PMC
Larsen M. H.; Biermann K.; Tandberg S.; Hsu T.; Jacobs William R. J. Genetic Manipulation of Mycobacterium Tuberculosis. Curr. Protoc. Microbiol. 2007, 6, 10A.2.1–10A.2.21. 10.1002/9780471729259.mc10a02s6. PubMed DOI
Fragoso A.; Latta D.; Laboria N.; von Germar F.; Hansen-Hagge T. E.; Kemmner W.; Gärtner C.; Klemm R.; Drese K. S.; O’Sullivan C. K. Integrated Microfluidic Platform for the Electrochemical Detection of Breast Cancer Markers in Patient Serum Samples. Lab Chip 2011, 11, 625–631. 10.1039/c0lc00398k. PubMed DOI
Ortiz M.; Debela A. M.; Svobodova M.; Thorimbert S.; Lesage D.; Cole R. B.; Hasenknopf B.; O’Sullivan C. K. PCR Incorporation of Polyoxometalate Modified Deoxynucleotide Triphosphates and Their Application in Molecular Electrochemical Sensing of Yersinia Pestis. Chem. - Eur. J. 2017, 23, 10597–10603. 10.1002/chem.201701295. PubMed DOI
Balintová J.; Plucnara M.; Vidláková P.; Pohl R.; Havran L.; Fojta M.; Hocek M. Benzofurazane as a New Redox Label for Electrochemical Detection of DNA: Towards Multipotential Redox Coding of DNA Bases. Chem. - Eur. J. 2013, 19, 12720–12731. 10.1002/chem.201301868. PubMed DOI
Hermanová M.; Orság P.; Balintová J.; Hocek M.; Fojta M. Dual Redox Labeling of DNA as a Tool for Electrochemical Detection of P53 Protein-DNA Interactions. Anal. Chim. Acta 2019, 1050, 123–131. 10.1016/j.aca.2018.10.053. PubMed DOI
Magriñá I.; Jauset-Rubio M.; Ortiz M.; Tomaso H.; Simonova A.; Hocek M.; O’Sullivan C. K. Duplex Electrochemical DNA Sensor to Detect Bacillus Anthracis CAP and PAG DNA Targets Based on the Incorporation of Tailed Primers and Ferrocene-Labeled dATP. ACS Omega 2019, 4, 21900–21908. 10.1021/acsomega.9b02890. PubMed DOI PMC
Magriñá I.; Toldrà A.; Campàs M.; Ortiz M.; Simonova A.; Katakis I.; Hocek M.; O’Sullivan C. K. Electrochemical Genosensor for the Direct Detection of Tailed PCR Amplicons Incorporating Ferrocene Labelled DATP. Biosens. Bioelectron. 2019, 134, 76–82. 10.1016/j.bios.2019.03.060. PubMed DOI
Henry O. Y. F.; Perez J. G.; Sanchez J. L. A.; O’Sullivan C. K. Electrochemcial Characterisation and Hybridisation Efficiency of Co-Assembled Monolayers of PEGylated SsDNA and Mercaptohexanol on Planar Gold Electrodes. Biosens. Bioelectron. 2010, 25, 978–983. 10.1016/j.bios.2009.09.007. PubMed DOI
Henry O. Y. F.; Sanchez J. L. A.; O’Sullivan C. K. Bipodal PEGylated Alkanethiol for the Enhanced Electrochemical Detection of Genetic Markers Involved in Breast Cancer. Biosens. Bioelectron. 2010, 26, 1500–1506. 10.1016/j.bios.2010.07.095. PubMed DOI