Generic Platform for the Multiplexed Targeted Electrochemical Detection of Osteoporosis-Associated Single Nucleotide Polymorphisms Using Recombinase Polymerase Solid-Phase Primer Elongation and Ferrocene-Modified Nucleoside Triphosphates

. 2023 Aug 23 ; 9 (8) : 1591-1602. [epub] 20230719

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37637735

Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates. Thiolated reverse primers designed for each SNP were immobilized on individual gold electrodes of an array. These primers are designed to hybridize to the SNP site at their 3'OH terminal, and primer elongation occurs only where there is 100% complementarity, facilitating the identification and heterozygosity of each SNP under interrogation. The platform was applied to real blood samples, which were thermally lysed and directly used without the need for DNA extraction or purification. The results were validated using Taqman SNP genotyping assays and Sanger sequencing. The assay is complete in just 15 min with a total cost of 0.3€ per electrode. The platform is completely generic and has immense potential for deployment at the point of need in an automated device for targeted SNP genotyping with the only required end-user intervention being sample addition.

Zobrazit více v PubMed

Zhu W.; Xu C.; Zhang J.-G.; He H.; Wu K.-H.; Zhang L.; Zeng Y.; Zhou Y.; Su K.-J.; Deng H.-W. Gene-Based GWAS Analysis for Consecutive Studies of GEFOS. Osteoporos Int 2018, 29 (12), 2645–2658. 10.1007/s00198-018-4654-y. PubMed DOI PMC

Richards J. B.; Kavvoura F. K.; Rivadeneira F.; Styrkársdóttir U.; Estrada K.; Halldórsson B. V; Hsu Y.-H.; Zillikens M. C.; Wilson S. G.; Mullin B. H.; et al. Collaborative Meta-Analysis: Associations of 150 Candidate Genes with Osteoporosis and Osteoporotic Fracture. Ann. Intern. Med. 2009, 151 (8), 528–537. 10.7326/0003-4819-151-8-200910200-00006. PubMed DOI PMC

Ralston S. H.; Uitterlinden A. G. Genetics of Osteoporosis. Endocr Rev 2010, 31 (5), 629–662. 10.1210/er.2009-0044. PubMed DOI

Mei B.; Wang Y.; Ye W.; Huang H.; Zhou Q.; Chen Y.; Niu Y.; Zhang M.; Huang Q. LncRNA ZBTB40-IT1 Modulated by Osteoporosis GWAS Risk SNPs Suppresses Osteogenesis. Hum. Genet. 2019, 138 (2), 151–166. 10.1007/s00439-019-01969-y. PubMed DOI

Zhu X.; Bai W.; Zheng H. Twelve Years of GWAS Discoveries for Osteoporosis and Related Traits: Advances, Challenges and Applications. Bone Res 2021, 9 (1), 23.10.1038/s41413-021-00143-3. PubMed DOI PMC

Cummings S. R.; Melton L. J. Epidemiology and Outcomes of Osteoporotic Fractures. Lancet 2002, 359 (9319), 1761–1767. 10.1016/S0140-6736(02)08657-9. PubMed DOI

World Health Organization . Assessment of Osteoporosis at the Primary Health Care Level; Summary report of a WHO scientific group; WHO, Geneva, 2007.

Tabatabaei-Malazy O.; Salari P.; Khashayar P.; Larijani B. New Horizons in Treatment of Osteoporosis. Daru 2017, 25 (1), 2.10.1186/s40199-017-0167-z. PubMed DOI PMC

Schuit S. C. E.; van der Klift M.; Weel A. E. A. M.; de Laet C. E. D. H.; Burger H.; Seeman E.; Hofman A.; Uitterlinden A. G.; van Leeuwen J. P. T. M.; Pols H. A. P. Fracture Incidence and Association with Bone Mineral Density in Elderly Men and Women: The Rotterdam Study. Bone 2004, 34 (1), 195–202. 10.1016/j.bone.2003.10.001. PubMed DOI

Johnell O.; Kanis J. Epidemiology of Osteoporotic Fractures. Osteoporos Int 2005, 16, S3–S7. 10.1007/s00198-004-1702-6. PubMed DOI

Wesselius A.; Bours M. J. L.; Henriksen Z.; Syberg S.; Petersen S.; Schwarz P.; Jørgensen N. R.; van Helden S.; Dagnelie P. C. Association of P2Y(2) Receptor SNPs with Bone Mineral Density and Osteoporosis Risk in a Cohort of Dutch Fracture Patients. Purinergic Signal 2013, 9 (1), 41–49. 10.1007/s11302-012-9326-3. PubMed DOI PMC

https://www.osteoporosis.foundation.

Kanis J. A.; Borgstrom F.; De Laet C.; Johansson H.; Johnell O.; Jonsson B.; Oden A.; Zethraeus N.; Pfleger B.; Khaltaev N. Assessment of Fracture Risk. Osteoporos Int 2005, 16 (6), 581–589. 10.1007/s00198-004-1780-5. PubMed DOI

Zethraeus N.; Borgström F.; Ström O.; Kanis J. A.; Jönsson B. Cost-Effectiveness of the Treatment and Prevention of Osteoporosis-a Review of the Literature and a Reference Model. Osteoporos Int 2007, 18 (1), 9–23. 10.1007/s00198-006-0257-0. PubMed DOI

Karasik D.; Dupuis J.; Cho K.; Cupples L. A.; Zhou Y.; Kiel D. P.; Demissie S. Refined QTLs of Osteoporosis-Related Traits by Linkage Analysis with Genome-Wide SNPs: Framingham SHARe. Bone 2010, 46 (4), 1114–1121. 10.1016/j.bone.2010.01.001. PubMed DOI PMC

Trajanoska K.; Rivadeneira F. The Genetic Architecture of Osteoporosis and Fracture Risk. Bone 2019, 126, 2–10. 10.1016/j.bone.2019.04.005. PubMed DOI

Kanis J. A.; Glüer C. C. An Update on the Diagnosis and Assessment of Osteoporosis with Densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 2000, 11 (3), 192–202. 10.1007/s001980050281. PubMed DOI

Kanis J. A.; Johnell O.; Oden A.; De Laet C.; Jonsson B.; Dawson A. Ten-Year Risk of Osteoporotic Fracture and the Effect of Risk Factors on Screening Strategies. Bone 2002, 30 (1), 251–258. 10.1016/S8756-3282(01)00653-6. PubMed DOI

Rivadeneira F.; Mäkitie O. Osteoporosis and Bone Mass Disorders: From Gene Pathways to Treatments. Trends Endocrinol Metab 2016, 27 (5), 262–281. 10.1016/j.tem.2016.03.006. PubMed DOI

Rivadeneira F.; Styrkársdottir U.; Estrada K.; Halldórsson B. V; Hsu Y.-H.; Richards J. B.; Zillikens M. C.; Kavvoura F. K.; Amin N.; Aulchenko Y. S.; et al. Twenty Bone-Mineral-Density Loci Identified by Large-Scale Meta-Analysis of Genome-Wide Association Studies. Nat. Genet. 2009, 41 (11), 1199–1206. 10.1038/ng.446. PubMed DOI PMC

Estrada K.; Styrkarsdottir U.; Evangelou E.; Hsu Y.-H.; Duncan E. L.; Ntzani E. E.; Oei L.; Albagha O. M. E.; Amin N.; Kemp J. P.; et al. Genome-Wide Meta-Analysis Identifies 56 Bone Mineral Density Loci and Reveals 14 Loci Associated with Risk of Fracture. Nat. Genet. 2012, 44 (5), 491–501. 10.1038/ng.2249. PubMed DOI PMC

Zheng H.-F.; Forgetta V.; Hsu Y.-H.; Estrada K.; Rosello-Diez A.; Leo P. J.; Dahia C. L.; Park-Min K. H.; Tobias J. H.; Kooperberg C.; et al. Whole-Genome Sequencing Identifies EN1 as a Determinant of Bone Density and Fracture. Nature 2015, 526 (7571), 112–117. 10.1038/nature14878. PubMed DOI PMC

Langdahl B. L.; Uitterlinden A. G.; Ralston S. H.; Trikalinos T. A.; Balcells S.; Brandi M. L.; Scollen S.; Lips P.; Lorenc R.; Obermayer-Pietsch B.; et al. Large-Scale Analysis of Association between Polymorphisms in the Transforming Growth Factor Beta 1 Gene (TGFB1) and Osteoporosis: The GENOMOS Study. Bone 2008, 42 (5), 969–981. 10.1016/j.bone.2007.11.007. PubMed DOI

Morris J. A.; Kemp J. P.; Youlten S. E.; Laurent L.; Logan J. G.; Chai R. C.; Vulpescu N. A.; Forgetta V.; Kleinman A.; Mohanty S. T.; et al. An Atlas of Genetic Influences on Osteoporosis in Humans and Mice. Nat. Genet. 2019, 51 (2), 258–266. 10.1038/s41588-018-0302-x. PubMed DOI PMC

Liu Y.-J.; Zhang L.; Papasian C. J.; Deng H.-W. Genome-Wide Association Studies for Osteoporosis: A 2013 Update. J Bone Metab 2014, 21 (2), 99–116. 10.11005/jbm.2014.21.2.99. PubMed DOI PMC

Trajanoska K.; Morris J. A.; Oei L.; Zheng H.-F.; Evans D. M.; Kiel D. P.; Ohlsson C.; Richards J. B.; Rivadeneira F.; et al. Assessment of the Genetic and Clinical Determinants of Fracture Risk: Genome Wide Association and Mendelian Randomisation Study. BMJ 2018, 362, k3225.10.1136/bmj.k3225. PubMed DOI PMC

Cummings S. R.; Rosen C. VITAL Findings - A Decisive Verdict on Vitamin D Supplementation. N Engl J Med 2022, 387 (4), 368–370. 10.1056/NEJMe2205993. PubMed DOI

Vignal A.; Milan D.; SanCristobal M.; Eggen A. A Review on SNP and Other Types of Molecular Markers and Their Use in Animal Genetics. Genet Sel Evol 2002, 34 (3), 275–305. 10.1186/1297-9686-34-3-275. PubMed DOI PMC

Liao P.-Y.; Lee K. H. From SNPs to Functional Polymorphism: The Insight into Biotechnology Applications. Biochem Eng J 2010, 49 (2), 149–158. 10.1016/j.bej.2009.12.021. DOI

Zhang J.; Yang J.; Zhang L.; Luo J.; Zhao H.; Zhang J.; Wen C. A New SNP Genotyping Technology Target SNP-Seq and Its Application in Genetic Analysis of Cucumber Varieties. Sci Rep 2020, 10 (1), 5623.10.1038/s41598-020-62518-6. PubMed DOI PMC

Semagn K.; Babu R.; Hearne S.; Olsen M. Single Nucleotide Polymorphism Genotyping Using Kompetitive Allele Specific PCR (KASP): Overview of the Technology and Its Application in Crop Improvement. Molecular Breeding 2014, 33 (1), 1–14. 10.1007/s11032-013-9917-x. DOI

Balagué-Dobón L.; Cáceres A.; González J. R. Fully Exploiting SNP Arrays: A Systematic Review on the Tools to Extract Underlying Genomic Structure. Brief Bioinform 2022, 23 (2), bbac043.10.1093/bib/bbac043. PubMed DOI PMC

Wang D. G.; Fan J. B.; Siao C. J.; Berno A.; Young P.; Sapolsky R.; Ghandour G.; Perkins N.; Winchester E.; Spencer J.; Kruglyak L.; Stein L.; Hsie L.; Topaloglou T.; Hubbell E.; Robinson E.; Mittmann M.; Morris M. S.; Shen N.; Kilburn D.; Rioux J.; Nusbaum C.; Rozen S.; Hudson T. J.; Lipshutz R.; Chee M.; Lander E. S. Large-Scale Identification, Mapping, and Genotyping of Single-Nucleotide Polymorphisms in the Human Genome. Science 1998, 280 (5366), 1077–1082. 10.1126/science.280.5366.1077. PubMed DOI

Drogou C.; Sauvet F.; Erblang M.; Detemmerman L.; Derbois C.; Erkel M. C.; Boland A.; Deleuze J. F.; Gomez-Merino D.; Chennaoui M. Genotyping on Blood and Buccal Cells Using Loop-Mediated Isothermal Amplification in Healthy Humans. Biotechnology Reports 2020, 26, e0046810.1016/j.btre.2020.e00468. PubMed DOI PMC

Higgins O.; Smith T. J. Loop-Primer Endonuclease Cleavage-Loop-Mediated Isothermal Amplification Technology for Multiplex Pathogen Detection and Single-Nucleotide Polymorphism Identification. The Journal of Molecular Diagnostics 2020, 22 (5), 640–651. 10.1016/j.jmoldx.2020.02.002. PubMed DOI

Michiyuki S.; Tomita N.; Mori Y.; Kanda H.; Tashiro K.; Notomi T. Discrimination of a Single Nucleotide Polymorphism in the Haptoglobin Promoter Region, Rs5472, Using a Competitive Fluorophore-Labeled Probe Hybridization Assay Following Loop-Mediated Isothermal Amplification. Biosci Biotechnol Biochem 2021, 85 (2), 359–368. 10.1093/bbb/zbaa012. PubMed DOI

Shen H.; Wen J.; Liao X.; Lin Q.; Zhang J.; Chen K.; Wang S.; Zhang J.. A Sensitive, Highly Specific Novel Isothermal Amplification Method Based on Single-Nucleotide Polymorphism for the Rapid Detection of Salmonella Pullorum. Front Microbiol 2020, 11,10.3389/fmicb.2020.560791. PubMed DOI PMC

Luca Tiscia G.; Colaizzo D.; Vergura P.; Favuzzi G.; Chinni E.; Vandermeulen C.; Detemmerman L.; Grandone E. Loop-Mediated Isothermal Amplification (LAMP)-Based Method for Detecting Factor V Leiden and Factor II G20210A Common Variants. J Thromb Thrombolysis 2020, 50 (4), 908–912. 10.1007/s11239-020-02183-8. PubMed DOI

Varona M.; Eitzmann D. R.; Pagariya D.; Anand R. K.; Anderson J. L. Solid-Phase Microextraction Enables Isolation of BRAF V600E Circulating Tumor DNA from Human Plasma for Detection with a Molecular Beacon Loop-Mediated Isothermal Amplification Assay. Anal. Chem. 2020, 92 (4), 3346–3353. 10.1021/acs.analchem.9b05323. PubMed DOI PMC

Gill P.; Hadian Amree A. AS-LAMP: A New and Alternative Method for Genotyping. Avicenna J. Med. Biotechnol. 2020, 12 (1), 2–8. PubMed PMC

Lázaro A.; Yamanaka E.; Maquieira A.; Tortajada-Genaro L. Allele-Specific Ligation and Recombinase Polymerase Amplification for the Detection of Single Nucleotide Polymorphisms. Sens Actuators B Chem 2019, 298, 126877.10.1016/j.snb.2019.126877. DOI

Yamanaka E. S.; Tortajada-Genaro L. A.; Maquieira A. Low-Cost Genotyping Method Based on Allele-Specific Recombinase Polymerase Amplification and Colorimetric Microarray Detection. Microchimica Acta 2017, 184 (5), 1453–1462. 10.1007/s00604-017-2144-0. DOI

Ahmed M.; Pollak N. M.; Devine G. J.; Macdonald J. Detection of a Single Nucleotide Polymorphism for Insecticide Resistance Using Recombinase Polymerase Amplification and Lateral Flow Dipstick Detection. Sens Actuators B Chem 2022, 367, 132085.10.1016/j.snb.2022.132085. DOI

de Olazarra A. S.; Cortade D. L.; Wang S. X. From Saliva to SNP: Non-Invasive, Point-of-Care Genotyping for Precision Medicine Applications Using Recombinase Polymerase Amplification and Giant Magnetoresistive Nanosensors. Lab Chip 2022, 22 (11), 2131–2144. 10.1039/D2LC00233G. PubMed DOI PMC

Natoli M. E.; Chang M. M.; Kundrod K. A.; Coole J. B.; Airewele G. E.; Tubman V. N.; Richards-Kortum R. R. Allele-Specific Recombinase Polymerase Amplification to Detect Sickle Cell Disease in Low-Resource Settings. Anal. Chem. 2021, 93 (11), 4832–4840. 10.1021/acs.analchem.0c04191. PubMed DOI PMC

Sokolov B. P. Primer Extension Technique for the Detection of Single Nucleotide in Genomic DNA. Nucleic Acids Res. 1990, 18 (12), 3671.10.1093/nar/18.12.3671. PubMed DOI PMC

Kuppuswamy M. N.; Hoffmann J. W.; Kasper C. K.; Spitzer S. G.; Groce S. L.; Bajaj S. P. Single Nucleotide Primer Extension to Detect Genetic Diseases: Experimental Application to Hemophilia B (Factor IX) and Cystic Fibrosis Genes. Proc Natl Acad Sci U S A 1991, 88 (4), 1143–1147. 10.1073/pnas.88.4.1143. PubMed DOI PMC

Picketts D. J.; Cameron C.; Taylor S. A.; Deugau K. V; Lillicrap D. P. Differential Termination of Primer Extension: A Novel, Quantifiable Method for Detection of Point Mutations. Hum. Genet. 1992, 89 (2), 155–157. 10.1007/BF00217115. PubMed DOI

Sanger F.; Nicklen S.; Coulson A. R. DNA Sequencing with Chain-Terminating Inhibitors. Proc Natl Acad Sci U S A 1977, 74 (12), 5463–5467. 10.1073/pnas.74.12.5463. PubMed DOI PMC

Syvänen A. C.; Aalto-Setälä K.; Harju L.; Kontula K.; Söderlund H. A Primer-Guided Nucleotide Incorporation Assay in the Genotyping of Apolipoprotein E. Genomics 1990, 8 (4), 684–692. 10.1016/0888-7543(90)90255-S. PubMed DOI

Syvänen A. C.; Sajantila A.; Lukka M. Identification of Individuals by Analysis of Biallelic DNA Markers, Using PCR and Solid-Phase Minisequencing. Am. J. Hum. Genet. 1993, 52 (1), 46–59. PubMed PMC

Pastinen T.; Partanen J.; Syvänen A. C. Multiplex, Fluorescent, Solid-Phase Minisequencing for Efficient Screening of DNA Sequence Variation. Clin Chem 1996, 42 (9), 1391–1397. 10.1093/clinchem/42.9.1391. PubMed DOI

Shumaker J. M.; Metspalu A.; Caskey C. T. Mutation Detection by Solid Phase Primer Extension. Hum Mutat 1996, 7 (4), 346–354. 10.1002/(SICI)1098-1004(1996)7:4<346::AID-HUMU9>3.0.CO;2-6. PubMed DOI

Erdogan F.; Kirchner R.; Mann W.; Ropers H. H.; Nuber U. A. Detection of Mitochondrial Single Nucleotide Polymorphisms Using a Primer Elongation Reaction on Oligonucleotide Microarrays. Nucleic Acids Res. 2001, 29 (7), e3610.1093/nar/29.7.e36. PubMed DOI PMC

Huber M.; Losert D.; Hiller R.; Harwanegg C.; Mueller M. W.; Schmidt W. M. Detection of Single Base Alterations in Genomic DNA by Solid Phase Polymerase Chain Reaction on Oligonucleotide Microarrays. Anal. Biochem. 2001, 299 (1), 24–30. 10.1006/abio.2001.5355. PubMed DOI

Liu J. L.; Ma Y. C.; Yang T.; Hu R.; Yang Y. H. A Single Nucleotide Polymorphism Electrochemical Sensor Based on DNA-Functionalized Cd-MOFs-74 as Cascade Signal Amplification Probes. Mikrochim. Acta 2021, 188 (8), 266.10.1007/s00604-021-04924-9. PubMed DOI

Trau D.; Lee T. M. H.; Lao A. I. K.; Lenigk R.; Hsing I.-M.; Ip N. Y.; Carles M. C.; Sucher N. J. Genotyping on a Complementary Metal Oxide Semiconductor Silicon Polymerase Chain Reaction Chip with Integrated DNA Microarray. Anal. Chem. 2002, 74 (13), 3168–3173. 10.1021/ac020053u. PubMed DOI

Brazill S.; Hebert N. E.; Kuhr W. G. Use of an Electrochemically Labeled Nucleotide Terminator for Known Point Mutation Analysis. Electrophoresis 2003, 24 (16), 2749–2757. 10.1002/elps.200305554. PubMed DOI

Ortiz M.; Jauset-Rubio M.; Kodr D.; Simonova A.; Hocek M.; O’Sullivan C. K. Solid-Phase Recombinase Polymerase Amplification Using Ferrocene-Labelled DNTPs for Electrochemical Detection of Single Nucleotide Polymorphisms. Biosens Bioelectron 2022, 198, 113825.10.1016/j.bios.2021.113825. PubMed DOI

Brázdilová P.; Vrábel M.; Pohl R.; Pivonková H.; Havran L.; Hocek M.; Fojta M. Ferrocenylethynyl Derivatives of Nucleoside Triphosphates: Synthesis, Incorporation, Electrochemistry, and Bioanalytical Applications. Chem.-Eur. J. 2007, 13 (34), 9527–9533. 10.1002/chem.200701249. PubMed DOI

Ménová P.; Raindlová V.; Hocek M. Scope and Limitations of the Nicking Enzyme Amplification Reaction for the Synthesis of Base-Modified Oligonucleotides and Primers for PCR. Bioconjug Chem 2013, 24 (6), 1081–1093. 10.1021/bc400149q. PubMed DOI

Simonova A.; Magriñá I.; Sýkorová V.; Pohl R.; Ortiz M.; Havran L.; Fojta M.; O’Sullivan C. K.; Hocek M. Tuning of Oxidation Potential of Ferrocene for Ratiometric Redox Labeling and Coding of Nucleotides and DNA. Chemistry 2020, 26 (6), 1286–1291. 10.1002/chem.201904700. PubMed DOI PMC

Wang J.Analytical Electrochemistry, 3rd ed.; Wiley-VCH: Hoboken, NJ, 2006.

Ortiz M.; Jauset-Rubio M.; Skouridou V.; Machado D.; Viveiros M.; Clark T. G.; Simonova A.; Kodr D.; Hocek M.; O’Sullivan C. K. Electrochemical Detection of Single-Nucleotide Polymorphism Associated with Rifampicin Resistance in Mycobacterium Tuberculosis Using Solid-Phase Primer Elongation with Ferrocene-Linked Redox-Labeled Nucleotides. ACS Sens 2021, 6 (12), 4398–4407. 10.1021/acssensors.1c01710. PubMed DOI PMC

Jauset-Rubio M.; Ortiz M.; O’Sullivan C. K. Solid-Phase Primer Elongation Using Biotinylated DNTPs for the Detection of a Single Nucleotide Polymorphism from a Fingerprick Blood Sample. Anal. Chem. 2021, 93 (44), 14578–14585. 10.1021/acs.analchem.1c03419. PubMed DOI PMC

Koek W. N. H.; van Meurs J. B.; van der Eerden B. C. J.; Rivadeneira F.; Zillikens M. C.; Hofman A.; Obermayer-Pietsch B.; Lips P.; Pols H. A.; Uitterlinden A. G.; van Leeuwen J. P. T. M. The T-13910C Polymorphism in the Lactase Phlorizin Hydrolase Gene Is Associated with Differences in Serum Calcium Levels and Calcium Intake. J Bone Miner Res 2010, 25 (9), 1980–1987. 10.1002/jbmr.83. PubMed DOI

Jauset-Rubio M.; Tomaso H.; El-Shahawi M. S.; Bashammakh A. S.; Al-Youbi A. O.; O’Sullivan C. K. Duplex Lateral Flow Assay for the Simultaneous Detection of Yersinia Pestis and Francisella Tularensis. Anal. Chem. 2018, 90 (21), 12745–12751. 10.1021/acs.analchem.8b03105. PubMed DOI

Wu Q.; Jung J. Genome-Wide Polygenic Risk Score for Major Osteoporotic Fractures in Postmenopausal Women Using Associated Single Nucleotide Polymorphisms. J Transl Med 2023, 21 (1), 127.10.1186/s12967-023-03974-2. PubMed DOI PMC

Trajanoska K.; Morris J. A.; Oei L.; Zheng H.-F.; Evans D. M.; Kiel D. P.; Ohlsson C.; Richards J. B.; Rivadeneira F. GEFOS/GENOMOS consortium and the 23andMe research team. Assessment of the Genetic and Clinical Determinants of Fracture Risk: Genome Wide Association and Mendelian Randomisation Study. BMJ 2018, 362, k3225.10.1136/bmj.k3225. PubMed DOI PMC

Movérare-Skrtic S.; Henning P.; Liu X.; Nagano K.; Saito H.; Börjesson A. E.; Sjögren K.; Windahl S. H.; Farman H.; Kindlund B.; et al. Osteoblast-Derived WNT16 Represses Osteoclastogenesis and Prevents Cortical Bone Fragility Fractures. Nat Med 2014, 20 (11), 1279–1288. 10.1038/nm.3654. PubMed DOI PMC

van Bezooijen R. L.; ten Dijke P.; Papapoulos S. E.; Löwik C. W. G. M. SOST/Sclerostin, an Osteocyte-Derived Negative Regulator of Bone Formation. Cytokine Growth Factor Rev 2005, 16 (3), 319–327. 10.1016/j.cytogfr.2005.02.005. PubMed DOI

Estrada K.; Styrkarsdottir U.; Evangelou E.; Hsu Y.-H.; Duncan E. L.; Ntzani E. E.; Oei L.; Albagha O. M. E.; Amin N.; Kemp J. P.; et al. Genome-Wide Meta-Analysis Identifies 56 Bone Mineral Density Loci and Reveals 14 Loci Associated with Risk of Fracture. Nat. Genet. 2012, 44 (5), 491–501. 10.1038/ng.2249. PubMed DOI PMC

Nilsson K. H.; Henning P.; El Shahawy M.; Nethander M.; Andersen T. L.; Ejersted C.; Wu J.; Gustafsson K. L.; Koskela A.; Tuukkanen J.; et al. RSPO3 Is Important for Trabecular Bone and Fracture Risk in Mice and Humans. Nat Commun 2021, 12 (1), 4923.10.1038/s41467-021-25124-2. PubMed DOI PMC

Tanaka K.; Xue Y.; Nguyen-Yamamoto L.; Morris J. A.; Kanazawa I.; Sugimoto T.; Wing S. S.; Richards J. B.; Goltzman D. FAM210A Is a Novel Determinant of Bone and Muscle Structure and Strength. Proceedings of the National Academy of Sciences 2018, 115 (16), E3759–E3768. 10.1073/pnas.1719089115. PubMed DOI PMC

Obermayer-Pietsch B. M.; Bonelli C. M.; Walter D. E.; Kuhn R. J.; Fahrleitner-Pammer A.; Berghold A.; Goessler W.; Stepan V.; Dobnig H.; Leb G.; Renner W. Genetic Predisposition for Adult Lactose Intolerance and Relation to Diet, Bone Density, and Bone Fractures. Journal of Bone and Mineral Research 2004, 19 (1), 42–47. 10.1359/jbmr.0301207. PubMed DOI

Torkamani A.; Wineinger N. E.; Topol E. J. The Personal and Clinical Utility of Polygenic Risk Scores. Nat Rev Genet 2018, 19 (9), 581–590. 10.1038/s41576-018-0018-x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace