Characterization of five CHASE-containing histidine kinase receptors from Populus × canadensis cv. Robusta sensing isoprenoid and aromatic cytokinins
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
PubMed
31776777
DOI
10.1007/s00425-019-03297-x
PII: 10.1007/s00425-019-03297-x
Knihovny.cz E-zdroje
- Klíčová slova
- Aromatic cytokinin, Histidine kinase, Hormone, Isoprenoid cytokinin, Poplar, Topolin,
- MeSH
- cytokininy metabolismus MeSH
- histidinkinasa metabolismus MeSH
- Populus metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- terpeny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy MeSH
- histidinkinasa MeSH
- terpeny MeSH
Five poplar CHASE-containing histidine kinase receptors bind cytokinins and display kinase activities. Both endogenous isoprenoid and aromatic cytokinins bind to the receptors in live cell assays. Cytokinins are phytohormones that play key roles in various developmental processes in plants. The poplar species Populus × canadensis, cv. Robusta, is the first organism found to contain aromatic cytokinins. Here, we report the functional characterization of five CHASE-containing histidine kinases from P. × canadensis: PcHK2, PcHK3a, PcHK3b, PcHK4a and PcHK4b. A qPCR analysis revealed high transcript levels of all PcHKs other than PcHK4b across multiple poplar organs. The ligand specificity was determined using a live cell Escherichia coli assay and we provide evidence based on UHPLC-MS/MS data that ribosides can be true ligands. PcHK2 exhibited higher sensitivity to iP-type cytokinins than the other receptors, while PcHK3a and PcHK3b bound these cytokinins much more weakly, because they possess two isoleucine residues that clash with the cytokinin base and destabilize its binding. All receptors display kinase activity but their activation ratios in the presence/absence of cytokinin differ significantly. PcHK4a displays over 400-fold higher kinase activity in the presence of cytokinin, suggesting involvement in strong responses to changes in cytokinin levels. trans-Zeatin was both the most abundant cytokinin in poplar and that with the highest variation in abundance, which is consistent with its strong binding to all five HKs and activation of cytokinin signaling via A-type response regulators. The aromatic cytokinins' biological significance remains unclear, their levels vary diurnally, seasonally, and annually. PcHK3 and PcHK4 display the strongest binding at pH 7.5 and 5.5, respectively, in line with their putative membrane localization in the endoplasmic reticulum and plasma membrane.
Zobrazit více v PubMed
BMC Genomics. 2013 Dec 16;14:885 PubMed
Plant J. 2011 Jul;67(1):157-68 PubMed
Plant Physiol. 1992 May;99(1):74-80 PubMed
J Exp Bot. 2006;57(15):4051-8 PubMed
J Exp Bot. 2011 Nov;62(15):5571-80 PubMed
PLoS One. 2016 Feb 10;11(2):e0148554 PubMed
FEBS J. 2006 Oct;273(20):4631-44 PubMed
Mol Biol Evol. 2000 Apr;17(4):540-52 PubMed
J Exp Bot. 2015 Apr;66(7):1851-63 PubMed
Front Plant Sci. 2017 Sep 20;8:1614 PubMed
Genes Dev. 2000 Dec 1;14(23):2938-43 PubMed
J Exp Bot. 2011 Oct;62(14):5149-59 PubMed
Plant Cell. 2006 Jan;18(1):40-54 PubMed
Plant Physiol. 2013 Dec;163(4):1568-83 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:89-118 PubMed
Planta. 1973 Jun;114(2):119-29 PubMed
Nat Chem Biol. 2011 Oct 02;7(11):766-8 PubMed
Plant Cell Physiol. 2007 Dec;48(12):1809-14 PubMed
BMC Evol Biol. 2007 Apr 17;7:62 PubMed
Plant Cell. 2004 Jun;16(6):1365-77 PubMed
Plant Cell Physiol. 2004 Sep;45(9):1299-305 PubMed
J Mol Biol. 2000 Sep 8;302(1):205-17 PubMed
Cell Rep. 2017 Dec 5;21(10):2940-2951 PubMed
Plant Physiol. 2011 Aug;156(4):1808-18 PubMed
FEBS J. 2016 Jan;283(2):361-77 PubMed
Plant Physiol. 2000 Dec;124(4):1706-17 PubMed
Planta. 2019 Jul;250(1):229-244 PubMed
J Exp Bot. 2008;59(1):75-83 PubMed
Phytochemistry. 2008 Aug;69(11):2214-24 PubMed
Nature. 2008 Jun 19;453(7198):1094-7 PubMed
Plant Mol Biol. 2016 Sep;92(1-2):235-48 PubMed
Curr Opin Plant Biol. 2009 Oct;12(5):527-38 PubMed
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):814-9 PubMed
Plant Physiol. 2004 Apr;134(4):1654-61 PubMed
J Exp Bot. 2018 Jul 18;69(16):3839-3853 PubMed
Phytochemistry. 2018 Jun;150:1-11 PubMed
Arabidopsis Book. 2014 Jan 02;12:e0168 PubMed
Plant Cell Physiol. 2001 Sep;42(9):1017-23 PubMed
Plant Cell. 2013 Oct;25(10):4028-43 PubMed
Plant Physiol. 2017 Mar;173(3):1783-1797 PubMed
Plant Cell Environ. 2017 May;40(5):622-634 PubMed
Anal Biochem. 2005 Dec 1;347(1):129-34 PubMed
Nature. 2001 Sep 27;413(6854):383-9 PubMed
Plant Physiol. 2003 Aug;132(4):1998-2011 PubMed
Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 PubMed
Science. 2006 Sep 15;313(5793):1596-604 PubMed
New Phytol. 2008;177(1):77-89 PubMed
J Exp Bot. 2015 Jan;66(1):339-53 PubMed
Plant Cell. 2004 Mar;16(3):658-71 PubMed
J Exp Bot. 2003 Nov;54(392):2511-7 PubMed
J Plant Physiol. 2014 Oct 15;171(16):1472-8 PubMed
Plant Cell. 2016 Jul;28(7):1602-15 PubMed
Biochem Pharmacol. 1973 Dec 1;22(23):3099-108 PubMed
J Mol Biol. 2004 Aug 27;341(5):1237-49 PubMed
Plant Cell Physiol. 2001 Feb;42(2):231-5 PubMed
Biochimie. 2010 Aug;92(8):1052-62 PubMed
Nature. 2001 Feb 22;409(6823):1060-3 PubMed
Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8821-6 PubMed
Plant Physiol. 2011 Oct;157(2):659-72 PubMed
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20623-8 PubMed
Plant Cell Physiol. 2012 Jul;53(7):1334-43 PubMed
Science. 2007 Jan 5;315(5808):104-7 PubMed
Plant Physiol. 2009 Oct;151(2):782-91 PubMed
Mol Microbiol. 2001 Apr;40(2):440-50 PubMed
Plant Cell Physiol. 2001 Feb;42(2):107-13 PubMed
Genomics. 2007 Jun;89(6):697-707 PubMed
Syst Biol. 2010 May;59(3):307-21 PubMed