Characterization of five CHASE-containing histidine kinase receptors from Populus × canadensis cv. Robusta sensing isoprenoid and aromatic cytokinins

. 2019 Nov 27 ; 251 (1) : 1. [epub] 20191127

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31776777
Odkazy

PubMed 31776777
DOI 10.1007/s00425-019-03297-x
PII: 10.1007/s00425-019-03297-x
Knihovny.cz E-zdroje

Five poplar CHASE-containing histidine kinase receptors bind cytokinins and display kinase activities. Both endogenous isoprenoid and aromatic cytokinins bind to the receptors in live cell assays. Cytokinins are phytohormones that play key roles in various developmental processes in plants. The poplar species Populus × canadensis, cv. Robusta, is the first organism found to contain aromatic cytokinins. Here, we report the functional characterization of five CHASE-containing histidine kinases from P. × canadensis: PcHK2, PcHK3a, PcHK3b, PcHK4a and PcHK4b. A qPCR analysis revealed high transcript levels of all PcHKs other than PcHK4b across multiple poplar organs. The ligand specificity was determined using a live cell Escherichia coli assay and we provide evidence based on UHPLC-MS/MS data that ribosides can be true ligands. PcHK2 exhibited higher sensitivity to iP-type cytokinins than the other receptors, while PcHK3a and PcHK3b bound these cytokinins much more weakly, because they possess two isoleucine residues that clash with the cytokinin base and destabilize its binding. All receptors display kinase activity but their activation ratios in the presence/absence of cytokinin differ significantly. PcHK4a displays over 400-fold higher kinase activity in the presence of cytokinin, suggesting involvement in strong responses to changes in cytokinin levels. trans-Zeatin was both the most abundant cytokinin in poplar and that with the highest variation in abundance, which is consistent with its strong binding to all five HKs and activation of cytokinin signaling via A-type response regulators. The aromatic cytokinins' biological significance remains unclear, their levels vary diurnally, seasonally, and annually. PcHK3 and PcHK4 display the strongest binding at pH 7.5 and 5.5, respectively, in line with their putative membrane localization in the endoplasmic reticulum and plasma membrane.

Zobrazit více v PubMed

BMC Genomics. 2013 Dec 16;14:885 PubMed

Plant J. 2011 Jul;67(1):157-68 PubMed

Plant Physiol. 1992 May;99(1):74-80 PubMed

J Exp Bot. 2006;57(15):4051-8 PubMed

J Exp Bot. 2011 Nov;62(15):5571-80 PubMed

PLoS One. 2016 Feb 10;11(2):e0148554 PubMed

FEBS J. 2006 Oct;273(20):4631-44 PubMed

Mol Biol Evol. 2000 Apr;17(4):540-52 PubMed

J Exp Bot. 2015 Apr;66(7):1851-63 PubMed

Front Plant Sci. 2017 Sep 20;8:1614 PubMed

Genes Dev. 2000 Dec 1;14(23):2938-43 PubMed

J Exp Bot. 2011 Oct;62(14):5149-59 PubMed

Plant Cell. 2006 Jan;18(1):40-54 PubMed

Plant Physiol. 2013 Dec;163(4):1568-83 PubMed

Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:89-118 PubMed

Planta. 1973 Jun;114(2):119-29 PubMed

Nat Chem Biol. 2011 Oct 02;7(11):766-8 PubMed

Plant Cell Physiol. 2007 Dec;48(12):1809-14 PubMed

BMC Evol Biol. 2007 Apr 17;7:62 PubMed

Plant Cell. 2004 Jun;16(6):1365-77 PubMed

Plant Cell Physiol. 2004 Sep;45(9):1299-305 PubMed

J Mol Biol. 2000 Sep 8;302(1):205-17 PubMed

Cell Rep. 2017 Dec 5;21(10):2940-2951 PubMed

Plant Physiol. 2011 Aug;156(4):1808-18 PubMed

FEBS J. 2016 Jan;283(2):361-77 PubMed

Plant Physiol. 2000 Dec;124(4):1706-17 PubMed

Planta. 2019 Jul;250(1):229-244 PubMed

J Exp Bot. 2008;59(1):75-83 PubMed

Phytochemistry. 2008 Aug;69(11):2214-24 PubMed

Nature. 2008 Jun 19;453(7198):1094-7 PubMed

Plant Mol Biol. 2016 Sep;92(1-2):235-48 PubMed

Curr Opin Plant Biol. 2009 Oct;12(5):527-38 PubMed

Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):814-9 PubMed

Plant Physiol. 2004 Apr;134(4):1654-61 PubMed

J Exp Bot. 2018 Jul 18;69(16):3839-3853 PubMed

Phytochemistry. 2018 Jun;150:1-11 PubMed

Arabidopsis Book. 2014 Jan 02;12:e0168 PubMed

Plant Cell Physiol. 2001 Sep;42(9):1017-23 PubMed

Plant Cell. 2013 Oct;25(10):4028-43 PubMed

Plant Physiol. 2017 Mar;173(3):1783-1797 PubMed

Plant Cell Environ. 2017 May;40(5):622-634 PubMed

Anal Biochem. 2005 Dec 1;347(1):129-34 PubMed

Nature. 2001 Sep 27;413(6854):383-9 PubMed

Plant Physiol. 2003 Aug;132(4):1998-2011 PubMed

Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 PubMed

Science. 2006 Sep 15;313(5793):1596-604 PubMed

New Phytol. 2008;177(1):77-89 PubMed

J Exp Bot. 2015 Jan;66(1):339-53 PubMed

Plant Cell. 2004 Mar;16(3):658-71 PubMed

J Exp Bot. 2003 Nov;54(392):2511-7 PubMed

J Plant Physiol. 2014 Oct 15;171(16):1472-8 PubMed

Plant Cell. 2016 Jul;28(7):1602-15 PubMed

Biochem Pharmacol. 1973 Dec 1;22(23):3099-108 PubMed

J Mol Biol. 2004 Aug 27;341(5):1237-49 PubMed

Plant Cell Physiol. 2001 Feb;42(2):231-5 PubMed

Biochimie. 2010 Aug;92(8):1052-62 PubMed

Nature. 2001 Feb 22;409(6823):1060-3 PubMed

Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8821-6 PubMed

Plant Physiol. 2011 Oct;157(2):659-72 PubMed

Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20623-8 PubMed

Plant Cell Physiol. 2012 Jul;53(7):1334-43 PubMed

Science. 2007 Jan 5;315(5808):104-7 PubMed

Plant Physiol. 2009 Oct;151(2):782-91 PubMed

Mol Microbiol. 2001 Apr;40(2):440-50 PubMed

Plant Cell Physiol. 2001 Feb;42(2):107-13 PubMed

Genomics. 2007 Jun;89(6):697-707 PubMed

Syst Biol. 2010 May;59(3):307-21 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...