Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings

. 2018 ; 9 () : 1936. [epub] 20190111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30687345

It has long been known that hormones affect the interaction of a phytopathogen with its host plant. The pathogen can cause changes in plant hormone homeostasis directly by affecting biosynthesis or metabolism in the plant or by synthesizing and secreting the hormone itself. We previously demonstrated that pathogenic fungi of the Fusarium species complex are able to produce three major types of hormones: auxins, cytokinins, and gibberellins. In this work, we explore changes in the levels of these hormones in maize and mango plant tissues infected with Fusarium. The ability to produce individual phytohormones varies significantly across Fusarium species and such differences likely impact host specificity inducing the unique responses noted in planta during infection. For example, the production of gibberellins by F. fujikuroi leads to elongated rice stalks and the suppression of gibberellin biosynthesis in plant tissue. Although all Fusarium species are able to synthesize auxin, sometimes by multiple pathways, the ratio of its free form and conjugates in infected tissue is affected more than the total amount produced. The recently characterized unique pathway for cytokinin de novo synthesis in Fusarium appears silenced or non-functional in all studied species during plant infection. Despite this, a large increase in cytokinin levels was detected in F. mangiferae infected plants, caused likely by the up-regulation of plant genes responsible for their biosynthesis. Thus, the accumulation of active cytokinins may contribute to mango malformation of the reproductive organs upon infection of mango trees. Together, our findings provide insight into the complex role fungal and plant derived hormones play in the fungal-plant interactions.

Zobrazit více v PubMed

Ansari M. W., Rani V., Shukla A., Bains G., Pant R. C., Tuteja N. (2015). Mango (Mangifera indica L.) malformation: a malady of stress ethylene origin. Physiol. Mol. Biol. Plants 21 1–8. 10.1007/s12298-014-0258-y PubMed DOI PMC

Ansari M. W., Shukla A., Pant R. C., Tuteja N. (2013). First evidence of ethylene production by Fusarium mangiferae associated with mango malformation. Plant Signal. Behav. 8:e22673. 10.4161/psb.22673 PubMed DOI PMC

Bai G. H., Shaner G. (1996). Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Dis. 80 975–979. 10.1094/PD-80-0975 DOI

Behr M., Motyka V., Weihmann F., Malbeck J., Deising H. B., Wirsel S. G. R. (2012). Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Mol. Plant Microbe. Interact. 25 1073–1082. 10.1094/MPMI-01-12-0012-R PubMed DOI

Bielach A., Duclercq J., Marhavý P., Benková E. (2012). Genetic approach towards the identification of auxin-cytokinin crosstalk components involved in root development. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367 1469–1478. 10.1098/rstb.2011.0233 PubMed DOI PMC

Bist L. D., Ram S. (1986). Effect of malformation on changes in endogenous gibberellins and cytokinins during floral development of mango. Sci. Hortic. 28 235–241. 10.1016/0304-4238(86)90005-1 DOI

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI

Chanclud E., Kisiala A., Emery N. R. J., Chalvon V., Ducasse A., Romiti-Michel C., et al. (2016). Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog. 12:e1005457. 10.1371/journal.ppat.1005457 PubMed DOI PMC

Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P. (1992). Multifunctional yeast high-copy-number shuttle vectors. Gene, 110 119–122. 10.1016/0378-1119(92)90454-W PubMed DOI

Darken M. A., Jensen A. L., Shu P. (1959). Production of gibberellic acid by fermentation. Appl. Microbiol. 7 301–303. PubMed PMC

Dempsey D. A., Klessig D. F. (2012). SOS - too many signals for systemic acquired resistance? Trends Plant Sci. 17 538–545. 10.1016/j.tplants.2012.05.011 PubMed DOI

Di X., Takken F. L. W., Tintor N. (2016). How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum. Front. Plant Sci. 7:170. 10.3389/fpls.2016.00170 PubMed DOI PMC

Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. (2011). Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 62 2431–2452. 10.1093/jxb/err004 PubMed DOI

Frébort I., Šebela M., Galuszka P., Werner T., Schmülling T., Peè P. (2002). Cytokinin oxidase/cytokinin dehydrogenase assay: optimized procedures and applications. Anal. Biochem. 306 1–7. 10.1006/abio.2002.5670 PubMed DOI

Freeman S., Shtienberg D., Maymon M., Levin A. G., Ploetz R. C. (2014). New insights into mango malformation disease epidemiology lead to a new integrated management strategy for subtropical environments. Plant Dis. 98 1456–1466. 10.1094/PDIS-07-14-0679-FE PubMed DOI

Fu J., Liu H., Li Y., Yu H., Li X., Xiao J., et al. (2011). Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol. 155 589–602. 10.1104/pp.110.163774 PubMed DOI PMC

Geissman T. A., Verbiscar A. J., Phinney B. O., Cragg G. (1966). Studies on the biosynthesis of gibberellins from (-)-kaurenoic acid in cultures of Gibberella fujikuroi. Phytochemistry 5 933–947. 10.1016/S0031-9422(00)82790-9 DOI

González-Lamothe R., El Oirdi M., Brisson N., Bouarab K. (2012). The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. Plant Cell 24 762–777. 10.1105/tpc.111.095190 PubMed DOI PMC

Gordon T. R. (2006). Pitch canker disease of pines. Phytopathology 96 657–659. 10.1094/PHYTO-96-0657 PubMed DOI

Hedden P., Sponsel V. (2015). A century of gibberellin research. J. Plant Growth Regul. 34 740–760. 10.1007/s00344-015-9546-1 PubMed DOI PMC

Hinsch J., Galuszka P., Tudzynski P. (2016). Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea. New Phytol. 211 980–992. 10.1111/nph.13960 PubMed DOI

Hinsch J., Vrabka J., Oeser B., Novák O., Galuszka P., Tudzynski P. (2015). De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environ. Microbiol. 17 2935–2951. 10.1111/1462-2920.12838 PubMed DOI

Jiang C.-J., Shimono M., Sugano S., Kojima M., Liu X., Inoue H., et al. (2013). Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol. Plant. Microbe. Interact. 26 287–296. 10.1094/MPMI-06-12-0152-R PubMed DOI

Jones B., Gunnerås S. A., Petersson S. V., Tarkowski P., Graham N., May S., et al. (2010). Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22 2956–2969. 10.1105/tpc.110.074856 PubMed DOI PMC

Kasahara H. (2015). Current aspects of auxin biosynthesis in plants. Biosci. Biotechnol. Biochem. 80 1–9. 10.1080/09168451.2015.1086259 PubMed DOI

Kidd B. N., Kadoo N. Y., Dombrecht B., Tekeoglu M., Gardiner D. M., Thatcher L. F., et al. (2011). Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. Mol. Plant. Microbe. Interact. 24 733–748. 10.1094/MPMI-08-10-0194 PubMed DOI

Liu F., Wu J.-B., Zhan R.-L., Ou X.-C. (2016). Transcription profiling analysis of mango-fusarium mangiferae interaction. Front. Microbiol. 7:1443. 10.3389/fmicb.2016.01443 PubMed DOI PMC

Lomin S. N., Krivosheev D. M., Steklov M. Y., Arkhipov D. V., Osolodkin D. I., Schmülling T., et al. (2015). Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 66 1851–1863. 10.1093/jxb/eru522 PubMed DOI PMC

Ludwig-Müller J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot. 62 1757–1773. 10.1093/jxb/erq412 PubMed DOI

Mańka M. (1980). Auxin and gibberellin-like substances synthesis by Fusarium isolates pathogenic to corn seedlings. Acta Microbiol. Pol. 29 365–374. PubMed

Matic S., Gullino M. L., Spadaro D. (2017). The puzzle of bakanae disease through interactions between Fusarium fujikuroi and rice. Front. Biosci. 9:333–344. 10.2741/e806 PubMed DOI

Morrison E. N., Emery R. J. N., Saville B. J. (2017). Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize. Plant Pathol. 66 726–742. 10.1111/ppa.12629 DOI

Nicholson R. I. D., van Staden J. (1988). Cytokinins and mango flower malformation. i. tentative identification of the complement in healthy and malformed inflorescences. J. Plant Physiol. 132 720–724. 10.1016/S0176-1617(88)80235-9 DOI

Niehaus E.-M., Münsterkötter M., Proctor R. H., Brown D. W., Sharon A., Idan Y., et al. (2016). Comparative “Omics” of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol. Evol. 8 3574–3599. 10.1093/gbe/evw259 PubMed DOI PMC

Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. (2012). Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 72 523–536. 10.1111/j.1365-313X.2012.05085.x PubMed DOI

O’Donnell K., Rooney A. P., Proctor R. H., Brown D. W., McCormick S. P., Ward T. J., et al. (2013). Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet. Biol. 52 20–31. 10.1016/j.fgb.2012.12.004 PubMed DOI

Presello D. A., Botta G., Iglesias J., Eyhérabide G. H. (2008). Effect of disease severity on yield and grain fumonisin concentration of maize hybrids inoculated with Fusarium verticillioides. Crop Prot. 27 572–576. 10.1016/j.cropro.2007.08.015 DOI

Quazi S. A. J., Meon S., Jaafar H., Ahmad Z. A. B. M. (2015). The role of phytohormones in relation to bakanae disease development and symptoms expression. Physiol. Mol. Plant Pathol. 90 27–38. 10.1016/j.pmpp.2015.02.001 DOI

Reineke G., Heinze B., Schirawski J., Buettner H., Kahmann R., Basse C. W. (2008). Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol. Plant Pathol. 9 339–355. 10.1111/j.1364-3703.2008.00470.x PubMed DOI PMC

Rittenberg D., Foster G. L. (1940). A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J. Biol. Chem. 133:737.

Sánchez-López Á. M., Baslam M., De Diego N., Muñoz F. J., Bahaji A., Almagro G., et al. (2016). Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant. Cell Environ. 39 2592–2608. 10.1111/pce.12759 PubMed DOI

Schmittgen T. D., Livak K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3 1101–1108. 10.1038/nprot.2008.73 PubMed DOI

Schumacher J. (2012). Tools for Botrytis cinerea: new expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet. Biol. 49 483–497. 10.1016/j.fgb.2012.03.005 PubMed DOI

Staben C., Jensen B., Singer M., Pollock J., Schechtman M., Kinsey J., et al. (1989). Use of a bacterial Hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Gen. Rep. 36 79–81. 10.4148/1941-4765.1519 PubMed DOI

Thakur M. S., Vyas K. M. (1983). Production of plant growth regulators by some Fusarium species. Folia Microbiol. 28 124–129. 10.1007/BF02877368 PubMed DOI

Tsavkelova E., Oeser B., Oren-Young L., Israeli M., Sasson Y., Tudzynski B., et al. (2012). Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genet. Biol. 49 48–57. 10.1016/j.fgb.2011.10.005 PubMed DOI

Tudzynski B., Hölter K. (1998). Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet. Biol. 25 157–170. 10.1006/fgbi.1998.1095 PubMed DOI

Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. (2013). Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. Talanta 112 85–94. 10.1016/j.talanta.2013.03.068 PubMed DOI

Van Staden J., Nicholson R. I. D. (1989). Cytokinins and mango flower malformation II. the cytokinin complement produced by Fusarium moniliforme and the ability of the fungus to incorporate [8-14C] adenine into cytokinins. Physiol. Mol. Plant Pathol. 35 423–431. 10.1016/0885-5765(89)90061-1 DOI

Vyroubalová Š., Václavíková K., Turečková V., Novák O., Šmehilová M., Hluska T., et al. (2009). Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol. 151 433–447. 10.1104/pp.109.142489 PubMed DOI PMC

Werner T., Köllmer I., Bartrina I., Holst K., Schmülling T. (2006). New insights into the biology of cytokinin degradation. Plant Biol. 8 371–381. 10.1055/s-2006-923928 PubMed DOI

Werner T., Motyka V., Strnad M., Schmülling T. (2001). Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. U.S.A. 98 10487–10492. 10.1073/pnas.171304098 PubMed DOI PMC

Wiemann P., Sieber C. M. K., von Bargen K. W., Studt L., Niehaus E.-M., Espino J. J., et al. (2013). Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog. 9:e1003475. 10.1371/journal.ppat.1003475 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Occurrence and biosynthesis of cytokinins in poplar

. 2019 Jul ; 250 (1) : 229-244. [epub] 20190412

Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects

. 2019 ; 10 () : 1777. [epub] 20200219

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...