Innate Immune Recognition: Implications for the Interaction of Francisella tularensis with the Host Immune System
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
29085810
PubMed Central
PMC5650615
DOI
10.3389/fcimb.2017.00446
Knihovny.cz E-zdroje
- Klíčová slova
- Francisella tularensis, immune recognition, innate immunity, intracellular bacteria, signaling windows concept, spatiotemporal network,
- MeSH
- adaptivní imunita MeSH
- Francisella tularensis imunologie MeSH
- imunitní systém MeSH
- interakce hostitele a patogenu imunologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- parakrinní signalizace imunologie MeSH
- přirozená imunita * MeSH
- tularemie imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The intracellular bacterial pathogen Francisella tularensis causes serious infectious disease in humans and animals. Moreover, F. tularensis, a highly infectious pathogen, poses a major concern for the public as a bacterium classified under Category A of bioterrorism agents. Unfortunately, research has so far failed to develop effective vaccines, due in part to the fact that the pathogenesis of intracellular bacteria is not fully understood and in part to gaps in our understanding of innate immune recognition processes leading to the induction of adaptive immune response. Recent evidence supports the concept that immune response to external stimuli in the form of bacteria is guided by the primary interaction of the bacterium with the host cell. Based on data from different Francisella models, we present here the basic paradigms of the emerging innate immune recognition concept. According to this concept, the type of cell and its receptor(s) that initially interact with the target constitute the first signaling window; the signals produced in the course of primary interaction of the target with a reacting cell act in a paracrine manner; and the innate immune recognition process as a whole consists in a series of signaling windows modulating adaptive immune response. Finally, the host, in the strict sense, is the interacting cell.
Zobrazit více v PubMed
Ablasser A., Bauernfeind F., Hartmann G., Latz E., Fitzgerald K. A., Hornung V. (2009). RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072. 10.1038/ni.1779 PubMed DOI PMC
Abplanalp A. L., Morris I. R., Parida B. K., Teale J. M., Berton M. T. (2009). TLR-dependent control of Francisella tularensis infection and host inflammatory responses. PLoS ONE 4:e7920. 10.1371/journal.pone.0007920 PubMed DOI PMC
Ancuta P., Pedron T., Girard R., Sandström G., Chaby R. (1996). Inability of the Francisella tularensis lipopolysaccharide to mimic or to antagonize the induction of cell activation by endotoxins. Infect. Immun. 64, 2041–2046. PubMed PMC
Arancibia S. A., Beltrán C. J., Aguirre I. M., Silva P., Peralta A. L., Malinarich F., et al. . (2007). Toll-like receptors are key participants in innate immune responses. Biol. Res. 40, 97–112. 10.4067/S0716-97602007000200001 PubMed DOI
Ashtekar A. R., Zhang P., Katz J., Deivanayagam C. C., Rallabhandi P., Vogel S. N., et al. . (2008). TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis. J. Leukoc. Biol. 84, 1434–1446. 10.1189/jlb.0308215 PubMed DOI PMC
Ayala J. M., Yamin T. T., Egger L. A., Chin J., Kostura M. J., Miller D. K. (1994). IL-1 beta-converting enzyme is present in monocytic cells as an inactive 45-kDa precursor. J. Immunol. 153, 2592–2599. PubMed
Balagopal A., MacFarlane A. S., Mohapatra N., Soni S., Gunn J. S., Schlesinger L. S. (2006). Characterization of the receptor-ligand pathways important for entry and survival of Francisella tularensis in human macrophages. Infect. Immun. 74, 5114–5125. 10.1128/IAI.00795-06 PubMed DOI PMC
Barel M., Charbit A. (2014). Detection of the interaction between host and bacterial proteins: eukaryotic nucleolin interacts with Francisella elongation factor Tu. Methods Mol. Biol. 1197, 123–139. 10.1007/978-1-4939-1261-2_7 PubMed DOI
Barel M., Hovanessian A. G., Meibom K., Briand J. P., Dupuis M., Charbit A. (2008). A novel receptor - ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. BMC Microbiol. 8:145. 10.1186/1471-2180-8-145 PubMed DOI PMC
Barel M., Meibom K., Charbit A. (2010). Nucleolin, a shuttle protein promoting infection of human monocytes by Francisella tularensis. PLoS ONE 5:e14193. 10.1371/journal.pone.0014193 PubMed DOI PMC
Barker J. R., Koestler B. J., Carpenter V. K., Burdette D. L., Waters C. M., Vance R. E., et al. . (2013). STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. MBio 4:e00018–e00013. 10.1128/mBio.00018-13 PubMed DOI PMC
Bencurova E., Kovac A., Pulzova L., Gyuranecz M., Mlynarcik P., Mucha R., et al. . (2015). Deciphering the protein interaction in adhesion of Francisella tularensis subsp. holarctica to the endothelial cells. Microb. Pathog. 81, 6–15. 10.1016/j.micpath.2015.03.007 PubMed DOI
Ben Nasr A., Haithcoat J., Masterson J. E., Gunn J. S., Eaves-Pyles T., Klimpel G. R. (2006). Critical role for serum opsonins and complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in phagocytosis of Francisella tularensis by human dendritic cells (DC): uptake of Francisella leads to activation of immature DC and intracellular survival of the bacteria. J. Leukoc. Biol. 80, 774–786. 10.1189/jlb.1205755 PubMed DOI
Bosio C. M., Bielefeldt-Ohmann H., Belisle J. T. (2007). Active suppression of the pulmonary immune response by Francisella tularensis Schu4. J. Immunol. 178, 4538–4547. 10.4049/jimmunol.178.7.4538 PubMed DOI
Bosio C. M., Dow S. W. (2005). Francisella tularensis induces aberrant activation of pulmonary dendritic cells. J. Immunol. 175, 6792–6801. 10.4049/jimmunol.175.10.6792 PubMed DOI
Botos I., Segal D. M., Davies D. R. (2011). The structural biology of Toll-like receptors. Structure 19, 447–459. 10.1016/j.str.2011.02.004 PubMed DOI PMC
Bourdonnay E., Henry T. (2016). Catch me if you can. Elife 5:e14721. 10.7554/eLife.14721 PubMed DOI PMC
Bradburne C. E., Verhoeven A. B., Manyam G. C., Chaudhry S. A., Chang E. L., Thach D. C., et al. . (2013). Temporal transcriptional response during infection of type II alveolar epithelial cells with Francisella tularensis Live Vaccine Strain (LVS) supports a general host suppression and bacterial uptake by macropinocytosis. J. Biol. Chem. 288, 10780–10791. 10.1074/jbc.M112.362178 PubMed DOI PMC
Budak G., Eren Ozsoy O., Aydin Son Y., Can T., Tuncbag N. (2015). Reconstruction of the temporal signaling network in Salmonella-infected human cells. Front. Microbiol. 6:730. 10.3389/fmicb.2015.00730 PubMed DOI PMC
Burdette D. L., Monroe K. M., Sotelo-Troha K., Iwig J. S., Eckert B., Hyodo M., et al. . (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518. 10.1038/nature10429 PubMed DOI PMC
Burdette D. L., Vance R. E. (2013). STING and the innate immune response to nucleic acids in the cytosol. Nat. Immunol. 14, 19–26. 10.1038/ni.2491 PubMed DOI
Carvalho C. L., Lopes de Carvalho I., Zé-Zé L., Núncio M. S., Duarte E. L. (2014). Tularaemia: a challenging zoonosis. Comp. Immunol. Microbiol. Infect. Dis. 37, 85–96. 10.1016/j.cimid.2014.01.002 PubMed DOI PMC
Chase J. C., Celli J., Bosio C. M. (2009). Direct and indirect impairment of human dendritic cell function by virulent Francisella tularensis Schu S4. Infect. Immun. 77, 180–195. 10.1128/IAI.00879-08 PubMed DOI PMC
Checroun C., Wehrly T. D., Fischer E. R., Hayes S. F., Celli J. (2006). Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc. Natl. Acad. Sci. U.S.A. 103, 14578–14583. 10.1073/pnas.0601838103 PubMed DOI PMC
Chen W., KuoLee R., Shen H., Bùsa M., Conlan J. W. (2004). Toll-like receptor 4 (TLR4) does not confer a resistance advantage on mice against low-dose aerosol infection with virulent type A Francisella tularensis. Microb. Pathog. 37, 185–191. 10.1016/j.micpath.2004.06.010 PubMed DOI
Chen W., Kuolee R., Shen H., Bùsa M., Conlan J. W. (2005). Toll-like receptor 4 (TLR4) plays a relatively minor role in murine defense against primary intradermal infection with Francisella tularensis LVS. Immunol. Lett. 97, 151–154. 10.1016/j.imlet.2004.10.001 PubMed DOI
Clemens D. L., Horwitz M. A. (2007). Uptake and intracellular fate of Francisella tularensis in human macrophages. Ann. N.Y. Acad. Sci. 1105, 160–186. 10.1196/annals.1409.001 PubMed DOI
Clemens D. L., Lee B. Y., Horwitz M. A. (2004). Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun. 72, 3204–3217. 10.1128/IAI.72.6.3204-3217.2004 PubMed DOI PMC
Clemens D. L., Lee B. Y., Horwitz M. A. (2005). Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect. Immun. 73, 5892–5902. 10.1128/IAI.73.9.5892-5902.2005 PubMed DOI PMC
Cole L. E., Laird M. H., Seekatz A., Santiago A., Jiang Z., Barry E., et al. . (2010). Phagosomal retention of Francisella tularensis results in TIRAP/Mal-independent TLR2 signaling. J. Leukoc. Biol. 87, 275–281. 10.1189/jlb.0909619 PubMed DOI PMC
Cole L. E., Shirey K. A., Barry E., Santiago A., Rallabhandi P., Elkins K. L., et al. . (2007). Toll-like receptor 2-mediated signaling requirements for Francisella tularensis live vaccine strain infection of murine macrophages. Infect. Immun. 75, 4127–4137. 10.1128/IAI.01868-06 PubMed DOI PMC
Collazo C. M., Sher A., Meierovics A. I., Elkins K. L. (2006). Myeloid differentiation factor-88 (MyD88) is essential for control of primary in vivo Francisella tularensis LVS infection, but not for control of intra-macrophage bacterial replication. Microbes Infect. 8, 779–790. 10.1016/j.micinf.2005.09.014 PubMed DOI
Culkin S. J., Rhinehart-Jones T., Elkins K. L. (1997). A novel role for B cells in early protective immunity to an intracellular pathogen, Francisella tularensis strain LVS. J. Immunol. 158, 3277–3284. PubMed
Dai S., Rajaram M. V., Curry H. M., Leander R., Schlesinger L. S. (2013). Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Francisella tularensis. PLoS Pathog. 9:e1005504. 10.1371/journal.ppat.1003114 PubMed DOI PMC
Dotson R. J., Rabadi S. M., Westcott E. L., Bradley S., Catlett S. V., Banik S., et al. . (2013). Repression of inflammasome by Francisella tularensis during early stages of infection. J. Biol. Chem. 288, 23844–23857. 10.1074/jbc.M113.490086 PubMed DOI PMC
Dueñas A. I., Aceves M., Orduña A., Díaz R., Sánchez Crespo M., García-Rodríguez C. (2006). Francisella tularensis LPS induces the production of cytokines in human monocytes and signals via Toll-like receptor 4 with much lower potency than E. coli LPS. Int. Immunol. 18, 785–795. 10.1093/intimm/dxl015 PubMed DOI
Duncan D. D., Vogler A. J., Wolcott M. J., Li F., Sarovich D. S., Birdsell D. N., et al. . (2013). Identification and typing of Francisella tularensis with a highly automated genotyping assay. Lett. Appl. Microbiol. 56, 128–134. 10.1111/lam.12022 PubMed DOI
Eberl M., Hintz M., Reichenberg A., Kollas A. K., Wiesner J., Jomaa H. (2003). Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett. 544, 4–10. 10.1016/S0014-5793(03)00483-6 PubMed DOI
Eberl M., Jomaa H. (2003). A genetic basis for human gammadelta T-cell reactivity towards microbial pathogens. Trends Immunol. 24, 407–409. 10.1016/S1471-4906(03)00170-4 PubMed DOI
Elkins K. L., Bosio C. M., Rhinehart-Jones T. R. (1999). Importance of B cells, but not specific antibodies, in primary and secondary protective immunity to the intracellular bacterium Francisella tularensis live vaccine strain. Infect. Immun. 67, 6002–6007. PubMed PMC
Fernandes-Alnemri T., Yu J. W., Datta P., Wu J., Alnemri E. S. (2009). AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513. 10.1038/nature07710 PubMed DOI PMC
Fernandes-Alnemri T., Yu J. W., Juliana C., Solorzano L., Kang S., Wu J., et al. . (2010). The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11, 385–393. 10.1038/ni.1859 PubMed DOI PMC
Forestal C. A., Benach J. L., Carbonara C., Italo J. K., Lisinski T. J., Furie M. B. (2003). Francisella tularensis selectively induces proinflammatory changes in endothelial cells. J. Immunol. 171, 2563–2570. 10.4049/jimmunol.171.5.2563 PubMed DOI
Fortier A. H., Green S. J., Polsinelli T., Jones T. R., Crawford R. M., Leiby D. A., et al. (1994). Life and death of an intracellular pathogen: Francisella tularensis and the macrophage. Immunol. Ser. 60, 349–361. PubMed
Franchi L., Park J. H., Shaw M. H., Marina-Garcia N., Chen G., Kim Y. G., et al. (2008). Intracellular NOD-like receptors in innate immunity, infection and disease. Cell. Microbiol. 10, 1–8. 10.1111/j.1462-5822.2007.01059.x PubMed DOI
Franchi L., Warner N., Viani K., Nuñez G. (2009). Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227, 106–128. 10.1111/j.1600-065X.2008.00734.x PubMed DOI PMC
Geier H., Celli J. (2011). Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect. Immun. 79, 2204–2214. 10.1128/IAI.01382-10 PubMed DOI PMC
Gentry M., Taormina J., Pyles R. B., Yeager L., Kirtley M., Popov V. L., et al. . (2007). Role of primary human alveolar epithelial cells in host defense against Francisella tularensis infection. Infect. Immun. 75, 3969–3978. 10.1128/IAI.00157-07 PubMed DOI PMC
Golovliov I., Baranov V., Krocova Z., Kovarova H., Sjöstedt A. (2003). An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect. Immun. 71, 5940–5950. 10.1128/IAI.71.10.5940-5950.2003 PubMed DOI PMC
Gunn J. S., Ernst R. K. (2007). The structure and function of Francisella lipopolysaccharide. Ann. N.Y. Acad. Sci. 1105, 202–218. 10.1196/annals.1409.006 PubMed DOI PMC
Hajjar A. M., Harvey M. D., Shaffer S. A., Goodlett D. R., Sjöstedt A., Edebro H., et al. . (2006). Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors. Infect. Immun. 74, 6730–6738. 10.1128/IAI.00934-06 PubMed DOI PMC
Hall J. D., Woolard M. D., Gunn B. M., Craven R. R., Taft-Benz S., Frelinger J. A., et al. (2008). Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect. Immun. 76, 5843–5852. 10.1128/IAI.01176-08 PubMed DOI PMC
Henry T., Brotcke A., Weiss D. S., Thompson L. J., Monack D. M. (2007). Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med. 204, 987–994. 10.1084/jem.20062665 PubMed DOI PMC
Heuston S., Begley M., Gahan C. G., Hill C. (2012). Isoprenoid biosynthesis in bacterial pathogens. Microbiology 158, 1389–1401. 10.1099/mic.0.051599-0 PubMed DOI
Holland K. M., Rosa S. J., Hazlett K. R. (2016). Francisella tularensis- immune cell activator, suppressor, or stealthy evader: the evolving view from the petri dish. J. Bioterror. Biodef. 7:144. 10.4172/2157-2526.1000144 PubMed DOI PMC
Hong K. J., Wickstrum J. R., Yeh H. W., Parmely M. J. (2007). Toll-like receptor 2 controls the gamma interferon response to Francisella tularensis by mouse liver lymphocytes. Infect. Immun. 75, 5338–5345. 10.1128/IAI.00561-07 PubMed DOI PMC
Horng T., Barton G. M., Flavell R. A., Medzhitov R. (2002). The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–333. 10.1038/nature01180 PubMed DOI
Horng T., Barton G. M., Medzhitov R. (2001). TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2, 835–841. 10.1038/ni0901-835 PubMed DOI
Hornung V., Ablasser A., Charrel-Dennis M., Bauernfeind F., Horvath G., Caffrey D. R., et al. . (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518. 10.1038/nature07725 PubMed DOI PMC
Hotson A. N., Gopinath S., Nicolau M., Khasanova A., Finck R., Monack D., et al. . (2016). Coordinate actions of innate immune responses oppose those of the adaptive immune system during Salmonella infection of mice. Sci. Signal. 9, ra4. 10.1126/scisignal.aaa9303 PubMed DOI
Huang S., Gilfillan S., Cella M., Miley M. J., Lantz O., Lybarger L., et al. . (2005). Evidence for MR1 antigen presentation to mucosal-associated invariant T cells. J. Biol. Chem. 280, 21183–21193. 10.1074/jbc.M501087200 PubMed DOI
Ishikawa H., Barber G. N. (2008). STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678. 10.1038/nature07317 PubMed DOI PMC
Ishikawa H., Ma Z., Barber G. N. (2009). STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792. 10.1038/nature08476 PubMed DOI PMC
Jin L., Hill K. K., Filak H., Mogan J., Knowles H., Zhang B., et al. (2011). MPYS is required for IRF3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers c-di-AMP and c-di-GMP. J. Immunol. 187, 2595–2601. 10.4049/jimmunol.1100088 PubMed DOI PMC
Jin T., Xiao T. S. (2015). Activation and assembly of the inflammasomes through conserved protein domain families. Apoptosis 20, 151–156. 10.1007/s10495-014-1053-5 PubMed DOI PMC
Jones C. L., Weiss D. S. (2011). TLR2 signaling contributes to rapid inflammasome activation during F. novicida infection. PLoS ONE 6:e20609. 10.1371/journal.pone.0020609 PubMed DOI PMC
Jones J. W., Kayagaki N., Broz P., Henry T., Newton K., O'Rourke K., et al. . (2010). Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl. Acad. Sci. U.S.A. 107, 9771–9776. 10.1073/pnas.1003738107 PubMed DOI PMC
Katz J., Zhang P., Martin M., Vogel S. N., Michalek S. M. (2006). Toll-like receptor 2 is required for inflammatory responses to Francisella tularensis LVS. Infect. Immun. 74, 2809–2816. 10.1128/IAI.74.5.2809-2816.2006 PubMed DOI PMC
Kennedy A. D., DeLeo F. R. (2009). Neutrophil apoptosis and the resolution of infection. Immunol. Res. 43, 25–61. 10.1007/s12026-008-8049-6 PubMed DOI
Kim Y. K., Shin J. S., Nahm M. H. (2016). NOD-like receptors in infection, immunity, and diseases. Yonsei Med. J. 57, 5–14. 10.3349/ymj.2016.57.1.5 PubMed DOI PMC
Kingry L. C., Petersen J. M. (2014). Comparative review of Francisella tularensis and Francisella novicida. Front. Cell. Infect. Microbiol. 4:35. 10.3389/fcimb.2014.00035 PubMed DOI PMC
Kjer-Nielsen L., Patel O., Corbett A. J., Le Nours J., Meehan B., Liu L., et al. . (2012). MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723. 10.1038/nature11605 PubMed DOI
Kobayashi S. D., Braughton K. R., Whitney A. R., Voyich J. M., Schwan T. G., Musser J. M., et al. . (2003). Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc. Natl. Acad. Sci. U.S.A. 100, 10948–10953. 10.1073/pnas.1833375100 PubMed DOI PMC
Kubelkova K., Benuchova M., Kozakova H., Sinkora M., Krocova Z., Pejchal J., et al. . (2016). Gnotobiotic mouse model's contribution to understanding host-pathogen interactions. Cell. Mol. Life Sci. 73, 3961–3969. 10.1007/s00018-016-2341-8 PubMed DOI PMC
Law H. T., Lin A. E. S., Kim Y., Quach B., Nano F. E., Guttman J. A. (2011). Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Sci. Rep. 1:192. 10.1038/srep00192 PubMed DOI PMC
Li H., Nookala S., Bina X. R., Bina J. E., Re F. (2006). Innate immune response to Francisella tularensis is mediated by TLR2 and caspase-1 activation. J. Leukoc. Biol. 80, 766–773. 10.1189/jlb.0406294 PubMed DOI
Libich J. (1981). Tularémie. Prague: Avicenum.
Lindemann S. R., McLendon M. K., Apicella M. A., Jones B. D. (2007). An in vitro model system used to study adherence and invasion of Francisella tularensis live vaccine strain in nonphagocytic cells. Infect. Immun. 75, 3178–3182. 10.1128/IAI.01811-06 PubMed DOI PMC
Löfgren S., Tärnvik A., Bloom G. D., Sjöberg W. (1983). Phagocytosis and killing of Francisella tularensis by human polymorphonuclear leukocytes. Infect. Immun. 39, 715–720. PubMed PMC
Lord K. A., Hoffman-Liebermann B., Liebermann D. A. (1990). Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5, 1095–1097. PubMed
Lu Y. C., Yeh W. C., Ohashi P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine 42, 145–151. 10.1016/j.cyto.2008.01.006 PubMed DOI
Macela A., Stulik J., Hernychova L., Kroca M., Krocova Z., Kovarova H. (1996). The immune response against Francisella tularensis live vaccine strain in Lps(n) and Lps(d) mice. FEMS Immunol. Med. Microbiol. 13, 235–238. 10.1111/j.1574-695X.1996.tb00243.x PubMed DOI
Maeshima N., Fernandez R. C. (2013). Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front. Cell. Infect. Microbiol. 3:3. 10.3389/fcimb.2013.00003 PubMed DOI PMC
Malik M., Bakshi C. S., Sahay B., Shah A., Lotz S. A., Sellati T. J. (2006). Toll-like receptor 2 is required for control of pulmonary infection with Francisella tularensis. Infect. Immun. 74, 3657–3662. 10.1128/IAI.02030-05 PubMed DOI PMC
Man S. M., Kanneganti T. D. (2015). Regulation of inflammasome activation. Immunol. Rev. 265, 6–21. 10.1111/imr.12296 PubMed DOI PMC
Man S. M., Karki R., Kanneganti T. D. (2016a). AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur. J. Immunol. 46, 269–280. 10.1002/eji.201545839 PubMed DOI PMC
Man S. M., Karki R., Malireddi R. K., Neale G., Vogel P., Yamamoto M., et al. . (2015). The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat. Immunol. 16, 467–475. 10.1038/ni.3118 PubMed DOI PMC
Man S. M., Karki R., Sasai M., Place D. E., Kesavardhana S., Temirov J., et al. . (2016b). IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase-11-NLRP3 inflammasomes. Cell 167, 382–396.e17. 10.1016/j.cell.2016.09.012 PubMed DOI PMC
Mariathasan S., Weiss D. S., Dixit V. M., Monack D. M. (2005). Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med. 202, 1043–1049. 10.1084/jem.20050977 PubMed DOI PMC
Marohn M. E., Barry E. M. (2013). Live attenuated tularemia vaccines: recent developments and future goals. Vaccine 31, 3485–3491. 10.1016/j.vaccine.2013.05.096 PubMed DOI PMC
McCaffrey R. L., Allen L.-A. H. (2006). Francisella tularensis LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape. J. Leukoc. Biol. 80, 1224–1230. 10.1189/jlb.0406287 PubMed DOI PMC
Miller D. K., Ayala J. M., Egger L. A., Raju S. M., Yamin T. T., Ding G. J., et al. . (1993). Purification and characterization of active human interleukin-1 beta-converting enzyme from THP.1 monocytic cells. J. Biol. Chem. 268, 18062–18069. PubMed
Morita C. T., Jin C., Sarikonda G., Wang H. (2007). Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2Vδ2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol. Rev. 215, 59–76. 10.1111/j.1600-065X.2006.00479.x PubMed DOI
Moser B., Eberl M. (2011). γδ T-APCs: a novel tool for immunotherapy? Cell. Mol. Life Sci. 68, 2443–2452. 10.1007/s00018-011-0706-6 PubMed DOI PMC
Nunes-Alves C., Booty M. G., Carpenter S. M., Jayaraman P., Rothchild A. C., Behar S. M. (2014). In search of a new paradigm for protective immunity to TB. Nat. Rev. Microbiol. 12, 289–299. 10.1038/nrmicro3230 PubMed DOI PMC
Nutter J. E., Myrvik Q. N. (1966). In vitro interactions between rabbit alveolar macrophages and Pasteurella tularensis. J. Bacteriol. 92, 645–651. PubMed PMC
Okan N. A., Kasper D. L. (2013). The atypical lipopolysaccharide of Francisella. Carbohydr. Res. 378, 79–83. 10.1016/j.carres.2013.06.015 PubMed DOI PMC
O'Neill L. A., Golenbock D., Bowie A. G. (2013). The history of Toll-like receptors - redefining innate immunity. Nat. Rev. Immunol. 13, 453–460. 10.1038/nri3446 PubMed DOI
Park B. S., Lee J. O. (2013). Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45:e66. 10.1038/emm.2013.97 PubMed DOI PMC
Parsa K. V., Butchar J. P., Rajaram M. V., Cremer T. J., Gunn J. S., Schlesinger L. S., et al. . (2008). Francisella gains a survival advantage within mononuclear phagocytes by suppressing the host IFNgamma response. Mol. Immunol. 45, 3428–3437. 10.1016/j.molimm.2008.04.006 PubMed DOI PMC
Pierini L. M. (2006). Uptake of serum-opsonized Francisella tularensis by macrophages can be mediated by class A scavenger receptors. Cell. Microbiol. 8, 1361–1370. 10.1111/j.1462-5822.2006.00719.x PubMed DOI
Plzakova L., Krocova Z., Kubelkova K., Macela A. (2015). Entry of Francisella tularensis into murine B Cells: the role of B cell receptors and complement receptors. PLoS ONE 10:e0132571. 10.1371/journal.pone.0132571 PubMed DOI PMC
Plzakova L., Kubelkova K., Krocova Z., Zarybnicka L., Sinkorova Z., Macela A. (2014). B cell subsets are activated and produce cytokines during early phases of Francisella tularensis LVS infection. Microb. Pathog. 75C, 49–58. 10.1016/j.micpath.2014.08.009 PubMed DOI
Poquet Y., Kroca M., Halary F., Stenmark S., Peyrat M. A., Bonneville M., et al. (1998). Expansion of Vγ9Vδ2 T cells is triggered by Francisella tularensis-derived phosphoantigens in tularemia but not after tularemia vaccination. Infect. Immun. 66, 2107–2114. PubMed PMC
Putzova D., Senitkova I., Stulik J. (2016). Tularemia vaccines. Folia Microbiol. 61, 495–504. 10.1007/s12223-016-0461-z PubMed DOI
Rennert K., Otto P., Funke H., Huber O., Tomaso H., Mosig A. S. (2016). A human macrophage-hepatocyte co-culture model for comparative studies of infection and replication of Francisella tularensis LVS strain and subspecies holarctica and mediasiatica. BMC Microbiol. 16:2. 10.1186/s12866-015-0621-3 PubMed DOI PMC
Richard K., Vogel S. N., Perkins D. J. (2016). Type I interferon licenses enhanced innate recognition and transcriptional responses to Franciscella tularensis live vaccine strain. Innate Immun. 22, 363–372. 10.1177/1753425916650027 PubMed DOI PMC
Roberts L. M., Tuladhar S., Steele S. P., Riebe K. J., Chen C. J., Cumming R. I., et al. . (2014). Identification of early interactions between Francisella and the host. Infect. Immun. 82, 2504–2510. 10.1128/IAI.01654-13 PubMed DOI PMC
Rothchild A. C., Sissons J. R., Shafiani S., Plaisier C., Min D., Mai D., et al. . (2016). MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 113, E6172–E6181. 10.1073/pnas.1608255113 PubMed DOI PMC
Rowland C. A., Hartley M. G., Flick-Smith H., Laws T. R., Eyles J. E., Oyston P. C. (2012). Peripheral human γδ T cells control growth of both avirulent and highly virulent strains of Francisella tularensis in vitro. Microbes Infect. 14, 584–589. 10.1016/j.micinf.2012.02.001 PubMed DOI
Russo B. C., Brown M. J., Nau G. J. (2013). MyD88-dependent signaling prolongs survival and reduces bacterial burden during pulmonary infection with virulent Francisella tularensis. Am. J. Pathol. 183, 1223–1232. 10.1016/j.ajpath.2013.06.013 PubMed DOI PMC
Sandström G., Sjöstedt A., Johansson T., Kuoppa K., Williams J. C. (1992). Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol. Immunol. 5, 201–210. 10.1111/j.1574-6968.1992.tb05902.x PubMed DOI
Santic M., Asare R., Skrobonja I., Jones S., Abu Kwaik Y. (2008). Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect. Immun. 76, 2671–2677. 10.1128/IAI.00185-08 PubMed DOI PMC
Santic M., Molmeret M., Klose K. E., Jones S., Kwaik Y. A. (2005). The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell. Microbiol. 7, 969–979. 10.1111/j.1462-5822.2005.00526.x PubMed DOI
Schulert G. S., Allen L. A. (2006). Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. J. Leukoc. Biol. 80, 563–571. 10.1189/jlb.0306219 PubMed DOI PMC
Schwartz J. T., Barker J. H., Kaufman J., Fayram D. C., McCracken J. M., Allen L. A. (2012a). Francisella tularensis inhibits the intrinsic and extrinsic pathways to delay constitutive apoptosis and prolong human neutrophil lifespan. J. Immunol. 188, 3351–3363. 10.4049/jimmunol.1102863 PubMed DOI PMC
Schwartz J. T., Barker J. H., Long M. E., Kaufman J., McCracken J., Allen L.-A. H. (2012b). Natural IgM mediates complement-dependent uptake of Francisella tularensis by human neutrophils via CR1 and CR3 in nonimmune serum. J. Immunol. 189, 3064–3077. 10.4049/jimmunol.1200816 PubMed DOI PMC
Sicard H., Fournie J. J. (2000). Metabolic routes as targets for immunological discrimination of host and parasite. Infect. Immun. 68, 4375–4377. 10.1128/IAI.68.8.4375-4377.2000 PubMed DOI PMC
Steele S., Radlinski L., Taft-Benz S., Brunton J., Kawula T. H. (2016). Trogocytosis-associated cell to cell spread of intracellular bacterial pathogens. Elife 5:e10625. 10.7554/eLife.10625 PubMed DOI PMC
Storek K. M., Gertsvolf N. A., Ohlson M. B., Monack D. M. (2015). cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. J. Immunol. 194, 3236–3245. 10.4049/jimmunol.1402764 PubMed DOI PMC
Sun L., Wu J., Du F., Chen X., Chen Z. J. (2013). Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791. 10.1126/science.1232458 PubMed DOI PMC
Takaoka A., Wang Z., Choi M. K., Yanai H., Negishi H., Ban T., et al. . (2007). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505. 10.1038/nature06013 PubMed DOI
Telepnev M., Golovliov I., Grundström T., Tärnvik A., Sjöstedt A. (2003). Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-alpha and IL-1 from murine macrophages. Cell. Microbiol. 5, 41–51. 10.1046/j.1462-5822.2003.00251.x PubMed DOI
Thornberry N. A., Bull H. G., Calaycay J. R., Chapman K. T., Howard A. D., Kostura M. J., et al. . (1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768–774. 10.1038/356768a0 PubMed DOI
Thorpe B. D., Marcus S. (1964a). Phagocytosis and intracellular fate of Pasteurella tularensis. II. In vitro studies with rabbit alveolar and guinea pig alveolar and peritoneal mononuclear phagocytes. J. Immunol. 93, 558–565. PubMed
Thorpe B. D., Marcus S. (1964b). Phagocytosis and intracellular fate of Pasteurella tularensis. I. In vitro studies with rabbit peritoneal mononuclear phagocytes. J. Immunol. 92, 657–663. PubMed
Tyler C. J., Doherty D. G., Moser B., Eberl M. (2015). Human Vγ9/Vδ2 T cells: innate adaptors of the immune system. Cell. Immunol. 296, 10–21. 10.1016/j.cellimm.2015.01.008 PubMed DOI
Udgata A., Qureshi R., Mukhopadhyay S. (2016). Transduction of functionally contrasting signals by two Mycobacterial PPE proteins downstream of TLR2 receptors. J. Immunol. 197, 1776–1787. 10.4049/jimmunol.1501816 PubMed DOI
Unterholzner L. (2013). The interferon response to intracellular DNA: why so many receptors? Immunobiology 218, 1312–1321. 10.1016/j.imbio.2013.07.007 PubMed DOI
Unterholzner L., Keating S. E., Baran M., Horan K. A., Jensen S. B., Sharma S., et al. . (2010). IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004. 10.1038/ni.1932 PubMed DOI PMC
Veeranki S., Choubey D. (2012). Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol. Immunol. 49, 567–571. 10.1016/j.molimm.2011.11.004 PubMed DOI PMC
Warner N., Núñez G. (2013). MyD88: a critical adaptor protein in innate immunity signal transduction. J. Immunol. 190, 3–4. 10.4049/jimmunol.1203103 PubMed DOI
Wilson K. P., Black J. A., Thomson J. A., Kim E. E., Griffith J. P., Navia M. A., et al. . (1994). Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370, 270–275. 10.1038/370270a0 PubMed DOI
Wu J., Sun L., Chen X., Du F., Shi H., Chen C., et al. . (2013). Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830. 10.1126/science.1229963 PubMed DOI PMC
Xiao T. S. (2015). The nucleic acid-sensing inflammasomes. Immunol. Rev. 265, 103–111. 10.1111/imr.12281 PubMed DOI PMC
Zheng H., Tan Z., Zhou T., Zhu F., Ding Y., Liu T., et al. . (2015). The TLR2 is activated by sporozoites and suppresses intrahepatic rodent malaria parasite development. Sci. Rep. 5:18239. 10.1038/srep18239 PubMed DOI PMC