Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

. 2016 Oct ; 73 (20) : 3961-9. [epub] 20160820

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27544211
Odkazy

PubMed 27544211
PubMed Central PMC11108488
DOI 10.1007/s00018-016-2341-8
PII: 10.1007/s00018-016-2341-8
Knihovny.cz E-zdroje

This brief review is dedicated to the legacy of Prof. Jaroslav Šterzl and his colleagues, who laid the foundation for gnotobiology in the former Czechoslovakia 55 years. Prof. Sterzl became one of the founders of modern Czechoslovak immunology, which was characterized by work on a wide range of problems needing to be solved. While examining the mechanisms of innate immunity, he focused his studies on the induction of antibody production by immunocompetent cells involved in adaptive immune transmission while using the model of pig fetuses and germ-free piglets and characterizing immunoglobulins in the sera of these piglets. Although not fully appreciated to this day, his experimental proof of the hypothesis focused on the common precursor of cell-forming antibodies of different isotypes was later confirmed in experiments at the gene level. Prof. Sterzl's work represented a true milestone in the development of not solely Czechoslovak but also European and global immunology. He collaborated closely with the World Health Organization for many years, serving there as leader of the Reference Laboratory for Factors of Innate Immunity.

Zobrazit více v PubMed

Gordon HA, Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev. 1971;35:390–429. PubMed PMC

Cebra JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr. 1999;69:1046S–1051S. PubMed

Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–1273. doi: 10.1126/science.1223490. PubMed DOI PMC

Bäckhed F, Crawford PA. Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochim Biophys Acta. 2010;1801:240–245. doi: 10.1016/j.bbalip.2009.09.009. PubMed DOI PMC

Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest. 2011;121:2126–2132. doi: 10.1172/JCI58109. PubMed DOI PMC

Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013;62:3341–3349. doi: 10.2337/db13-0844. PubMed DOI PMC

Thompson GR, Trexler PC. Gastrointestinal structure and function in germ-free or gnotobiotic animals. Gut. 1971;12:230–235. doi: 10.1136/gut.12.3.230. PubMed DOI PMC

Butler JE, Lager KM, Splichal I, et al. The piglet as a model for B cell and immune system development. Vet Immunol Immunopathol. 2009;128:147–170. doi: 10.1016/j.vetimm.2008.10.321. PubMed DOI PMC

Grover M, Kashyap PC. Germ free mice as a model to study effect of gut microbiota on host physiology. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc. 2014;26:745–748. doi: 10.1111/nmo.12366. PubMed DOI PMC

Umesaki Y. Use of gnotobiotic mice to identify and characterize key microbes responsible for the development of the intestinal immune system. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90:313–332. doi: 10.2183/pjab.90.313. PubMed DOI PMC

Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–812. doi: 10.1038/nrc3610. PubMed DOI PMC

Francescone R, Hou V, Grivennikov SI. Microbiome, inflammation and cancer. Cancer J Sudbury Mass. 2014;20:181–189. doi: 10.1097/PPO.0000000000000048. PubMed DOI PMC

Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis. 2014;35:249–255. doi: 10.1093/carcin/bgt392. PubMed DOI PMC

Brawner KM, Morrow CD, Smith PD. Gastric microbiome and gastric cancer. Cancer J Sudbury Mass. 2014;20:211–216. doi: 10.1097/PPO.0000000000000043. PubMed DOI PMC

Tlaskalova-Hogenova H, Vannucci L, Klimesova K, et al. Microbiome and colorectal carcinoma: insights from germ-free and conventional animal models. Cancer J Sudbury Mass. 2014;20:217–224. doi: 10.1097/PPO.0000000000000052. PubMed DOI

Luckey T. Germfree life and gnotobiology. New York: Academic Press Inc.; 1963.

Luckey T. Effects of microbes on germfree animals. Advan Appl Microbiol. 1965;7:169–223. doi: 10.1016/S0065-2164(08)70387-3. PubMed DOI

Bibiloni R. Rodent models to study the relationships between mammals and their bacterial inhabitants. Gut Microbes. 2012;3:536–543. doi: 10.4161/gmic.21905. PubMed DOI PMC

Nencki M. Bemerkung zu einer Bemerkung Pasteur’s. Arch Exp Pathol Pharmacol. 1886;20:385–388. doi: 10.1007/BF01831344. DOI

Metchnikoff E. Les microbes intestinaux. Bull Inst Pasteur. 1903;1:265–282.

Gustafsson B. Germfree rearing of rats. General technique. Acta Pathol Microbiol Scand Suppl. 1948;73:1–130.

Gustafsson B. Lightweight stainless steel systems for rearing germfree animals. Ann N Acad Sci. 1959;78:17–28. doi: 10.1111/j.1749-6632.1959.tb53092.x. PubMed DOI

Gustafsson BE, Laurell C-B. Gamma globulin production in germfree rats after bacterial contamination. J Exp Med. 1959;110:675–684. doi: 10.1084/jem.110.5.675. PubMed DOI PMC

Kirk RG. “Life in a germ-free world”: isolating life from the laboratory animal to the bubble boy. Bull Hist Med. 2012;86:237–275. doi: 10.1353/bhm.2012.0028. PubMed DOI PMC

Trávnícek J, Mandel L, Kasal P, et al. Equipment for germ-free caesarean section and baby care. Folia Microbiol (Praha) 1977;22:523–526. doi: 10.1007/BF02884486. PubMed DOI

Trávnícek J, Mandel L. Gnotobiotic techniques. Folia Microbiol (Praha) 1979;24:6–10. doi: 10.1007/BF02927240. PubMed DOI

Sterzl J, Silverstein AM. Developmental aspects of immunity. Adv Immunol. 1967;6:337–459. doi: 10.1016/S0065-2776(08)60525-8. PubMed DOI

Sterzl J. Factors determining the differentiation pathways of immunocompetent cells. Cold Harb Symp Quant Biol. 1967;32:1–22. doi: 10.1101/SQB.1967.032.01.005. DOI

Sterzl J. Quantitative and qualitative aspect of the inductive phase of antibody formation. J Hyg Epidemiol Microbiol Immunol. 1963;7:301–318. PubMed

Sterzl J, Mandel L. Estimation of the inductive phase of antibody formation by plaque technique. Folia Microbiol (Praha) 1964;14:173–176. doi: 10.1007/BF02874003. PubMed DOI

Sterzl J, Ríha I. Detection of cells producing 7S antibodies by the plaque technique. Nature. 1965;208:858–859. doi: 10.1038/208858a0. PubMed DOI

Sterzl J, Rejnek J, Trávnícek J. Impermeability of pig placenta for antibodies. Folia Microbiol (Praha) 1966;11:7–10. doi: 10.1007/BF02877148. PubMed DOI

Jílek M, Sterzl J. Influence of the amount of antigen and interval on the secondary reaction. Folia Microbiol (Praha) 1967;12:6–20. doi: 10.1007/BF02895084. PubMed DOI

Sterzl J, Jílek M. Number of antibody-forming cells in primary and secondary reactions after administration of antigen. Nature. 1967;216:1233–1235. doi: 10.1038/2161233a0. PubMed DOI

Klein P, Sterzl J, Dolezal J. A mathematical model of B lymphocyte differentiation: control by antigen. J Math Biol. 1981;13:67–86. doi: 10.1007/BF00276866. PubMed DOI

Kovářů F, Štěpánková R, Kruml J, et al. Development of lymphatic and haemopoietic organs in germfree models. Folia Microbiol Praha. 1979;24:32–43. doi: 10.1007/BF02927243. PubMed DOI

Tlaskalová-Hogenová H, Štěpánková R. Development of antibody formation in germ-free and conventionally reared rabbits: the role of intestinal lymphoid tissue in antibody formation to E. coli antigens. Folia Biol Praha. 1980;26:81–93. PubMed

Tlaskalova-Hogenova H, Vetvicka V, Sterzl J, Stepankova R. Development of immune potential and migration pattern of cells from germfree (GF) and conventionally (CONV) reared rats. Adv Exp Med Biol. 1982;149:515–520. doi: 10.1007/978-1-4684-9066-4_72. PubMed DOI

Tlaskalova-Hogenova H, Sterzl J, Stepankova R, et al. Development of immunological capacity under germfree and conventional conditions. Ann N Acad Sci. 1983;409:96–113. doi: 10.1111/j.1749-6632.1983.tb26862.x. PubMed DOI

Větvička V, Tlaskalová-Hogenová H, Štěpánková R. Effects of microflora antigens on lymphocyte migration patterns in germfree and conventional rats. Folia Biol Praha. 1983;29:412–418. PubMed

Fornůsek L, Větvička V, Jaroskova L, Stěpánková R. Some properties of the plasma membrane of macrophages from germ-free rats. J Reticuloendothel Soc. 1983;34:331–340. PubMed

Stěpánková R, Kovárů F. Immunoglobulin-producing cells in lymphatic tissues of germfree and conventional rabbits as detected by an immunofluorescence method. Folia Microbiol Praha. 1985;30:291–294. doi: 10.1007/BF02923522. PubMed DOI

Sterzl J, Mandel L, Stepankova R. The use of gnotobiological models for the studies of immune mechanisms. Nahrung. 1987;31:599–608. doi: 10.1002/food.19870310578. PubMed DOI

O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–693. doi: 10.1038/sj.embor.7400731. PubMed DOI PMC

Clarke G, Stilling RM, Kennedy PJ, et al. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol Baltim Md. 2014;28:1221–1238. doi: 10.1210/me.2014-1108. PubMed DOI PMC

Bäckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. doi: 10.1126/science.1104816. PubMed DOI

Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC

Arrieta M-C, Stiemsma LT, Amenyogbe N, et al. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427. doi: 10.3389/fimmu.2014.00427. PubMed DOI PMC

Maranduba CM, De Castro SBR, de Souza GT, et al. Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis. J Immunol Res. 2015;2015:931574. doi: 10.1155/2015/931574. PubMed DOI PMC

Bermon S, Petriz B, Kajėnienė A, et al. The microbiota: an exercise immunology perspective. Exerc Immunol Rev. 2015;21:70–79. PubMed

Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249. doi: 10.1038/nature11552. PubMed DOI

Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–238. doi: 10.1038/nrmicro2974. PubMed DOI

Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol. 2011;2:94. doi: 10.3389/fphys.2011.00094. PubMed DOI PMC

Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18:666–673. doi: 10.1038/mp.2012.77. PubMed DOI

Thomas LV, Ockhuizen T, Suzuki K. Exploring the influence of the gut microbiota and probiotics on health: a symposium report. Br J Nutr. 2014;112(Suppl 1):S1–S18. doi: 10.1017/S0007114514001275. PubMed DOI PMC

Patel R, DuPont HL. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60(Suppl 2):S108–S121. doi: 10.1093/cid/civ177. PubMed DOI PMC

Meehan CJ, Langille MGI, Beiko RG. Frailty and the microbiome. Interdiscip Top Gerontol Geriatr. 2015;41:54–65. PubMed

Le Barz M, Anhê FF, Varin TV, et al. Probiotics as complementary treatment for metabolic disorders. Diabetes Metab J. 2015;39:291–303. doi: 10.4093/dmj.2015.39.4.291. PubMed DOI PMC

Malnick S, Melzer E. Human microbiome: from the bathroom to the bedside. World J Gastrointest Pathophysiol. 2015;6:79–85. PubMed PMC

Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283–307. doi: 10.1146/annurev.nutr.22.011602.092259. PubMed DOI

Chung H, Pamp SJ, Hill JA, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–1593. doi: 10.1016/j.cell.2012.04.037. PubMed DOI PMC

Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323. doi: 10.1038/nri2515. PubMed DOI PMC

Vannucci L, Stepankova R, Kozakova H, et al. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol. 2008;32:609–617. PubMed

Vannucci L, Stepankova R, Grobarova V, et al. Colorectal carcinoma: importance of colonic environment for anti-cancer response and systemic immunity. J Immunotoxicol. 2009;6:217–226. doi: 10.3109/15476910903334343. PubMed DOI

Tlaskalová-Hogenová H, Štěpánková R, Kozáková H, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC

Zachar Z, Savage DC. Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes . Infect Immun. 1979;23:168–174. PubMed PMC

Czuprynski CJ, Balish E. Pathogenesis of Listeria monocytogenes for gnotobiotic rats. Infect Immun. 1981;32:323–331. PubMed PMC

Nardi RM, Vieira EC, Crocco-Afonso LC, et al. Bacteriological and immunological aspects of conventional and germfree mice infected with Salmonella typhimurium . Rev Latinoam Microbiol. 1991;33:239–243. PubMed

Butterton JR, Ryan ET, Shahin RA, Calderwood SB. Development of a germfree mouse model of Vibrio cholerae infection. Infect Immun. 1996;64:4373–4377. PubMed PMC

Mittrücker H-W, Seidel D, Bland PW, et al. Lack of microbiota reduces innate responses and enhances adaptive immunity against Listeria monocytogenes infection. Eur J Immunol. 2014;44:1710–1715. doi: 10.1002/eji.201343927. PubMed DOI

Inagaki H, Suzuki T, Nomoto K, Yoshikai Y. Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin+ CD44+ T cells in sites of inflammation. Infect Immun. 1996;64:3280–3287. PubMed PMC

Fagundes CT, Amaral FA, Vieira AT, et al. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice. J Immunol Baltim Md. 2012;1950(188):1411–1420. PubMed

Croswell A, Amir E, Teggatz P, et al. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect Immun. 2009;77:2741–2753. doi: 10.1128/IAI.00006-09. PubMed DOI PMC

Ferreira RBR, Gill N, Willing BP, et al. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS One. 2011;6:e20338. doi: 10.1371/journal.pone.0020338. PubMed DOI PMC

Mack DR, Michail S, Wei S, et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol. 1999;276:G941–G950. PubMed

Mack DR, Ahrne S, Hyde L, et al. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 2003;52:827–833. doi: 10.1136/gut.52.6.827. PubMed DOI PMC

Srikanth CV, McCormick BA. Interactions of the intestinal epithelium with the pathogen and the indigenous microbiota: a three-way crosstalk. Interdiscip Perspect Infect Dis. 2008;2008:626827. PubMed PMC

Fagarasan S. Intestinal IgA synthesis: a primitive form of adaptive immunity that regulates microbial communities in the gut. Curr Top Microbiol Immunol. 2006;308:137–153. PubMed

Macpherson AJ, Geuking MB, McCoy KD. Immunoglobulin A: a bridge between innate and adaptive immunity. Curr Opin Gastroenterol. 2011;27:529–533. doi: 10.1097/MOG.0b013e32834bb805. PubMed DOI

Gutzeit C, Magri G, Cerutti A. Intestinal IgA production and its role in host-microbe interaction. Immunol Rev. 2014;260:76–85. doi: 10.1111/imr.12189. PubMed DOI PMC

Jarchum I, Pamer EG. Regulation of innate and adaptive immunity by the commensal microbiota. Curr Opin Immunol. 2011;23:353–360. doi: 10.1016/j.coi.2011.03.001. PubMed DOI PMC

Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–241. doi: 10.1038/nature11551. PubMed DOI PMC

Ewaschuk JB, Backer JL, Churchill TA, et al. Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bacterial DNA. Infect Immun. 2007;75:2572–2579. doi: 10.1128/IAI.01662-06. PubMed DOI PMC

Hall JA, Bouladoux N, Sun CM, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity. 2008;29:637–649. doi: 10.1016/j.immuni.2008.08.009. PubMed DOI PMC

Abt MC, Osborne LC, Monticelli LA, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 2012;37:158–170. doi: 10.1016/j.immuni.2012.04.011. PubMed DOI PMC

Abt MC, Pamer EG. Commensal bacteria mediated defenses against pathogens. Curr Opin Immunol. 2014;29:16–22. doi: 10.1016/j.coi.2014.03.003. PubMed DOI PMC

Clarke TB, Davis KM, Lysenko ES, et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. 2010;16:228–231. doi: 10.1038/nm.2087. PubMed DOI PMC

Denny JE, Powell WL, Schmidt NW. Local and long-distance calling: conversations between the gut microbiota and intra- and extra-gastrointestinal tract infections. Front Cell Infect Microbiol. 2016;6:41. doi: 10.3389/fcimb.2016.00041. PubMed DOI PMC

Fernández-Santoscoy M, Wenzel UA, Yrlid U, et al. The gut microbiota reduces colonization of the mesenteric lymph nodes and IL-12-independent IFN-γ production during salmonella infection. Front Cell Infect Microbiol. 2015;5:93. doi: 10.3389/fcimb.2015.00093. PubMed DOI PMC

Fournout S, Dozois CM, Odin M, et al. Lack of a role of cytotoxic necrotizing factor 1 toxin from Escherichia coli in bacterial pathogenicity and host cytokine response in infected germfree piglets. Infect Immun. 2000;68:839–847. doi: 10.1128/IAI.68.2.839-847.2000. PubMed DOI PMC

Hayakawa M, Taguchi H, Kamiya S, et al. Animal model of Mycoplasma pneumoniae infection using germfree mice. Clin Diagn Lab Immunol. 2002;9:669–676. PubMed PMC

Stecher B, Macpherson AJ, Hapfelmeier S, et al. Comparison of Salmonella enterica serovar Typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect Immun. 2005;73:3228–3241. doi: 10.1128/IAI.73.6.3228-3241.2005. PubMed DOI PMC

Vecht U, Wisselink HJ, Jellema ML, Smith HE. Identification of two proteins associated with virulence of Streptococcus suis type 2. Infect Immun. 1991;59:3156–3162. PubMed PMC

Vecht U, Wisselink HJ, van Dijk JE, Smith HE. Virulence of Streptococcus suis type 2 strains in newborn germfree pigs depends on phenotype. Infect Immun. 1992;60:550–556. PubMed PMC

Havell EA, Beretich GR, Carter PB. The mucosal phase of Listeria infection. Immunobiology. 1999;201:164–177. doi: 10.1016/S0171-2985(99)80056-4. PubMed DOI

Duerkop BA, Hooper LV. Resident viruses and their interactions with the immune system. Nat Immunol. 2013;14:654–659. doi: 10.1038/ni.2614. PubMed DOI PMC

Virgin HW. The virome in mammalian physiology and disease. Cell. 2014;157:142–150. doi: 10.1016/j.cell.2014.02.032. PubMed DOI PMC

Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology. 2014;146:1459–1469. doi: 10.1053/j.gastro.2014.02.001. PubMed DOI PMC

Kapusinszky B, Minor P, Delwart E. Nearly constant shedding of diverse enteric viruses by two healthy infants. J Clin Microbiol. 2012;50:3427–3434. doi: 10.1128/JCM.01589-12. PubMed DOI PMC

Donaldson EF, Lindesmith LC, Lobue AD, Baric RS. Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol Rev. 2008;225:190–211. doi: 10.1111/j.1600-065X.2008.00680.x. PubMed DOI

Minot S, Sinha R, Chen J, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21:1616–1625. doi: 10.1101/gr.122705.111. PubMed DOI PMC

Popgeorgiev N, Temmam S, Raoult D, Desnues C. Describing the silent human virome with an emphasis on giant viruses. Intervirology. 2013;56:395–412. doi: 10.1159/000354561. PubMed DOI

Spandole S, Cimponeriu D, Berca LM, Mihăescu G. Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch Virol. 2015;160:893–908. doi: 10.1007/s00705-015-2363-9. PubMed DOI

Kernbauer E, Ding Y, Cadwell K. An enteric virus can replace the beneficial function of commensal bacteria. Nature. 2014;516:94–98. PubMed PMC

Wilks J, Beilinson H, Golovkina TV. Dual role of commensal bacteria in viral infections. Immunol Rev. 2013;255:222–229. doi: 10.1111/imr.12097. PubMed DOI PMC

Wilks J, Beilinson H, Theriault B, et al. Antibody-mediated immune control of a retrovirus does not require the microbiota. J Virol. 2014;88:6524–6527. doi: 10.1128/JVI.00251-14. PubMed DOI PMC

Osborne LC, Monticelli LA, Nice TJ, et al. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science. 2014;345:578–582. doi: 10.1126/science.1256942. PubMed DOI PMC

Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2016;12:154–167. doi: 10.1038/nrendo.2015.218. PubMed DOI

Mondot S, Lepage P. The human gut microbiome and its dysfunctions through the meta-omics prism. Ann N Y Acad Sci. 2016 PubMed

Mazidi M, Rezaie P, Kengne AP, et al. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr. 2016 PubMed

Li Y, Liu Y, Chu C-Q. Th17 cells in type 1 diabetes: role in the pathogenesis and regulation by gut microbiome. Med Inflamm. 2015;2015:638470. PubMed PMC

Lerner A, Matthias T. Rheumatoid arthritis-celiac disease relationship: joints get that gut feeling. Autoimmun Rev. 2015;14:1038–1047. doi: 10.1016/j.autrev.2015.07.007. PubMed DOI

Rogier R, Koenders MI, Abdollahi-Roodsaz S. Toll-like receptor mediated modulation of T cell response by commensal intestinal microbiota as a trigger for autoimmune arthritis. J Immunol Res. 2015;2015:527696. doi: 10.1155/2015/527696. PubMed DOI PMC

Block KE, Zheng Z, Dent AL, et al. Gut microbiota regulates K/BxN autoimmune arthritis through follicular helper T but not Th17 cells. J Immunol Baltim Md. 2016;1950(196):1550–1557. PubMed PMC

Vieira SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. Lupus. 2014;23:518–526. doi: 10.1177/0961203313501401. PubMed DOI PMC

Hansen CHF, Nielsen DS, Kverka M, et al. Patterns of early gut colonization shape future immune responses of the host. PLoS One. 2012 PubMed PMC

Hansen AK, Hansen CHF, Krych L, Nielsen DS. Impact of the gut microbiota on rodent models of human disease. World J Gastroenterol WJG. 2014;20:17727–17736. PubMed PMC

Macela A, Kubelkova K (2016) Innate immune recognition: Lesson from Francisella models. Discussion Forum 2016 - Host Pathogen Interaction conference, Broumov, Czech Republic

Casadevall A, Pirofski LA. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999;67:3703–3713. PubMed PMC

Casadevall A, Pirofski L-A. What is a host? Incorporating the microbiota into the damage-response framework. Infect Immun. 2015;83:2–7. doi: 10.1128/IAI.02627-14. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...