Gnotobiotic mouse model's contribution to understanding host-pathogen interactions
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
27544211
PubMed Central
PMC11108488
DOI
10.1007/s00018-016-2341-8
PII: 10.1007/s00018-016-2341-8
Knihovny.cz E-zdroje
- Klíčová slova
- Germ-free model, Gnotobiology, Host-pathogen interaction, Innate immunity, Microbiota,
- MeSH
- gnotobiologické modely * MeSH
- interakce hostitele a patogenu * MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- střevní mikroflóra MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
This brief review is dedicated to the legacy of Prof. Jaroslav Šterzl and his colleagues, who laid the foundation for gnotobiology in the former Czechoslovakia 55 years. Prof. Sterzl became one of the founders of modern Czechoslovak immunology, which was characterized by work on a wide range of problems needing to be solved. While examining the mechanisms of innate immunity, he focused his studies on the induction of antibody production by immunocompetent cells involved in adaptive immune transmission while using the model of pig fetuses and germ-free piglets and characterizing immunoglobulins in the sera of these piglets. Although not fully appreciated to this day, his experimental proof of the hypothesis focused on the common precursor of cell-forming antibodies of different isotypes was later confirmed in experiments at the gene level. Prof. Sterzl's work represented a true milestone in the development of not solely Czechoslovak but also European and global immunology. He collaborated closely with the World Health Organization for many years, serving there as leader of the Reference Laboratory for Factors of Innate Immunity.
Zobrazit více v PubMed
Gordon HA, Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev. 1971;35:390–429. PubMed PMC
Cebra JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr. 1999;69:1046S–1051S. PubMed
Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–1273. doi: 10.1126/science.1223490. PubMed DOI PMC
Bäckhed F, Crawford PA. Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochim Biophys Acta. 2010;1801:240–245. doi: 10.1016/j.bbalip.2009.09.009. PubMed DOI PMC
Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest. 2011;121:2126–2132. doi: 10.1172/JCI58109. PubMed DOI PMC
Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013;62:3341–3349. doi: 10.2337/db13-0844. PubMed DOI PMC
Thompson GR, Trexler PC. Gastrointestinal structure and function in germ-free or gnotobiotic animals. Gut. 1971;12:230–235. doi: 10.1136/gut.12.3.230. PubMed DOI PMC
Butler JE, Lager KM, Splichal I, et al. The piglet as a model for B cell and immune system development. Vet Immunol Immunopathol. 2009;128:147–170. doi: 10.1016/j.vetimm.2008.10.321. PubMed DOI PMC
Grover M, Kashyap PC. Germ free mice as a model to study effect of gut microbiota on host physiology. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc. 2014;26:745–748. doi: 10.1111/nmo.12366. PubMed DOI PMC
Umesaki Y. Use of gnotobiotic mice to identify and characterize key microbes responsible for the development of the intestinal immune system. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90:313–332. doi: 10.2183/pjab.90.313. PubMed DOI PMC
Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–812. doi: 10.1038/nrc3610. PubMed DOI PMC
Francescone R, Hou V, Grivennikov SI. Microbiome, inflammation and cancer. Cancer J Sudbury Mass. 2014;20:181–189. doi: 10.1097/PPO.0000000000000048. PubMed DOI PMC
Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis. 2014;35:249–255. doi: 10.1093/carcin/bgt392. PubMed DOI PMC
Brawner KM, Morrow CD, Smith PD. Gastric microbiome and gastric cancer. Cancer J Sudbury Mass. 2014;20:211–216. doi: 10.1097/PPO.0000000000000043. PubMed DOI PMC
Tlaskalova-Hogenova H, Vannucci L, Klimesova K, et al. Microbiome and colorectal carcinoma: insights from germ-free and conventional animal models. Cancer J Sudbury Mass. 2014;20:217–224. doi: 10.1097/PPO.0000000000000052. PubMed DOI
Luckey T. Germfree life and gnotobiology. New York: Academic Press Inc.; 1963.
Luckey T. Effects of microbes on germfree animals. Advan Appl Microbiol. 1965;7:169–223. doi: 10.1016/S0065-2164(08)70387-3. PubMed DOI
Bibiloni R. Rodent models to study the relationships between mammals and their bacterial inhabitants. Gut Microbes. 2012;3:536–543. doi: 10.4161/gmic.21905. PubMed DOI PMC
Nencki M. Bemerkung zu einer Bemerkung Pasteur’s. Arch Exp Pathol Pharmacol. 1886;20:385–388. doi: 10.1007/BF01831344. DOI
Metchnikoff E. Les microbes intestinaux. Bull Inst Pasteur. 1903;1:265–282.
Gustafsson B. Germfree rearing of rats. General technique. Acta Pathol Microbiol Scand Suppl. 1948;73:1–130.
Gustafsson B. Lightweight stainless steel systems for rearing germfree animals. Ann N Acad Sci. 1959;78:17–28. doi: 10.1111/j.1749-6632.1959.tb53092.x. PubMed DOI
Gustafsson BE, Laurell C-B. Gamma globulin production in germfree rats after bacterial contamination. J Exp Med. 1959;110:675–684. doi: 10.1084/jem.110.5.675. PubMed DOI PMC
Kirk RG. “Life in a germ-free world”: isolating life from the laboratory animal to the bubble boy. Bull Hist Med. 2012;86:237–275. doi: 10.1353/bhm.2012.0028. PubMed DOI PMC
Trávnícek J, Mandel L, Kasal P, et al. Equipment for germ-free caesarean section and baby care. Folia Microbiol (Praha) 1977;22:523–526. doi: 10.1007/BF02884486. PubMed DOI
Trávnícek J, Mandel L. Gnotobiotic techniques. Folia Microbiol (Praha) 1979;24:6–10. doi: 10.1007/BF02927240. PubMed DOI
Sterzl J, Silverstein AM. Developmental aspects of immunity. Adv Immunol. 1967;6:337–459. doi: 10.1016/S0065-2776(08)60525-8. PubMed DOI
Sterzl J. Factors determining the differentiation pathways of immunocompetent cells. Cold Harb Symp Quant Biol. 1967;32:1–22. doi: 10.1101/SQB.1967.032.01.005. DOI
Sterzl J. Quantitative and qualitative aspect of the inductive phase of antibody formation. J Hyg Epidemiol Microbiol Immunol. 1963;7:301–318. PubMed
Sterzl J, Mandel L. Estimation of the inductive phase of antibody formation by plaque technique. Folia Microbiol (Praha) 1964;14:173–176. doi: 10.1007/BF02874003. PubMed DOI
Sterzl J, Ríha I. Detection of cells producing 7S antibodies by the plaque technique. Nature. 1965;208:858–859. doi: 10.1038/208858a0. PubMed DOI
Sterzl J, Rejnek J, Trávnícek J. Impermeability of pig placenta for antibodies. Folia Microbiol (Praha) 1966;11:7–10. doi: 10.1007/BF02877148. PubMed DOI
Jílek M, Sterzl J. Influence of the amount of antigen and interval on the secondary reaction. Folia Microbiol (Praha) 1967;12:6–20. doi: 10.1007/BF02895084. PubMed DOI
Sterzl J, Jílek M. Number of antibody-forming cells in primary and secondary reactions after administration of antigen. Nature. 1967;216:1233–1235. doi: 10.1038/2161233a0. PubMed DOI
Klein P, Sterzl J, Dolezal J. A mathematical model of B lymphocyte differentiation: control by antigen. J Math Biol. 1981;13:67–86. doi: 10.1007/BF00276866. PubMed DOI
Kovářů F, Štěpánková R, Kruml J, et al. Development of lymphatic and haemopoietic organs in germfree models. Folia Microbiol Praha. 1979;24:32–43. doi: 10.1007/BF02927243. PubMed DOI
Tlaskalová-Hogenová H, Štěpánková R. Development of antibody formation in germ-free and conventionally reared rabbits: the role of intestinal lymphoid tissue in antibody formation to E. coli antigens. Folia Biol Praha. 1980;26:81–93. PubMed
Tlaskalova-Hogenova H, Vetvicka V, Sterzl J, Stepankova R. Development of immune potential and migration pattern of cells from germfree (GF) and conventionally (CONV) reared rats. Adv Exp Med Biol. 1982;149:515–520. doi: 10.1007/978-1-4684-9066-4_72. PubMed DOI
Tlaskalova-Hogenova H, Sterzl J, Stepankova R, et al. Development of immunological capacity under germfree and conventional conditions. Ann N Acad Sci. 1983;409:96–113. doi: 10.1111/j.1749-6632.1983.tb26862.x. PubMed DOI
Větvička V, Tlaskalová-Hogenová H, Štěpánková R. Effects of microflora antigens on lymphocyte migration patterns in germfree and conventional rats. Folia Biol Praha. 1983;29:412–418. PubMed
Fornůsek L, Větvička V, Jaroskova L, Stěpánková R. Some properties of the plasma membrane of macrophages from germ-free rats. J Reticuloendothel Soc. 1983;34:331–340. PubMed
Stěpánková R, Kovárů F. Immunoglobulin-producing cells in lymphatic tissues of germfree and conventional rabbits as detected by an immunofluorescence method. Folia Microbiol Praha. 1985;30:291–294. doi: 10.1007/BF02923522. PubMed DOI
Sterzl J, Mandel L, Stepankova R. The use of gnotobiological models for the studies of immune mechanisms. Nahrung. 1987;31:599–608. doi: 10.1002/food.19870310578. PubMed DOI
O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–693. doi: 10.1038/sj.embor.7400731. PubMed DOI PMC
Clarke G, Stilling RM, Kennedy PJ, et al. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol Baltim Md. 2014;28:1221–1238. doi: 10.1210/me.2014-1108. PubMed DOI PMC
Bäckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. doi: 10.1126/science.1104816. PubMed DOI
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Arrieta M-C, Stiemsma LT, Amenyogbe N, et al. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427. doi: 10.3389/fimmu.2014.00427. PubMed DOI PMC
Maranduba CM, De Castro SBR, de Souza GT, et al. Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis. J Immunol Res. 2015;2015:931574. doi: 10.1155/2015/931574. PubMed DOI PMC
Bermon S, Petriz B, Kajėnienė A, et al. The microbiota: an exercise immunology perspective. Exerc Immunol Rev. 2015;21:70–79. PubMed
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249. doi: 10.1038/nature11552. PubMed DOI
Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–238. doi: 10.1038/nrmicro2974. PubMed DOI
Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol. 2011;2:94. doi: 10.3389/fphys.2011.00094. PubMed DOI PMC
Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18:666–673. doi: 10.1038/mp.2012.77. PubMed DOI
Thomas LV, Ockhuizen T, Suzuki K. Exploring the influence of the gut microbiota and probiotics on health: a symposium report. Br J Nutr. 2014;112(Suppl 1):S1–S18. doi: 10.1017/S0007114514001275. PubMed DOI PMC
Patel R, DuPont HL. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60(Suppl 2):S108–S121. doi: 10.1093/cid/civ177. PubMed DOI PMC
Meehan CJ, Langille MGI, Beiko RG. Frailty and the microbiome. Interdiscip Top Gerontol Geriatr. 2015;41:54–65. PubMed
Le Barz M, Anhê FF, Varin TV, et al. Probiotics as complementary treatment for metabolic disorders. Diabetes Metab J. 2015;39:291–303. doi: 10.4093/dmj.2015.39.4.291. PubMed DOI PMC
Malnick S, Melzer E. Human microbiome: from the bathroom to the bedside. World J Gastrointest Pathophysiol. 2015;6:79–85. PubMed PMC
Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283–307. doi: 10.1146/annurev.nutr.22.011602.092259. PubMed DOI
Chung H, Pamp SJ, Hill JA, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–1593. doi: 10.1016/j.cell.2012.04.037. PubMed DOI PMC
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323. doi: 10.1038/nri2515. PubMed DOI PMC
Vannucci L, Stepankova R, Kozakova H, et al. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol. 2008;32:609–617. PubMed
Vannucci L, Stepankova R, Grobarova V, et al. Colorectal carcinoma: importance of colonic environment for anti-cancer response and systemic immunity. J Immunotoxicol. 2009;6:217–226. doi: 10.3109/15476910903334343. PubMed DOI
Tlaskalová-Hogenová H, Štěpánková R, Kozáková H, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC
Zachar Z, Savage DC. Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes . Infect Immun. 1979;23:168–174. PubMed PMC
Czuprynski CJ, Balish E. Pathogenesis of Listeria monocytogenes for gnotobiotic rats. Infect Immun. 1981;32:323–331. PubMed PMC
Nardi RM, Vieira EC, Crocco-Afonso LC, et al. Bacteriological and immunological aspects of conventional and germfree mice infected with Salmonella typhimurium . Rev Latinoam Microbiol. 1991;33:239–243. PubMed
Butterton JR, Ryan ET, Shahin RA, Calderwood SB. Development of a germfree mouse model of Vibrio cholerae infection. Infect Immun. 1996;64:4373–4377. PubMed PMC
Mittrücker H-W, Seidel D, Bland PW, et al. Lack of microbiota reduces innate responses and enhances adaptive immunity against Listeria monocytogenes infection. Eur J Immunol. 2014;44:1710–1715. doi: 10.1002/eji.201343927. PubMed DOI
Inagaki H, Suzuki T, Nomoto K, Yoshikai Y. Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin+ CD44+ T cells in sites of inflammation. Infect Immun. 1996;64:3280–3287. PubMed PMC
Fagundes CT, Amaral FA, Vieira AT, et al. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice. J Immunol Baltim Md. 2012;1950(188):1411–1420. PubMed
Croswell A, Amir E, Teggatz P, et al. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect Immun. 2009;77:2741–2753. doi: 10.1128/IAI.00006-09. PubMed DOI PMC
Ferreira RBR, Gill N, Willing BP, et al. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS One. 2011;6:e20338. doi: 10.1371/journal.pone.0020338. PubMed DOI PMC
Mack DR, Michail S, Wei S, et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol. 1999;276:G941–G950. PubMed
Mack DR, Ahrne S, Hyde L, et al. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 2003;52:827–833. doi: 10.1136/gut.52.6.827. PubMed DOI PMC
Srikanth CV, McCormick BA. Interactions of the intestinal epithelium with the pathogen and the indigenous microbiota: a three-way crosstalk. Interdiscip Perspect Infect Dis. 2008;2008:626827. PubMed PMC
Fagarasan S. Intestinal IgA synthesis: a primitive form of adaptive immunity that regulates microbial communities in the gut. Curr Top Microbiol Immunol. 2006;308:137–153. PubMed
Macpherson AJ, Geuking MB, McCoy KD. Immunoglobulin A: a bridge between innate and adaptive immunity. Curr Opin Gastroenterol. 2011;27:529–533. doi: 10.1097/MOG.0b013e32834bb805. PubMed DOI
Gutzeit C, Magri G, Cerutti A. Intestinal IgA production and its role in host-microbe interaction. Immunol Rev. 2014;260:76–85. doi: 10.1111/imr.12189. PubMed DOI PMC
Jarchum I, Pamer EG. Regulation of innate and adaptive immunity by the commensal microbiota. Curr Opin Immunol. 2011;23:353–360. doi: 10.1016/j.coi.2011.03.001. PubMed DOI PMC
Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–241. doi: 10.1038/nature11551. PubMed DOI PMC
Ewaschuk JB, Backer JL, Churchill TA, et al. Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bacterial DNA. Infect Immun. 2007;75:2572–2579. doi: 10.1128/IAI.01662-06. PubMed DOI PMC
Hall JA, Bouladoux N, Sun CM, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity. 2008;29:637–649. doi: 10.1016/j.immuni.2008.08.009. PubMed DOI PMC
Abt MC, Osborne LC, Monticelli LA, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 2012;37:158–170. doi: 10.1016/j.immuni.2012.04.011. PubMed DOI PMC
Abt MC, Pamer EG. Commensal bacteria mediated defenses against pathogens. Curr Opin Immunol. 2014;29:16–22. doi: 10.1016/j.coi.2014.03.003. PubMed DOI PMC
Clarke TB, Davis KM, Lysenko ES, et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. 2010;16:228–231. doi: 10.1038/nm.2087. PubMed DOI PMC
Denny JE, Powell WL, Schmidt NW. Local and long-distance calling: conversations between the gut microbiota and intra- and extra-gastrointestinal tract infections. Front Cell Infect Microbiol. 2016;6:41. doi: 10.3389/fcimb.2016.00041. PubMed DOI PMC
Fernández-Santoscoy M, Wenzel UA, Yrlid U, et al. The gut microbiota reduces colonization of the mesenteric lymph nodes and IL-12-independent IFN-γ production during salmonella infection. Front Cell Infect Microbiol. 2015;5:93. doi: 10.3389/fcimb.2015.00093. PubMed DOI PMC
Fournout S, Dozois CM, Odin M, et al. Lack of a role of cytotoxic necrotizing factor 1 toxin from Escherichia coli in bacterial pathogenicity and host cytokine response in infected germfree piglets. Infect Immun. 2000;68:839–847. doi: 10.1128/IAI.68.2.839-847.2000. PubMed DOI PMC
Hayakawa M, Taguchi H, Kamiya S, et al. Animal model of Mycoplasma pneumoniae infection using germfree mice. Clin Diagn Lab Immunol. 2002;9:669–676. PubMed PMC
Stecher B, Macpherson AJ, Hapfelmeier S, et al. Comparison of Salmonella enterica serovar Typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect Immun. 2005;73:3228–3241. doi: 10.1128/IAI.73.6.3228-3241.2005. PubMed DOI PMC
Vecht U, Wisselink HJ, Jellema ML, Smith HE. Identification of two proteins associated with virulence of Streptococcus suis type 2. Infect Immun. 1991;59:3156–3162. PubMed PMC
Vecht U, Wisselink HJ, van Dijk JE, Smith HE. Virulence of Streptococcus suis type 2 strains in newborn germfree pigs depends on phenotype. Infect Immun. 1992;60:550–556. PubMed PMC
Havell EA, Beretich GR, Carter PB. The mucosal phase of Listeria infection. Immunobiology. 1999;201:164–177. doi: 10.1016/S0171-2985(99)80056-4. PubMed DOI
Duerkop BA, Hooper LV. Resident viruses and their interactions with the immune system. Nat Immunol. 2013;14:654–659. doi: 10.1038/ni.2614. PubMed DOI PMC
Virgin HW. The virome in mammalian physiology and disease. Cell. 2014;157:142–150. doi: 10.1016/j.cell.2014.02.032. PubMed DOI PMC
Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology. 2014;146:1459–1469. doi: 10.1053/j.gastro.2014.02.001. PubMed DOI PMC
Kapusinszky B, Minor P, Delwart E. Nearly constant shedding of diverse enteric viruses by two healthy infants. J Clin Microbiol. 2012;50:3427–3434. doi: 10.1128/JCM.01589-12. PubMed DOI PMC
Donaldson EF, Lindesmith LC, Lobue AD, Baric RS. Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol Rev. 2008;225:190–211. doi: 10.1111/j.1600-065X.2008.00680.x. PubMed DOI
Minot S, Sinha R, Chen J, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21:1616–1625. doi: 10.1101/gr.122705.111. PubMed DOI PMC
Popgeorgiev N, Temmam S, Raoult D, Desnues C. Describing the silent human virome with an emphasis on giant viruses. Intervirology. 2013;56:395–412. doi: 10.1159/000354561. PubMed DOI
Spandole S, Cimponeriu D, Berca LM, Mihăescu G. Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch Virol. 2015;160:893–908. doi: 10.1007/s00705-015-2363-9. PubMed DOI
Kernbauer E, Ding Y, Cadwell K. An enteric virus can replace the beneficial function of commensal bacteria. Nature. 2014;516:94–98. PubMed PMC
Wilks J, Beilinson H, Golovkina TV. Dual role of commensal bacteria in viral infections. Immunol Rev. 2013;255:222–229. doi: 10.1111/imr.12097. PubMed DOI PMC
Wilks J, Beilinson H, Theriault B, et al. Antibody-mediated immune control of a retrovirus does not require the microbiota. J Virol. 2014;88:6524–6527. doi: 10.1128/JVI.00251-14. PubMed DOI PMC
Osborne LC, Monticelli LA, Nice TJ, et al. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science. 2014;345:578–582. doi: 10.1126/science.1256942. PubMed DOI PMC
Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2016;12:154–167. doi: 10.1038/nrendo.2015.218. PubMed DOI
Mondot S, Lepage P. The human gut microbiome and its dysfunctions through the meta-omics prism. Ann N Y Acad Sci. 2016 PubMed
Mazidi M, Rezaie P, Kengne AP, et al. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr. 2016 PubMed
Li Y, Liu Y, Chu C-Q. Th17 cells in type 1 diabetes: role in the pathogenesis and regulation by gut microbiome. Med Inflamm. 2015;2015:638470. PubMed PMC
Lerner A, Matthias T. Rheumatoid arthritis-celiac disease relationship: joints get that gut feeling. Autoimmun Rev. 2015;14:1038–1047. doi: 10.1016/j.autrev.2015.07.007. PubMed DOI
Rogier R, Koenders MI, Abdollahi-Roodsaz S. Toll-like receptor mediated modulation of T cell response by commensal intestinal microbiota as a trigger for autoimmune arthritis. J Immunol Res. 2015;2015:527696. doi: 10.1155/2015/527696. PubMed DOI PMC
Block KE, Zheng Z, Dent AL, et al. Gut microbiota regulates K/BxN autoimmune arthritis through follicular helper T but not Th17 cells. J Immunol Baltim Md. 2016;1950(196):1550–1557. PubMed PMC
Vieira SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. Lupus. 2014;23:518–526. doi: 10.1177/0961203313501401. PubMed DOI PMC
Hansen CHF, Nielsen DS, Kverka M, et al. Patterns of early gut colonization shape future immune responses of the host. PLoS One. 2012 PubMed PMC
Hansen AK, Hansen CHF, Krych L, Nielsen DS. Impact of the gut microbiota on rodent models of human disease. World J Gastroenterol WJG. 2014;20:17727–17736. PubMed PMC
Macela A, Kubelkova K (2016) Innate immune recognition: Lesson from Francisella models. Discussion Forum 2016 - Host Pathogen Interaction conference, Broumov, Czech Republic
Casadevall A, Pirofski LA. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999;67:3703–3713. PubMed PMC
Casadevall A, Pirofski L-A. What is a host? Incorporating the microbiota into the damage-response framework. Infect Immun. 2015;83:2–7. doi: 10.1128/IAI.02627-14. PubMed DOI PMC
Early infection-induced natural antibody response