Potential of Essential Oils from Anise, Dill and Fennel Seeds for the Gypsy Moth Control
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
451-03-9/2021-14/200007
Ministry of Education, Science and Technological Development of the Republic of Serbia
PubMed
34686003
PubMed Central
PMC8538750
DOI
10.3390/plants10102194
PII: plants10102194
Knihovny.cz E-zdroje
- Klíčová slova
- botanical insecticide, deterrence coefficient, digestive toxicity, insect pest management, nutritional indices,
- Publikační typ
- časopisecké články MeSH
The gypsy moth (Lymantria dispar L. (Lepidoptera: Erebidae)) is a serious pest of hardwood forests. In the search for an environmentally safe means of its control, we assessed the impact of different concentrations of essential oils (EOs) from the seeds of three Apiaceae plants (anise Pimpinella anisum, dill Anethum graveolens, and fennel Foeniculum vulgare) on behavior, mortality, molting and nutritional physiology of gypsy moth larvae (GML). EOs efficacy was compared with commercial insecticide NeemAzal®-T/S (neem). The main compounds in the Eos were trans-anethole in anise; carvone, limonene, and α-phellandrene in dill; and trans-anethole and fenchone in fennel seed. At 1% EOs concentration, anise and fennel were better antifeedants and all three EOs were more toxic than neem. Neem was superior in delaying 2nd to 3rd larval molting. In the 4th instar, 0.5%, anise and fennel EOs decreased relative consumption rate more than neem, whereas all three EOs were more effective in reducing growth rate, approximate digestibility and efficiency of conversion of food into body mass leading to higher metabolic costs to GML. Decrease in consumption and metabolic parameters compared to control GML confirmed that adverse effects of the EOs stem from both pre- and post-ingestive mechanisms. The results indicate the potential of three EOs to be used for gypsy moth control.
Faculty of Forestry University of Belgrade Kneza Višeslava 1 11030 Belgrade Serbia
Institute for Medicinal Plant Research Dr Josif Pančić Tadeuša Košćuška 1 11000 Belgrade Serbia
Zobrazit více v PubMed
Liebhold A.M., Gottschalk K.W., Muzika R.M., Montgomery M.E., Young R., O’Day K., Kelley B. Suitability of North American Tree Species to the Gypsy Moth: A Summary of Field and Laboratory Tests. U.S. Department of Agriculture; Washington, DC, USA: 1995. p. 34. U.S. Department of Agriculture Forest Service NE Forest Experimental Station General Technical Bulletin NE-211.
Milanović S., Lazarević J., Popović Z., Miletić Z., Kostić M., Radulović Z., Karadžić D., Vuleta A. Preference and performance of the larvae of Lymantria dispar (Lepidoptera: Lymantriidae) on three species of European oaks. Eur. J. Entomol. 2014;111:371–378. doi: 10.14411/eje.2014.039. DOI
Naidoo R., Lechowicz M.J. Effects of gypsy moth on radial growth of deciduous trees. For. Sci. 2001;47:338–348.
Fajvan M.A., Rentch J., Gottschalk K. The effects of thinning and gypsy moth defoliation on wood volume growth in oaks. Trees. 2008;22:257–268. doi: 10.1007/s00468-007-0183-6. DOI
Davidson C.B., Gottschalk K.W., Johnson J.E. Tree mortality following defoliation by the European gypsy moth (Lymantria dispar L.) in the United States: A review. For. Sci. 1999;45:74–84.
Milanović S., Mihajlović L., Karadžić D., Jankovsky L., Aleksić P., Janković-Tomanić M., Lazarević J. Effects of pedunculate oak tree vitality on gypsy moth preference and performance. Arch. Biol. Sci. 2014;66:1659–1672. doi: 10.2298/ABS1404659M. DOI
Morin R.S., Liebhold A.M. Invasive forest defoliator contributes to the impending downward trend of oak dominance in eastern North America. Forestry. 2016;89:284–289. doi: 10.1093/forestry/cpv053. DOI
Arai T., Yaginuma K., Toyoshima S., Ito T., Takanashi M. Damage of Lymantria dispar and Lymantria mathura aurora in apple orchards. Annu. Rep. Soc. Plant Prot. North Jpn. 2010;61:220–224.
Bigsby K.M., Ambrose M.J., Tobin P.C., Sills E.O. The cost of gypsy moth sex in the city. Urban For. Urban Green. 2014;13:459–468. doi: 10.1016/j.ufug.2014.05.003. DOI
Stenersen J. Chemical Pesticides Mode of Action and Toxicology. 1st ed. CRC Press; Boca Raton, FL, USA: 2004.
Devine G.J., Furlong M.J. Insecticide use: Contexts and ecological consequences. Agric. Hum. Values. 2007;24:281–306. doi: 10.1007/s10460-007-9067-z. DOI
Guedes R.N.C., Walse S.S., Throne J.E. Sublethal exposure, insecticide resistance, and community stress. Curr. Opin. Insect Sci. 2017;21:47–53. doi: 10.1016/j.cois.2017.04.010. PubMed DOI
Brevik K., Schoville S.D., Mota-Sanchez D., Chen Y.H. Pesticide durability and the evolution of resistance: A novel application of survival analysis. Pest Manag. Sci. 2018;74:1953–1963. doi: 10.1002/ps.4899. PubMed DOI
Umina P.A., McDonald G., Maino J., Edwards O., Hoffmann A.A. Escalating insecticide resistance in Australian grain pests: Contributing factors, industry trends and management opportunities. Pest Manag. Sci. 2019;75:1494–1506. doi: 10.1002/ps.5285. PubMed DOI
Dar M.A., Kaushik G., Chiu J.F.V. Pollution status and biodegradation of organophosphate pesticides in the environment. In: Singh P., Kumar A., Borthakur A., editors. Abatement of Environmental Pollutants. Elsevier; Amsterdam, The Netherlands: 2020. pp. 25–66.
Senthil-Nathan S. A review of bio pesticides and their mode of action against insect pests. In: Thangavel P., Sridevi G., editors. Environmental Sustainability—Role of Green Technologies. Springer; New Delhi, India: 2015. pp. 49–63.
Kumar V. A review on efficacy of biopesticides to control the agricultural insect’s pest. Int. J. Agric. Sci. Res. 2015;4:168–179.
Anwer M.A. Biopesticides and Bioagents: Novel Tools for Pest Management. 1st ed. CRC Press; Boca Raton, FL, USA: 2017.
Isman M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020;19:235–241. doi: 10.1007/s11101-019-09653-9. DOI
Stanković S., Kostić M., Kostić I., Krnjajić S. Practical approaches to pest control: The use of natural compounds. In: Kontogiannatos D., editor. Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production. IntechOpen; London, UK: 2020.
Shahzad K., Manzoor F. Nanoformulations and their mode of action in insects: A review of biological interactions. Drug Chem. Toxicol. 2021;44:1–11. doi: 10.1080/01480545.2018.1525393. PubMed DOI
Liebhold A., McManus M. The evolving use of insecticides in gypsy moth management. J. For. 1999;97:20–23.
Sharov A.A., Leonard D., Liebhold A.M., Roberts E.A., Dickerson W. “Slow the spread”: A national program to contain the gypsy moth. Forestry. 2002;100:30–36.
Helson B. Naturally derived insecticides: Prospects for forestry use. For. Chron. 1992;68:349–354. doi: 10.5558/tfc68349-3. DOI
Norris D.M., Markovic I. Ash Extractabels for Deterring Gypsy Moth. No. 5,614,196. [(accessed on 12 October 2021)];U.S. Patent. 1997 March 25; Available online: https://patentimages.storage.googleapis.com/1e/2d/2f/019e766c0d0db9/US5614196.pdf.
Hussein R.A., El-Anssary A.A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. In: Builders P.H., editor. Herbal Medicine. IntechOpen; London, UK: 2019.
Khare S., Singh N.B., Singh A., Hussain I., Niharika K., Yadav V., Bano C., Yadav R.K., Amist N. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 2020;63:203–216. doi: 10.1007/s12374-020-09245-7. DOI
Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A review. Plant Protect. Sci. 2016;52:229–241.
Isman M.B., Machial C.M. Pesticides based on plant essential oils: From traditional practice to commercialization. In: Rai M., Carpinella M.C., editors. Advances in Phytomedicine. Volume 3. Elsevier; Amsterdam, The Netherland: 2006. pp. 29–44.
Tripathi A.K., Upadhyay S., Bhuiyan M., Bhattacharya P.R. A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacogn. Phytother. 2009;1:052–063.
Nerio L.S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010;101:372–378. doi: 10.1016/j.biortech.2009.07.048. PubMed DOI
Zibaee A. Botanical insecticides and their effects on insect biochemistry and immunity. In: Stoytcheva M., editor. Pesticides in the Modern World—Pests Control and Pesticides Exposure and Toxicity Assessment. IntechOpen; London, UK: 2011. pp. 55–68.
Isman M.B., Tak J.H. Commercialization of insecticides based on plant essential oils: Past, present, and future. In: Nollet L.M.L., Rathore H.S., editors. Green Pesticides Handbook. CRC Press; Boca Raton, FL, USA: 2017. pp. 27–40.
De Souza M.A., Da Silva L., Macêdo M.J.F., Lacerda-Neto L.J., dos Santos M.A.C., Coutinho H.D.M., Cunha F.A.B. Adulticide and repellent activity of essential oils against Aedes aegypti (Diptera: Culicidae)–A review. S. Afr. J. Bot. 2019;124:160–165. doi: 10.1016/j.sajb.2019.05.007. DOI
Campos E.V.R., Proença P.L.F., Oliveira J.L., Bakshi M., Abhilash P.C., Fraceto L.F. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 2019;105:483–495. doi: 10.1016/j.ecolind.2018.04.038. DOI
Isman M.B. Botanical insecticides in the twenty-first century—Fulfilling their promise? Annu. Rev. Entomol. 2020;65:233–249. doi: 10.1146/annurev-ento-011019-025010. PubMed DOI
Benelli G. On a magical mystery tour of green insecticide research: Current issues and challenges. Molecules. 2020;25:5014. doi: 10.3390/molecules25215014. PubMed DOI PMC
Spinozzi E., Maggi F., Bonacucina G., Pavela R., Boukouvala M.C., Kavallieratos N.G., Canale A., Romano D., Desneux N., Wilke A.B.B., et al. Apiaceae essential oils and their constituents as insecticides against mosquitoes—A review. Ind. Crops Prod. 2021;171:113892. doi: 10.1016/j.indcrop.2021.113892. DOI
Bruce T.J., Pickett J.A. Perception of plant volatile blends by herbivorous insects–finding the right mix. Phytochemistry. 2011;72:1605–1611. doi: 10.1016/j.phytochem.2011.04.011. PubMed DOI
Deletre E., Schatz B., Bourguet D., Chandre F., Williams L., Ratnadass A., Martin T. Prospects for repellent in pest control: Current developments and future challenges. Chemoecology. 2016;26:127–142. doi: 10.1007/s00049-016-0214-0. DOI
Da Cunha F.A.B., Wallau G.L., Pinho A.I., Nunes M.E.M., Leite N.F., Tintino S.R., da Costa G.M., Athayde M.L., Boligon A.A., Coutinho H.D.M., et al. Eugenia uniflora leaves essential oil induces toxicity in Drosophila melanogaster: Involvement of oxidative stress mechanisms. Toxicol. Res. 2015;4:634–644. doi: 10.1039/C4TX00162A. DOI
Shahriari M., Sahebzadeh N., Zibaee A. Effect of Teucrium polium (Lamiaceae) essential oil on digestive enzyme activities and energy reserves of Ephestia kuehniella (Lepidoptera: Pyralidae) Invertebr. Surviv. J. 2017;14:182–189.
Benelli G., Pavela R., Petrelli R., Cappellacci L., Canale A., Senthil-Nathan S., Maggi F. Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind. Crops Prod. 2018;124:236–243. doi: 10.1016/j.indcrop.2018.07.048. DOI
Hashem A.S., Awadalla S.S., Zayed G.M., Maggi F., Benelli G. Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—Insecticidal activity and mode of action. Environ. Sci. Pollut. Res. 2018;25:18802–18812. doi: 10.1007/s11356-018-2068-1. PubMed DOI
Hashem A.S., Ramadan M.M., Abdel-Hady A.A., Sut S., Maggi F., Dall’Acqua S. Pimpinella anisum essential oil nanoemulsion toxicity against Tribolium castaneum? Shedding light on its interactions with aspartate aminotransferase and alanine aminotransferase by molecular docking. Molecules. 2020;25:4841. doi: 10.3390/molecules25204841. PubMed DOI PMC
Castillo-Morales R.M., Otero A.L.C., Mendez-Sanchez S.C., Da Silva M.A.N., Stashenko E.E., Duque J.E. Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019;221:29–37. doi: 10.1016/j.cbpc.2019.03.006. PubMed DOI
Fergani Y.A., Elbanna H.M., Hamama H.M. Genotoxicity of some plant essential oils in cotton leafworm, Spodopteralittoralis (Lepidoptera: Noctuidae): The potential role of detoxification enzymes. Egypt. J. Zool. 2020;73:53–66. doi: 10.21608/ejz.2020.28358.1029. DOI
Milanović S.D., Popović M.M., Dobrosavljević J.N., Kostić I.M., Lazarević J.M. Desperate times call for desperate measures: Short-term use of the common ash tree by gypsy moth larvae (Lepidoptera: Erebidae) under density and starvation stress. Arch. Biol. Sci. 2020;72:63–69. doi: 10.2298/ABS191106067M. DOI
Chen Y.Z., Zhang B.W., Yang J., Zou C.S., Li T., Zhang G.C., Chen G.S. Detoxification, antioxidant, and digestive enzyme activities and gene expression analysis of Lymantria dispar larvae under carvacrol. J. Asia-Pac. Entomol. 2021;24:208–216. doi: 10.1016/j.aspen.2020.12.014. DOI
Nasr E.E., Teleb S.S., Abou-Saty A.I. Nutritional responses of the black cutworm, Agrotis ipsilon (Hufn.), larvae under toxicity effects of five wild botanical extracts from Sinai, Egypt. Annu. Res. Rev. Biol. 2021;36:30–46. doi: 10.9734/arrb/2021/v36i330351. DOI
Haddi K., Turchen L.M., Viteri Jumbo L.O., Guedes R.N., Pereira E.J., Aguiar R.W., Oliveira E.E. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Manag. Sci. 2020;76:2286–2293. doi: 10.1002/ps.5837. PubMed DOI
Evergetis E., Michaelakis A.N., Haroutounian S.A. Essential oils of Umbelliferae (Apiaceae) family taxa as emerging potent agents for mosquito control. In: Larramendy M.L., Soloneski S., editors. Integrated Pest Management and Pest Control—Currentand Future Tactics. IntechOpen; Rijeka, Croatia: 2012. pp. 613–638. Chapter 26.
Yeom H.J., Kang J.S., Kim G.H., Park I.K. Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica) J. Agric. Food Chem. 2012;60:7194–7203. doi: 10.1021/jf302009w. PubMed DOI
Ebadollahi A. Plant essential oils from Apiaceae family as alternatives to conventional insecticides. Ecol. Balk. 2013;5:149–172.
Sousa R.M.O., Rosa J.S., Oliveira L., Cunha A., Fernandes-Ferreira M. Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae) Ind. Crops Prod. 2015;63:226–237. doi: 10.1016/j.indcrop.2014.09.052. DOI
Camilo C.J., Alves Nonato C.D.F., Galvão-Rodrigues F.F., Costa W.D., Clemente G.G., Sobreira Macedo M.A.C., Galvão Rodrigues F.F., da Costa J.G.M. Acaricidal activity of essential oils: A review. Trends Phytochem. Res. 2017;1:183–198.
Benelli G., Pavela R. Repellence of essential oils and selected compounds against ticks—A systematic review. Acta Trop. 2018;179:47–54. doi: 10.1016/j.actatropica.2017.12.025. PubMed DOI
Chaubey M.K. Essential oils as green pesticides of stored grain insects. Eur. J. Biol. Res. 2019;9:202–244.
Ikbal C., Pavela R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019;92:971–986. doi: 10.1007/s10340-019-01089-6. DOI
Pavela R., Morshedloo M.R., Mumivand H., Khorsand G.J., Karami A., Maggi F., Desneux N., Benelli G. Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020;40:421–435. doi: 10.1127/entomologia/2020/1131. DOI
Sousa R.M.O., Cunha A.C., Fernandes-Ferreira M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. Phytochemistry. 2021;187:112714. doi: 10.1016/j.phytochem.2021.112714. PubMed DOI
Muturi E.J., Doll K., Ramirez J.L., Rooney A.P. Bioactivity of wild carrot (Daucus carota, Apiaceae) essential oil against mosquito larvae. J. Med. Entomol. 2019;56:784–789. doi: 10.1093/jme/tjy226. PubMed DOI
Kostić I., Petrović O., Milanović S., Popović Z., Stanković S., Todorović G., Kostić M. Biological activity of essential oils of Athamanta haynaldii and Myristica fragrans to gypsy moth larvae. Ind. Crops Prod. 2013;41:17–20. doi: 10.1016/j.indcrop.2012.03.039. DOI
Mossa A.T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 2016;9:354. doi: 10.3923/jest.2016.354.378. DOI
Pavela R., Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Rocha D.K., Matos O., Novo M.T., Figueiredo A.C., Delgado M., Moiteiro C. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde. Nat. Prod. Commun. 2015;10:677–682. doi: 10.1177/1934578X1501000438. PubMed DOI
Pavela R., Žabka M., Bednář J., Tříska J., Vrchotová N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Ind. Crops Prod. 2016;83:275–282. doi: 10.1016/j.indcrop.2015.11.090. DOI
Skuhrovec J., Douda O., Zouhar M., Maňasová M., Božik M., Klouček P. Insecticidal and behavioral effect of microparticles of Pimpinella anisum essential oil on larvae of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) J. Econom. Entomol. 2020;113:255–262. doi: 10.1093/jee/toz279. PubMed DOI
Lazarević J., Jevremović S., Kostić I., Kostić M., Vuleta A., Manitašević Jovanović S., Šešlija Jovanović D. Toxic, oviposition deterrent and oxidative stress effects of Thymus vulgaris essential oil against Acanthoscelides obtectus. Insects. 2020;11:563. doi: 10.3390/insects11090563. PubMed DOI PMC
Moretti M.D., Sanna-Passino G., Demontis S., Bazzoni E. Essential oil formulations useful as a new tool for insect pest control. AAPS PharmSciTech. 2002;3:64–74. doi: 10.1208/pt030213. PubMed DOI PMC
Cetin H., Erler F., Yanikoglu A. A comparative evaluation of Origanum onites essential oil and its four major components as larvicides against the pine processionary moth, Thaumetopoea wilkinsoni Tams. Pest Manag. Sci. 2007;63:830–833. doi: 10.1002/ps.1401. PubMed DOI
Gupta A., Sharma S., Naik S.N. Biopesticidal value of selected essential oils against pathogenic fungus, termites, and nematodes. Int. Biodeter. Biodegr. 2011;65:703–707. doi: 10.1016/j.ibiod.2010.11.018. DOI
Ezzine O., Dhahri S., Akkari H., Ben Jamâa M.L. Larvicidal activity of essential oil of Mentha pulegium on larvae of Orgyia trigotephras Boisduval, 1829 (Lepidoptera, Erebidae) J. New Sci. 2018;20:3423–3428.
Devrnja N., Kostić I., Lazarević J., Savić J., Ćalić D. Evaluation of tansy essential oil as a potential “green” alternative for gypsy moth control. Environ. Sci. Pollut. Res. 2020;27:11958–11967. doi: 10.1007/s11356-020-07825-1. PubMed DOI
Kostić M., Popović Z., Brkić D., Milanović S., Sivčev I., Stanković S. Larvicidal and antifeedant activity of some plant-derived compounds to Lymantria dispar L. (Lepidoptera: Limantriidae) Bioresour. Technol. 2008;99:7897–7901. doi: 10.1016/j.biortech.2008.02.010. PubMed DOI
Popović Z., Kostić M., Stanković S., Milanović S., Sivčev I., Kostić I., Kljajić P. Ecologically acceptable usage of derivatives of essential oil of sweet basil, Ocimum basilicum, as antifeedants against larvae of the gypsy moth, Lymantria dispar. J. Insect Sci. 2013;13:161. doi: 10.1673/031.013.16101. PubMed DOI PMC
Gvozdenac S.M., Inđić D.V., Vuković S.M., Grahovac M.S., Tanasković S.T. Antifeeding activity of several plant extracts against Lymantria dispar L. (Lepidoptera: Lymantriidae) larvae. Pestic. Phytomed. 2012;27:305–311. doi: 10.2298/PIF1204305G. DOI
Işıkber A.A., Özder N., Sağlam Ö. Susceptibility of eggs of Tribolium confusum, Ephestia kuehniella and Plodia interpunctella to four essential oil vapors. Phytoparasitica. 2009;37:231. doi: 10.1007/s12600-009-0035-6. DOI
Karahroodi Z.R., Moharramipour S., Rahbarpour A. Investigated repellency effect of some essential oils of 17 native medicinal plants on adults Plodia interpunctella. Am.-Eurasian J. Sustain. Agric. 2009;3:181–185.
Elumalai K., Krishnappa K., Anandan A., Govindarajan M., Mathivanan T. Larvicidal and ovicidal activity of seven essential oil against lepidopteran pest S. litura (Lepidoptera: Noctuidae) Int. J. Recent Sci. Res. 2010;1:8–14.
Sousa R.M.O., Rosa J.S., Oliveira L., Cunha A., Fernandes-Ferreira M. Activities of Apiaceae essential oils against armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae) J. Agric. Food Chem. 2013;61:7661–7672. doi: 10.1021/jf403096d. PubMed DOI
Chantawee A., Soonwera M. Larvicidal, pupicidal and oviposition deterrent activities of essential oils from Umbelliferae plants against house fly Musca domestica. Asian Pac. J. Trop. Med. 2018;11:621. doi: 10.4103/1995-7645.246338. DOI
Pavela R. Screening of Eurasian plants for insecticidal and growth inhibition activity against Spodoptera littoralis larvae. Afr. J. Agric. Res. 2011;6:2895–2907.
Oviedo-Sarmiento J.S., Cortes J.J.B., Ávila W.A.D., Suárez L.E.C., Daza E.H., Patiño-Ladino O.J., Prieto-Rodríguez J.A. Fumigant toxicity and biochemical effects of selected essential oils toward the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae) Pestic. Biochem. Physiol. 2021:104941. doi: 10.1016/j.pestbp.2021.104941. PubMed DOI
Szczepanik M., Dams I., Wawrzeńczyk C. Feeding deterrent activity of terpenoid lactones with the p-menthane system against the Colorado potato beetle (Coleoptera: Chrysomelidae) Environ. Entomol. 2005;34:1433–1440. doi: 10.1603/0046-225X-34.6.1433. DOI
Nawrot J., Dams I., Wawrzeńczyk C. Feeding deterrent activity of terpenoid lactones with a p-menthane system against stored-product pests. J. Stored Prod. Res. 2009;45:221–225. doi: 10.1016/j.jspr.2009.03.003. DOI
Kanda D., Kaur S., Koul O. A comparative study of monoterpenoids and phenylpropanoids from essential oils against stored grain insects: Acute toxins or feeding deterrents. J. Pest Sci. 2017;90:531–545. doi: 10.1007/s10340-016-0800-5. DOI
Morgan E.D. Azadirachtin, a scientific gold mine. Bioorg. Med. Chem. 2009;17:4096–4105. doi: 10.1016/j.bmc.2008.11.081. PubMed DOI
Mello C.B., Uzeda C.D., Bernardino M.V., Mendonça-Lopes D., Kelecom A., Fevereiro P.C., Guerra M.S., Oliveira A.P., Rocha L.M., Gonzalez M.S. Effects of the essential oil obtained from Pilocarpus spicatus Saint-Hilaire (Rutaceae) on the development of Rhodnius prolixus nymphae. Rev. Bras. Farmacogn. 2007;17:514–520. doi: 10.1590/S0102-695X2007000400007. DOI
Oliveira A.P., Rodrigo A.S., Botas G.S., Gonzalez M.S., Santos M.G., Teixeira L.A., Rocha L.M. Chemical and biological investigations of Pilocarpus spicatus essential oils. Boletín Latinoam. Caribe Plantas Med. Aromáticas. 2010;9:206–211.
Qin W., Huang S., Li C., Chen S., Peng Z. Biological activity of the essential oil from the leaves of Piper sarmentosum Roxb. (Piperaceae) and its chemical constituents on Brontispa longissima (Gestro) (Coleoptera: Hispidae) Pestic. Biochem. Physiol. 2010;96:132–139. doi: 10.1016/j.pestbp.2009.10.006. DOI
Ghoneim K., Amer M., Al-Daly A., Mohammad A., Khadrawy F., Mahmoud M.A. Disturbed acid and alkaline phosphatase activities in desert locust Schistocerca gregaria (Forskal) (Orthoptera: Acrididae) by extracts from the khella plant Ammi visnaga L. (Apiaceae) Int. J. Adv. Res. 2014;2:584–596.
Hummelbrunner L.A., Isman M.B. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae) J. Agric. Food Chem. 2001;49:715–720. doi: 10.1021/jf000749t. PubMed DOI
Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culexquinquefasciatus Say larvae. Parasitol. Res. 2015;114:3835–3853. doi: 10.1007/s00436-015-4614-9. PubMed DOI
Cruz G.S., Wanderley-Teixeira V., da Silva L.M., Dutra K.A., Guedes C.A., de Oliveira J.V., Navarro D.M.A.F., Araújo B.C., Teixeira Á.A.C. Chemical composition and insecticidal activity of the essential oils of Foeniculum vulgare Mill., Ocimum basilicum L., Eucalyptus staigeriana F. Muell. ex Bailey, Eucalyptus citriodora Hook and Ocimum gratissimum L. and their major components on Spodoptera frugiperda (Lepidoptera: Noctuidae) J. Essent. Oil-Bear. Plants. 2017;20:1360–1369.
Zahran H.E.D.M., Abdelgaleil S.A. Insecticidal and developmental inhibitory properties of monoterpenes on Culex pipiens L. (Diptera: Culicidae) J. Asia-Pac. Entomol. 2011;14:46–51. doi: 10.1016/j.aspen.2010.11.013. DOI
Al-Nagar N.M., Abou-Taleb H.K., Shawir M.S., Abdelgaleil S.A. Comparative toxicity, growth inhibitory and biochemical effects of terpenes and phenylpropenes on Spodoptera littoralis (Boisd.) J. Asia-Pac. Entomol. 2020;23:67–75. doi: 10.1016/j.aspen.2019.09.005. DOI
Sohail M., Aqueel M.A., Dai P., Ellis J.D. The larvicidal and adulticidal effects of selected plant essential oil constituents on greater wax moths. J. Econom. Entomol. 2021;114:397–402. doi: 10.1093/jee/toaa249. PubMed DOI
Regnault-Roger C., Hamraoui A. Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera), a bruchid of kidney bean (Phaseolus vulgaris L.) J. Stored Prod. Res. 1995;31:291–299. doi: 10.1016/0022-474X(95)00025-3. DOI
Céspedes C.L., Ortega C., Alarcon J., Salazar J.R. Antifeedant, feeding deterrent and insect growth regulatory effects of Calceolaria integrifolia sensu lato complex: C. integrifolia x talcana (Scrophulariaceae) Rev. Latinoamer. Quím. 2014;42:113–132.
Céspedes C.L., Alarcon J.E., Aqueveque P., Seigler D.S., Kubo I. In the search for new secondary metabolites with biopesticidal properties. Isr. J. Plant Sci. 2015;62:216–228. doi: 10.1080/07929978.2015.1006424. DOI
Mann R.S., Kaufman P.E. Natural product pesticides: Their development, delivery and use against insect vectors. Mini-Rev. Org. Chem. 2012;9:185–202. doi: 10.2174/157019312800604733. DOI
Pavela R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 2014;60:247–258. doi: 10.1016/j.indcrop.2014.06.030. DOI
Gaire S., Scharf M.E., Gondhalekar A.D. Synergistic toxicity interactions between plant essential oil components against the common bed bug (Cimex lectularius L.) Insects. 2020;11:133. doi: 10.3390/insects11020133. PubMed DOI PMC
Aungtikun J., Soonwera M., Sittichok S. Insecticidal synergy of essential oils from Cymbopogon citratus (Stapf.), Myristica fragrans (Houtt.), and Illicium verum Hook. f. and their major active constituents. Ind. Crops Prod. 2021;164:113386. doi: 10.1016/j.indcrop.2021.113386. DOI
Kostyukovsky M., Rafaeli A., Gileadi C., Demchenko N., Shaaya E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002;58:1101–1106. doi: 10.1002/ps.548. PubMed DOI
López M.D., Pascual-Villalobos M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crops Prod. 2010;31:284–288. doi: 10.1016/j.indcrop.2009.11.005. DOI
Jankowska M., Rogalska J., Wyszkowska J., Stankiewicz M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules. 2018;23:34. doi: 10.3390/molecules23010034. PubMed DOI PMC
Shahriari M., Zibaee A., Sahebzadeh N., Shamakhi L. Effects of α-pinene, trans-anethole, and thymol as the essential oil constituents on antioxidant system and acetylcholine esterase of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) Pestic. Biochem. Physiol. 2018;150:40–47. doi: 10.1016/j.pestbp.2018.06.015. PubMed DOI
Bloomquist J.R., Boina D.R., Chow E., Carlier P.R., Reina M., Gonzalez-Coloma A. Mode of action of the plant-derived silphinenes on insect and mammalian GABAA receptor/chloride channel complex. Pestic. Biochem. Physiol. 2008;91:17–23. doi: 10.1016/j.pestbp.2007.12.002. DOI
Drijfhout F.P., Morgan E.D., Liu H.W., Mander L. Terrestrial natural products as antifeedants. In: Liu H.-W., Mander L., editors. Comprehensive Natural Products II. Elsevier; Oxford, UK: 2010. pp. 457–501.
Santana O., Andres M.F., Sanz J., Errahmani N., Abdeslam L., González-Coloma A. Valorization of essential oils from Moroccan aromatic plants. Nat. Prod. Commun. 2014;9:1109–1114. doi: 10.1177/1934578X1400900812. PubMed DOI
Petrović M., Popović A., Kojić D., Šućur J., Bursić V., Aćimović M., Malenčić Đ., Stojanović T., Vuković G. Assessment of toxicity and biochemical response of Tenebrio molitor and Tribolium confusum exposed to Carum carvi essential oil. Entomol. Gen. 2019;38:333–348. doi: 10.1127/entomologia/2019/0697. DOI
Shahriari M., Zibaee A., Shamakhi L., Sahebzadeh N., Naseri D., Hoda H. Bio-efficacy and physiological effects of Eucalyptus globulus and Allium sativum essential oils against Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) Toxin Rev. 2019;39:422–433. doi: 10.1080/15569543.2018.1554588. DOI
El-Naggar S.A.F., Doskotch R.W., ODell T.M., Girard L. Antifeedant diterpenes for the gypsy moth larvae from Kalmia latifolia: Isolation and characterization of ten grayanoids. J. Nat. Prod. 1980;43:617–631. doi: 10.1021/np50011a016. DOI
Powell J.S., Raffa K.F. Effects of selected Larix laricina terpenoids on Lymantria dispar (Lepidoptera: Lymantriidae) development and behavior. Environ. Entomol. 1999;28:148–154. doi: 10.1093/ee/28.2.148. DOI
Rharrabe K., Amri H., Bouayad N., Sayah F. Effects of azadirachtin on post-embryonic development, energy reserves and α-amylase activity of Plodia interpunctella Hübner (Lepidoptera: Pyralidae) J. Stored Prod. Res. 2008;44:290–294. doi: 10.1016/j.jspr.2008.03.003. DOI
Khosravi R., Sendi J.J. Effect of neem pesticide (Achook) on midgut enzymatic activities and selected biochemical compounds in the hemolymph of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) J. Plant Prot. Res. 2013;53:238–247. doi: 10.2478/jppr-2013-0036. DOI
Bezzar-Bendjazia R., Kilani-Morakchi S., Maroua F., Aribi N. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae) Pestic. Biochem. Physiol. 2017;143:135–140. doi: 10.1016/j.pestbp.2017.08.006. PubMed DOI
Shu B., Zhang J., Cui G., Sun R., Yi X., Zhong G. Azadirachtin affects the growth of Spodoptera litura Fabricius by inducing apoptosis in larval midgut. Front. Physiol. 2018;9:137. doi: 10.3389/fphys.2018.00137. PubMed DOI PMC
Kaur M., Saraf I., Kumar R., Singh I.P., Kaur S. Bioefficacy of hexane extract of Inula racemosa (Asteraceae) against Spodoptera litura (Lepidoptera: Noctuidae) Gesunde Pflanz. 2019;71:165–174. doi: 10.1007/s10343-019-00462-w. DOI
Mojarab-Mahboubkar M., Sendi J.J., Aliakbar A. Effect of Artemisia annua L. essential oil on toxicity, enzyme activities, and energy reserves of cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) J. Plant Prot. Res. 2015;55:371–377. doi: 10.1515/jppr-2015-0049. DOI
Kiran S., Kujur A., Patel L., Ramalakshmi K., Prakash B. Assessment of toxicity and biochemical mechanisms underlying the insecticidal activity of chemically characterized Boswellia carterii essential oil against insect pest of legume seeds. Pestic. Biochem. Physiol. 2017;139:17–23. PubMed
De Souza Alves M., Campos I.M., de Brito D.D.M.C., Cardoso C.M., Pontes E.G., de Souza M.A.A. Efficacy of lemongrass essential oil and citral in controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a post-harvest cowpea insect pest. Crop. Protect. 2019;119:191–196. doi: 10.1016/j.cropro.2019.02.007. DOI
Chintalchere J.M., Dar M.A., Shaha C., Pandit R.S. Impact of essential oils on Musca domestica larvae: Oxidative stress and antioxidant responses. Int. J. Trop. Insect Sci. 2021;41:821–830. doi: 10.1007/s42690-020-00272-y. DOI
Vahabi Mashhoor M., Mikani A., Mehrabadi M., Moharramipour S. Antifeedant activity of nanoemulsion formulation of arugula Eruca sativa oil on elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae) J. Agric. Sci. Technol. 2021;23:125–136.
Valizadeh B., Sendi J.J., Zibaee A., Oftadeh M. Effect of Neem based insecticide Achook® on mortality, biological and biochemical parameters of elm leaf beetle Xanthogaleruca luteola (Col.: Chrysomelidae) J. Crop. Protect. 2013;2:319–330.
Zhang J., Sun T., Sun Z., Li H., Qi X., Zhong G., Yi X. Azadirachtin acting as a hazardous compound to induce multiple detrimental effects in Drosophila melanogaster. J. Hazard. Mater. 2018;359:338–347. doi: 10.1016/j.jhazmat.2018.07.057. PubMed DOI
Shahriari M., Sahbzadeh N., Zibaee A., Khani A., Senthil-Nathan S. Metabolic response of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) to essential oil of Ajwain and thymol. Toxin. Rev. 2017;36:204–209. doi: 10.1080/15569543.2017.1294605. DOI
Jayakumar M., Ramachandran M., Krishnaveni T., Nattudurai G. Toxicity and biochemical effects of essential oils of Anethumgraveolens L. and Melaleuca cajuputi Powell against Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) Int. J. Trop. Insect. Sci. 2021;41:945–951. doi: 10.1007/s42690-020-00359-6. DOI
Piri A., Sahebzadeh N., Zibaee A., Sendi J.J., Shamakhi L., Shahriari M. Toxicity and physiological effects of ajwain (Carum copticum, Apiaceae) essential oil and its major constituents against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) Chemosphere. 2020;256:127103. doi: 10.1016/j.chemosphere.2020.127103. PubMed DOI
Yu S.J. Microsomal oxidation of allelochemicals in generalist (Spodoptera frugiperda) and semispecialist (Anticarsiagemmatalis) insect. J. Chem. Ecol. 1987;13:423–436. doi: 10.1007/BF01880090. PubMed DOI
Moldenke A.F., Berry R.E., Miller J.C., Kelsey R.G., Wernz J.G., Venkateswaran S. Carbaryl susceptibility and detoxication enzymes in gypsy moth (Lepidoptera: Lymantriidae): Influence of host plant. J. Econ. Entomol. 1992;85:1628–1635. doi: 10.1093/jee/85.5.1628. DOI
European Directorate for the Quality of Medicines . Europea Pharmacopoea. 4th ed. European Directorate for the Quality of Medicines; Strasbourg, France: 2002. Determination of essential oils in vegetable drugs; pp. 183–184. Council of Europe Editions.
Adams R.P. Identification of Essential Oil Compounds by Gas Chromatography and Mass Spectrometry. 4th ed. Allured Publishing Corporation; Carol Stream, IL, USA: 2009.
Markovic I., Norris D.M., Nordheim E.V. Gypsy moth (Lymantria dispar) larval development and survival to pupation on diet plus extractables from green ash foliage. Entomol. Exp. Appl. 1997;84:247–254. doi: 10.1046/j.1570-7458.1997.00222.x. DOI
Mostafiz M.M., Shim J.K., Hwang H.S., Bunch H., Lee K.Y. Acaricidal effects of methyl benzoate against Tetranychus urticae Koch (Acari: Tetranychidae) on common crop plants. Pest Manag. Sci. 2020;76:2347–2354. doi: 10.1002/ps.5770. PubMed DOI
Wilcox D., Dove B., McDavid D., Greer D. Image Tool Copyright UTHSCSA 1996–2002. University of Texas Health Science Center (UTHSCSA); San Antonio, TX, USA: 1996.
Szczepanik M., Szumny A., Wawrzenczyk C. The effect of α-methylene lactone group on the feeding deterrent activity of natural and synthetic alkenes against Colorado Potato Beetle, Leptinotarsa decemlineata Say. Pol. J. Environ. Stud. 2009;18:1107–1112.
Waldbauer G.P. The consumption and utilization of food by insects. Adv. Insect Phys. 1968;5:229–288.
Scriber J.M., Slansky Jr F. The nutritional ecology of immature insects. Annu. Rev. Entomol. 1981;26:183–211. doi: 10.1146/annurev.en.26.010181.001151. DOI
Farrar R.R., Barbour J.D., Kennedy G.G. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 1989;82:593–598. doi: 10.1093/aesa/82.5.593. DOI
McDonald J.H. Handbook of Biological Statistics. Sparky House Publishing; Baltimore, MD, USA: 2014.
Brunner E., Puri M.L. Nonparametric methods in factorial designs. Stat. Pap. 2001;42:1–52. doi: 10.1007/s003620000039. DOI
Lichtenstein E.P., Liang T.T., Schulz K.R., Schnoes H.K., Carter G.T. Insecticidal and synergistic components isolated from dill plants. J. Agric. Food Chem. 1974;22:658–664. doi: 10.1021/jf60194a037. PubMed DOI
He W., Huang B. A review of chemistry and bioactivities of a medicinal spice: Foeniculum vulgare. J. Med. Plants Res. 2011;5:3595–3600.
Pavela R. Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ. Sci. Pollut. Res. 2018;25:10904–10910. doi: 10.1007/s11356-018-1398-3. PubMed DOI
Kaur V., Kaur R., Bhardwaj U. A review on dill essential oil and its chief compounds as natural biocide. Flavour Fragr. J. 2021;36:412–431. doi: 10.1002/ffj.3633. DOI