Systematic analysis of the IL-17 receptor signalosome reveals a robust regulatory feedback loop
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
SGS01/LF/2018-2019
Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS)
UNCE/MED/016
Univerzita Karlova v Praze (UK)
FunDiT
EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
18-24070Y
Grantová Agentura České Republiky (GACR)
207769/A/17/Z
Wellcome Trust (WT)
Wellcome Trust - United Kingdom
IZ11Z0_166538
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF)
PRIMUS/20/MED/003
Univerzita Karlova v Praze (UK)
IRP03_2018-2020
Ostravská Univerzita v Ostravě (University of Ostrava)
17-27355Y
Grantová Agentura České Republiky (GACR)
SGS02/LF/2017-2018
Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS)
4420
European Molecular Biology Organization (EMBO)
PubMed
32696476
PubMed Central
PMC7459424
DOI
10.15252/embj.2019104202
Knihovny.cz E-zdroje
- Klíčová slova
- LUBAC, NEMO, IKKε, IL-17, TBK1,
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- kinasa I-kappa B genetika metabolismus MeSH
- lidé MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- receptory interleukinu-17 genetika metabolismus MeSH
- signální transdukce * MeSH
- zpětná vazba fyziologická * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- IKBKE protein, human MeSH Prohlížeč
- IKBKG protein, human MeSH Prohlížeč
- IL17RA protein, human MeSH Prohlížeč
- kinasa I-kappa B MeSH
- protein-serin-threoninkinasy MeSH
- receptory interleukinu-17 MeSH
- TBK1 protein, human MeSH Prohlížeč
- TRAF3IP2 protein, human MeSH Prohlížeč
IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.
Department of Haematooncology University Hospital Ostrava Ostrava Czech Republic
Faculty of Medicine University of Ostrava Ostrava Czech Republic
Laboratory of Mass Spectrometry BIOCEV Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Amatya N, Garg AV, Gaffen SL (2017) IL‐17 signaling: the Yin and the Yang. Trends Immunol 38: 310–322 PubMed PMC
Amatya N, Childs EE, Cruz JA, Aggor FEY, Garg AV, Berman AJ, Gudjonsson JE, Atasoy U, Gaffen SL (2018) IL‐17 integrates multiple self‐reinforcing, feed‐forward mechanisms through the RNA binding protein Arid5a. Sci Signal 11: eaat4617 PubMed PMC
Bilal J, Berlinberg A, Bhattacharjee S, Trost J, Riaz IB, Kurtzman DJB (2018) A systematic review and meta‐analysis of the efficacy and safety of the interleukin (IL)‐12/23 and IL‐17 inhibitors ustekinumab, secukinumab, ixekizumab, brodalumab, guselkumab and tildrakizumab for the treatment of moderate to severe plaque psoriasis. J Dermatolog Treat 29: 569–578 PubMed
Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S, Rybojad M, Belkadi A, Picard C, Abel L, Fieschi C et al (2013) An ACT1 mutation selectively abolishes interleukin‐17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39: 676–686 PubMed PMC
Bonnard M, Mirtsos C, Suzuki S, Graham K, Huang J, Ng M, Itie A, Wakeham A, Shahinian A, Henzel WJ et al (2000) Deficiency of T2K leads to apoptotic liver degeneration and impaired NF‐kappaB‐dependent gene transcription. EMBO J 19: 4976–4985 PubMed PMC
Brembilla NC, Senra L, Boehncke WH (2018) The IL‐17 family of cytokines in psoriasis: IL‐17A and beyond. Front Immunol 9: 1682 PubMed PMC
Bulek K, Liu C, Swaidani S, Wang L, Page RC, Gulen MF, Herjan T, Abbadi A, Qian W, Sun D et al (2011) The inducible kinase IKKi is required for IL‐17‐dependent signaling associated with neutrophilia and pulmonary inflammation. Nat Immunol 12: 844–852 PubMed PMC
Chang SH, Park H, Dong C (2006) Act1 adaptor protein is an immediate and essential signaling component of interleukin‐17 receptor. J Biol Chem 281: 35603–35607 PubMed
Chariot A, Leonardi A, Muller J, Bonif M, Brown K, Siebenlist U (2002) Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases. J Biol Chem 277: 37029–37036 PubMed
Chau TL, Gioia R, Gatot JS, Patrascu F, Carpentier I, Chapelle JP, O'Neill L, Beyaert R, Piette J, Chariot A (2008) Are the IKKs and IKK‐related kinases TBK1 and IKK‐epsilon similarly activated? Trends Biochem Sci 33: 171–180 PubMed
Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL et al (2010) IL‐17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120: 1762–1773 PubMed PMC
Clark K, Peggie M, Plater L, Sorcek RJ, Young ER, Madwed JB, Hough J, McIver EG, Cohen P (2011a) Novel cross‐talk within the IKK family controls innate immunity. Biochem J 434: 93–104 PubMed
Clark K, Takeuchi O, Akira S, Cohen P (2011b) The TRAF‐associated protein TANK facilitates cross‐talk within the IkappaB kinase family during Toll‐like receptor signaling. Proc Natl Acad Sci U S A 108: 17093–17098 PubMed PMC
Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, Ho AW, Hai JH, Yu JJ, Jung JW et al (2009) Th17 cells and IL‐17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206: 299–311 PubMed PMC
Conti HR, Gaffen SL (2015) IL‐17‐mediated immunity to the opportunistic fungal pathogen Candida albicans . J Immunol 195: 780–788 PubMed PMC
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13: 2513–2526 PubMed PMC
Cua DJ, Tato CM (2010) Innate IL‐17‐producing cells: the sentinels of the immune system. Nat Rev Immunol 10: 479–489 PubMed
Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, Spilgies L, Surinova S, Taraborrelli L, Hartwig T et al (2015) LUBAC‐recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep 13: 2258–2272 PubMed PMC
Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site‐specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22: 245–257 PubMed
Ely LK, Fischer S, Garcia KC (2009) Structural basis of receptor sharing by interleukin 17 cytokines. Nat Immunol 10: 1245–1251 PubMed PMC
Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: 491–496 PubMed
Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL‐23‐IL‐17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14: 585–600 PubMed PMC
Garg AV, Ahmed M, Vallejo AN, Ma A, Gaffen SL (2013) The deubiquitinase A20 mediates feedback inhibition of interleukin‐17 receptor signaling. Sci Signal 6: ra44 PubMed PMC
Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WW et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471: 591–596 PubMed
Goepfert A, Lehmann S, Wirth E, Rondeau JM (2017) The human IL‐17A/F heterodimer: a two‐faced cytokine with unique receptor recognition properties. Sci Rep 7: 8906 PubMed PMC
Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF‐R1 signaling complex and is required for TNF‐mediated gene induction. Mol Cell 36: 831–844 PubMed
Hanson J, Yang Y, Paliwal K, Zhou Y (2017) Improving protein disorder prediction by deep bidirectional long short‐term memory recurrent neural networks. Bioinformatics 33: 685–692 PubMed
Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17‐producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6: 1123–1132 PubMed
Hawkes JE, Yan BY, Chan TC, Krueger JG (2018) Discovery of the IL‐23/IL‐17 signaling pathway and the treatment of Psoriasis. J Immunol 201: 1605–1613 PubMed PMC
Helgason E, Phung QT, Dueber EC (2013) Recent insights into the complexity of Tank‐binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1. FEBS Lett 587: 1230–1237 PubMed
Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW (2015) The PINK1‐PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60: 7–20 PubMed PMC
Herjan T, Yao P, Qian W, Li X, Liu C, Bulek K, Sun D, Yang WP, Zhu J, He A et al (2013) HuR is required for IL‐17‐induced Act1‐mediated CXCL1 and CXCL5 mRNA stabilization. J Immunol 191: 640–649 PubMed PMC
Herjan T, Hong L, Bubenik J, Bulek K, Qian W, Liu C, Li X, Chen X, Yang H, Ouyang S et al (2018) IL‐17‐receptor‐associated adaptor Act1 directly stabilizes mRNAs to mediate IL‐17 inflammatory signaling. Nat Immunol 19: 354–365 PubMed PMC
Hinz M, Scheidereit C (2014) The IkappaB kinase complex in NF‐kappaB regulation and beyond. EMBO Rep 15: 46–61 PubMed PMC
Hrdinka M, Gyrd‐Hansen M (2017) The Met1‐linked ubiquitin machinery: emerging themes of (De)regulation. Mol Cell 68: 265–280 PubMed
Hu Y, Ota N, Peng I, Refino CJ, Danilenko DM, Caplazi P, Ouyang W (2010) IL‐17RC is required for IL‐17A‐ and IL‐17F‐dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 184: 4307–4316 PubMed
Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, Franz‐Wachtel M, van Wijk SJ, Goswami P, Nagy V, Terzic J et al (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF‐kappaB activity and apoptosis. Nature 471: 637–641 PubMed PMC
Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25: 4877–4887 PubMed PMC
Kishore N, Huynh QK, Mathialagan S, Hall T, Rouw S, Creely D, Lange G, Caroll J, Reitz B, Donnelly A et al (2002) IKK‐i and TBK‐1 are enzymatically distinct from the homologous enzyme IKK‐2: comparative analysis of recombinant human IKK‐i, TBK‐1, and IKK‐2. J Biol Chem 277: 13840–13847 PubMed
Kuestner RE, Taft DW, Haran A, Brandt CS, Brender T, Lum K, Harder B, Okada S, Ostrander CD, Kreindler JL et al (2007) Identification of the IL‐17 receptor related molecule IL‐17RC as the receptor for IL‐17F. J Immunol 179: 5462–5473 PubMed PMC
Kupka S, Reichert M, Draber P, Walczak H (2016) Formation and removal of poly‐ubiquitin chains in the regulation of tumor necrosis factor‐induced gene activation and cell death. FEBS J 283: 2626–2639 PubMed
Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47: W171–W174 PubMed PMC
Lafont E, Draber P, Rieser E, Reichert M, Kupka S, de Miguel D, Draberova H, von Massenhausen A, Bhamra A, Henderson S et al (2018) TBK1 and IKKepsilon prevent TNF‐induced cell death by RIPK1 phosphorylation. Nat Cell Biol 20: 1389–1399 PubMed PMC
Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Veron M, Agou F, Israel A (2009) NEMO specifically recognizes K63‐linked poly‐ubiquitin chains through a new bipartite ubiquitin‐binding domain. EMBO J 28: 2885–2895 PubMed PMC
Larabi A, Devos JM, Ng SL, Nanao MH, Round A, Maniatis T, Panne D (2013) Crystal structure and mechanism of activation of TANK‐binding kinase 1. Cell Rep 3: 734–746 PubMed
Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL (2019) IL‐17 receptor‐based signaling and implications for disease. Nat Immunol 20: 1594–1602 PubMed PMC
Liu C, Swaidani S, Qian W, Kang Z, Sun P, Han Y, Wang C, Gulen MF, Yin W, Zhang C et al (2011) A CC’ loop decoy peptide blocks the interaction between Act1 and IL‐17RA to attenuate IL‐17‐ and IL‐25‐induced inflammation. Sci Signal 4: ra72 PubMed PMC
Liu S, Song X, Chrunyk BA, Shanker S, Hoth LR, Marr ES, Griffor MC (2013) Crystal structures of interleukin 17A and its complex with IL‐17 receptor A. Nat Commun 4: 1888 PubMed
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol 15: 550 PubMed PMC
Ma X, Helgason E, Phung QT, Quan CL, Iyer RS, Lee MW, Bowman KK, Starovasnik MA, Dueber EC (2012) Molecular basis of Tank‐binding kinase 1 activation by transautophosphorylation. Proc Natl Acad Sci U S A 109: 9378–9383 PubMed PMC
Masuda T, Tomita M, Ishihama Y (2008) Phase transfer surfactant‐aided trypsin digestion for membrane proteome analysis. J Proteome Res 7: 731–740 PubMed
Matsui K, Kumagai Y, Kato H, Sato S, Kawagoe T, Uematsu S, Takeuchi O, Akira S (2006) Cutting edge: role of TANK‐binding kinase 1 and inducible IkappaB kinase in IFN responses against viruses in innate immune cells. J Immunol 177: 5785–5789 PubMed
Mauro C, Vito P, Mellone S, Pacifico F, Chariot A, Formisano S, Leonardi A (2003) Role of the adaptor protein CIKS in the activation of the IKK complex. Biochem Biophys Res Commun 309: 84–90 PubMed
McGeachy MJ, Cua DJ, Gaffen SL (2019) The IL‐17 family of cytokines in health and disease. Immunity 50: 892–906 PubMed PMC
Meszaros B, Erdos G, Dosztanyi Z (2018) IUPred2A: context‐dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46: W329–W337 PubMed PMC
Mizianty MJ, Peng Z, Kurgan L (2013) MFDp2: accurate predictor of disorder in proteins by fusion of disorder probabilities, content and profiles. Intrinsically Disord Proteins 1: e24428 PubMed PMC
Monin L, Gaffen SL (2018) Interleukin 17 family cytokines: signaling mechanisms, biological activities, and therapeutic implications. Cold Spring Harb Perspect Biol 10: a028522 PubMed PMC
Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6: 1133–1141 PubMed PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias‐aware quantification of transcript expression. Nat Methods 14: 417–419 PubMed PMC
Perry AK, Chow EK, Goodnough JB, Yeh WC, Cheng G (2004) Differential requirement for TANK‐binding kinase‐1 in type I interferon responses to toll‐like receptor activation and viral infection. J Exp Med 199: 1651–1658 PubMed PMC
Pomerantz JL, Baltimore D (1999) NF‐kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK‐related kinase. EMBO J 18: 6694–6704 PubMed PMC
Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israel L, Chrabieh M, Audry M et al (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin‐17 immunity. Science 332: 65–68 PubMed PMC
Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane‐Wit D, Xiao J, Lu Y, Giltiay N, Liu J et al (2007) The adaptor Act1 is required for interleukin 17‐dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 8: 247–256 PubMed
Qu F, Gao H, Zhu S, Shi P, Zhang Y, Liu Y, Jallal B, Yao Y, Shi Y, Qian Y (2012) TRAF6‐dependent Act1 phosphorylation by the IkappaB kinase‐related kinases suppresses interleukin‐17‐induced NF‐kappaB activation. Mol Cell Biol 32: 3925–3937 PubMed PMC
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR‐Cas9 system. Nat Protoc 8: 2281–2308 PubMed PMC
Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro‐purification, enrichment, pre‐fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2: 1896–1906 PubMed
Schwandner R, Yamaguchi K, Cao Z (2000) Requirement of tumor necrosis factor receptor‐associated factor (TRAF)6 in interleukin 17 signal transduction. J Exp Med 191: 1233–1240 PubMed PMC
Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473: 337–342 PubMed
Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J (2003) Triggering the interferon antiviral response through an IKK‐related pathway. Science 300: 1148–1151 PubMed
Shen RR, Zhou AY, Kim E, Lim E, Habelhah H, Hahn WC (2012) IkappaB kinase epsilon phosphorylates TRAF2 to promote mammary epithelial cell transformation. Mol Cell Biol 32: 4756–4768 PubMed PMC
Shi P, Zhu S, Lin Y, Liu Y, Liu Y, Chen Z, Shi Y, Qian Y (2011) Persistent stimulation with interleukin‐17 desensitizes cells through SCFbeta‐TrCP‐mediated degradation of Act1. Sci Signal 4: ra73 PubMed
Shimizu Y, Taraborrelli L, Walczak H (2015) Linear ubiquitination in immunity. Immunol Rev 266: 190–207 PubMed PMC
Somma D, Mastrovito P, Grieco M, Lavorgna A, Pignalosa A, Formisano L, Salzano AM, Scaloni A, Pacifico F, Siebenlist U et al (2015) CIKS/DDX3X interaction controls the stability of the Zc3h12a mRNA induced by IL‐17. J Immunol 194: 3286–3294 PubMed PMC
Sonder SU, Saret S, Tang W, Sturdevant DE, Porcella SF, Siebenlist U (2011) IL‐17‐induced NF‐kappaB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J Biol Chem 286: 12881–12890 PubMed PMC
Soneson C, Love MI, Robinson MD (2015) Differential analyses for RNA‐seq: transcript‐level estimates improve gene‐level inferences. F1000Res 4: 1521. PubMed PMC
Strickson S, Emmerich CH, Goh ET, Zhang J, Kelsall IR, Macartney T, Hastie CJ, Knebel A, Peggie M, Marchesi F et al (2017) Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A 114: E3481–E3489 PubMed PMC
Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T (2011) Treatment with IL‐17 prolongs the half‐life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing‐regulatory factor SF2 (ASF). Nat Immunol 12: 853–860 PubMed PMC
Swaidani S, Liu C, Zhao J, Bulek K, Li X (2019) TRAF regulation of IL‐17 cytokine signaling. Front Immunol 10: 1293 PubMed PMC
Tanaka H, Arima Y, Kamimura D, Tanaka Y, Takahashi N, Uehata T, Maeda K, Satoh T, Murakami M, Akira S (2019) Phosphorylation‐dependent Regnase‐1 release from endoplasmic reticulum is critical in IL‐17 response. J Exp Med 216: 1431–1449 PubMed PMC
Thurston TL, Boyle KB, Allen M, Ravenhill BJ, Karpiyevich M, Bloor S, Kaul A, Noad J, Foeglein A, Matthews SA et al (2016) Recruitment of TBK1 to cytosol‐invading Salmonella induces WIPI2‐dependent antibacterial autophagy. EMBO J 35: 1779–1792 PubMed PMC
Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S et al (2009) Involvement of linear polyubiquitylation of NEMO in NF‐kappaB activation. Nat Cell Biol 11: 123–132 PubMed
Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, Tanaka K, Nakano H, Iwai K (2011) SHARPIN is a component of the NF‐kappaB‐activating linear ubiquitin chain assembly complex. Nature 471: 633–636 PubMed
Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, Tocker J, Peschon J (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 177: 36–39 PubMed
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13: 731–740 PubMed
Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333: 228–233 PubMed PMC
Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD (2006) Sensing of Lys 63‐linked polyubiquitination by NEMO is a key event in NF‐kappaB activation [corrected]. Nat Cell Biol 8: 398–406 PubMed
Xu D, Jin T, Zhu H, Chen H, Ofengeim D, Zou C, Mifflin L, Pan L, Amin P, Li W et al (2018) TBK1 suppresses RIPK1‐driven apoptosis and inflammation during development and in aging. Cell 174: 1477–1491.e1419 PubMed PMC
Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M et al (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418: 443–447 PubMed
Zinngrebe J, Montinaro A, Peltzer N, Walczak H (2014) Ubiquitin in the immune system. EMBO Rep 15: 28–45 PubMed PMC
ABIN1 is a negative regulator of effector functions in cytotoxic T cells
CMTM4 is a subunit of the IL-17 receptor and mediates autoimmune pathology