Systematic analysis of the IL-17 receptor signalosome reveals a robust regulatory feedback loop

. 2020 Sep 01 ; 39 (17) : e104202. [epub] 20200721

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32696476

Grantová podpora
SGS01/LF/2018-2019 Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS)
UNCE/MED/016 Univerzita Karlova v Praze (UK)
FunDiT EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
18-24070Y Grantová Agentura České Republiky (GACR)
207769/A/17/Z Wellcome Trust (WT)
Wellcome Trust - United Kingdom
IZ11Z0_166538 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF)
PRIMUS/20/MED/003 Univerzita Karlova v Praze (UK)
IRP03_2018-2020 Ostravská Univerzita v Ostravě (University of Ostrava)
17-27355Y Grantová Agentura České Republiky (GACR)
SGS02/LF/2017-2018 Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS)
4420 European Molecular Biology Organization (EMBO)

IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.

Zobrazit více v PubMed

Amatya N, Garg AV, Gaffen SL (2017) IL‐17 signaling: the Yin and the Yang. Trends Immunol 38: 310–322 PubMed PMC

Amatya N, Childs EE, Cruz JA, Aggor FEY, Garg AV, Berman AJ, Gudjonsson JE, Atasoy U, Gaffen SL (2018) IL‐17 integrates multiple self‐reinforcing, feed‐forward mechanisms through the RNA binding protein Arid5a. Sci Signal 11: eaat4617 PubMed PMC

Bilal J, Berlinberg A, Bhattacharjee S, Trost J, Riaz IB, Kurtzman DJB (2018) A systematic review and meta‐analysis of the efficacy and safety of the interleukin (IL)‐12/23 and IL‐17 inhibitors ustekinumab, secukinumab, ixekizumab, brodalumab, guselkumab and tildrakizumab for the treatment of moderate to severe plaque psoriasis. J Dermatolog Treat 29: 569–578 PubMed

Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S, Rybojad M, Belkadi A, Picard C, Abel L, Fieschi C et al (2013) An ACT1 mutation selectively abolishes interleukin‐17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39: 676–686 PubMed PMC

Bonnard M, Mirtsos C, Suzuki S, Graham K, Huang J, Ng M, Itie A, Wakeham A, Shahinian A, Henzel WJ et al (2000) Deficiency of T2K leads to apoptotic liver degeneration and impaired NF‐kappaB‐dependent gene transcription. EMBO J 19: 4976–4985 PubMed PMC

Brembilla NC, Senra L, Boehncke WH (2018) The IL‐17 family of cytokines in psoriasis: IL‐17A and beyond. Front Immunol 9: 1682 PubMed PMC

Bulek K, Liu C, Swaidani S, Wang L, Page RC, Gulen MF, Herjan T, Abbadi A, Qian W, Sun D et al (2011) The inducible kinase IKKi is required for IL‐17‐dependent signaling associated with neutrophilia and pulmonary inflammation. Nat Immunol 12: 844–852 PubMed PMC

Chang SH, Park H, Dong C (2006) Act1 adaptor protein is an immediate and essential signaling component of interleukin‐17 receptor. J Biol Chem 281: 35603–35607 PubMed

Chariot A, Leonardi A, Muller J, Bonif M, Brown K, Siebenlist U (2002) Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases. J Biol Chem 277: 37029–37036 PubMed

Chau TL, Gioia R, Gatot JS, Patrascu F, Carpentier I, Chapelle JP, O'Neill L, Beyaert R, Piette J, Chariot A (2008) Are the IKKs and IKK‐related kinases TBK1 and IKK‐epsilon similarly activated? Trends Biochem Sci 33: 171–180 PubMed

Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL et al (2010) IL‐17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120: 1762–1773 PubMed PMC

Clark K, Peggie M, Plater L, Sorcek RJ, Young ER, Madwed JB, Hough J, McIver EG, Cohen P (2011a) Novel cross‐talk within the IKK family controls innate immunity. Biochem J 434: 93–104 PubMed

Clark K, Takeuchi O, Akira S, Cohen P (2011b) The TRAF‐associated protein TANK facilitates cross‐talk within the IkappaB kinase family during Toll‐like receptor signaling. Proc Natl Acad Sci U S A 108: 17093–17098 PubMed PMC

Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, Ho AW, Hai JH, Yu JJ, Jung JW et al (2009) Th17 cells and IL‐17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206: 299–311 PubMed PMC

Conti HR, Gaffen SL (2015) IL‐17‐mediated immunity to the opportunistic fungal pathogen Candida albicans . J Immunol 195: 780–788 PubMed PMC

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13: 2513–2526 PubMed PMC

Cua DJ, Tato CM (2010) Innate IL‐17‐producing cells: the sentinels of the immune system. Nat Rev Immunol 10: 479–489 PubMed

Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, Spilgies L, Surinova S, Taraborrelli L, Hartwig T et al (2015) LUBAC‐recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep 13: 2258–2272 PubMed PMC

Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site‐specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22: 245–257 PubMed

Ely LK, Fischer S, Garcia KC (2009) Structural basis of receptor sharing by interleukin 17 cytokines. Nat Immunol 10: 1245–1251 PubMed PMC

Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: 491–496 PubMed

Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL‐23‐IL‐17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14: 585–600 PubMed PMC

Garg AV, Ahmed M, Vallejo AN, Ma A, Gaffen SL (2013) The deubiquitinase A20 mediates feedback inhibition of interleukin‐17 receptor signaling. Sci Signal 6: ra44 PubMed PMC

Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WW et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471: 591–596 PubMed

Goepfert A, Lehmann S, Wirth E, Rondeau JM (2017) The human IL‐17A/F heterodimer: a two‐faced cytokine with unique receptor recognition properties. Sci Rep 7: 8906 PubMed PMC

Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF‐R1 signaling complex and is required for TNF‐mediated gene induction. Mol Cell 36: 831–844 PubMed

Hanson J, Yang Y, Paliwal K, Zhou Y (2017) Improving protein disorder prediction by deep bidirectional long short‐term memory recurrent neural networks. Bioinformatics 33: 685–692 PubMed

Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17‐producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6: 1123–1132 PubMed

Hawkes JE, Yan BY, Chan TC, Krueger JG (2018) Discovery of the IL‐23/IL‐17 signaling pathway and the treatment of Psoriasis. J Immunol 201: 1605–1613 PubMed PMC

Helgason E, Phung QT, Dueber EC (2013) Recent insights into the complexity of Tank‐binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1. FEBS Lett 587: 1230–1237 PubMed

Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW (2015) The PINK1‐PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60: 7–20 PubMed PMC

Herjan T, Yao P, Qian W, Li X, Liu C, Bulek K, Sun D, Yang WP, Zhu J, He A et al (2013) HuR is required for IL‐17‐induced Act1‐mediated CXCL1 and CXCL5 mRNA stabilization. J Immunol 191: 640–649 PubMed PMC

Herjan T, Hong L, Bubenik J, Bulek K, Qian W, Liu C, Li X, Chen X, Yang H, Ouyang S et al (2018) IL‐17‐receptor‐associated adaptor Act1 directly stabilizes mRNAs to mediate IL‐17 inflammatory signaling. Nat Immunol 19: 354–365 PubMed PMC

Hinz M, Scheidereit C (2014) The IkappaB kinase complex in NF‐kappaB regulation and beyond. EMBO Rep 15: 46–61 PubMed PMC

Hrdinka M, Gyrd‐Hansen M (2017) The Met1‐linked ubiquitin machinery: emerging themes of (De)regulation. Mol Cell 68: 265–280 PubMed

Hu Y, Ota N, Peng I, Refino CJ, Danilenko DM, Caplazi P, Ouyang W (2010) IL‐17RC is required for IL‐17A‐ and IL‐17F‐dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 184: 4307–4316 PubMed

Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, Franz‐Wachtel M, van Wijk SJ, Goswami P, Nagy V, Terzic J et al (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF‐kappaB activity and apoptosis. Nature 471: 637–641 PubMed PMC

Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25: 4877–4887 PubMed PMC

Kishore N, Huynh QK, Mathialagan S, Hall T, Rouw S, Creely D, Lange G, Caroll J, Reitz B, Donnelly A et al (2002) IKK‐i and TBK‐1 are enzymatically distinct from the homologous enzyme IKK‐2: comparative analysis of recombinant human IKK‐i, TBK‐1, and IKK‐2. J Biol Chem 277: 13840–13847 PubMed

Kuestner RE, Taft DW, Haran A, Brandt CS, Brender T, Lum K, Harder B, Okada S, Ostrander CD, Kreindler JL et al (2007) Identification of the IL‐17 receptor related molecule IL‐17RC as the receptor for IL‐17F. J Immunol 179: 5462–5473 PubMed PMC

Kupka S, Reichert M, Draber P, Walczak H (2016) Formation and removal of poly‐ubiquitin chains in the regulation of tumor necrosis factor‐induced gene activation and cell death. FEBS J 283: 2626–2639 PubMed

Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47: W171–W174 PubMed PMC

Lafont E, Draber P, Rieser E, Reichert M, Kupka S, de Miguel D, Draberova H, von Massenhausen A, Bhamra A, Henderson S et al (2018) TBK1 and IKKepsilon prevent TNF‐induced cell death by RIPK1 phosphorylation. Nat Cell Biol 20: 1389–1399 PubMed PMC

Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Veron M, Agou F, Israel A (2009) NEMO specifically recognizes K63‐linked poly‐ubiquitin chains through a new bipartite ubiquitin‐binding domain. EMBO J 28: 2885–2895 PubMed PMC

Larabi A, Devos JM, Ng SL, Nanao MH, Round A, Maniatis T, Panne D (2013) Crystal structure and mechanism of activation of TANK‐binding kinase 1. Cell Rep 3: 734–746 PubMed

Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL (2019) IL‐17 receptor‐based signaling and implications for disease. Nat Immunol 20: 1594–1602 PubMed PMC

Liu C, Swaidani S, Qian W, Kang Z, Sun P, Han Y, Wang C, Gulen MF, Yin W, Zhang C et al (2011) A CC’ loop decoy peptide blocks the interaction between Act1 and IL‐17RA to attenuate IL‐17‐ and IL‐25‐induced inflammation. Sci Signal 4: ra72 PubMed PMC

Liu S, Song X, Chrunyk BA, Shanker S, Hoth LR, Marr ES, Griffor MC (2013) Crystal structures of interleukin 17A and its complex with IL‐17 receptor A. Nat Commun 4: 1888 PubMed

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol 15: 550 PubMed PMC

Ma X, Helgason E, Phung QT, Quan CL, Iyer RS, Lee MW, Bowman KK, Starovasnik MA, Dueber EC (2012) Molecular basis of Tank‐binding kinase 1 activation by transautophosphorylation. Proc Natl Acad Sci U S A 109: 9378–9383 PubMed PMC

Masuda T, Tomita M, Ishihama Y (2008) Phase transfer surfactant‐aided trypsin digestion for membrane proteome analysis. J Proteome Res 7: 731–740 PubMed

Matsui K, Kumagai Y, Kato H, Sato S, Kawagoe T, Uematsu S, Takeuchi O, Akira S (2006) Cutting edge: role of TANK‐binding kinase 1 and inducible IkappaB kinase in IFN responses against viruses in innate immune cells. J Immunol 177: 5785–5789 PubMed

Mauro C, Vito P, Mellone S, Pacifico F, Chariot A, Formisano S, Leonardi A (2003) Role of the adaptor protein CIKS in the activation of the IKK complex. Biochem Biophys Res Commun 309: 84–90 PubMed

McGeachy MJ, Cua DJ, Gaffen SL (2019) The IL‐17 family of cytokines in health and disease. Immunity 50: 892–906 PubMed PMC

Meszaros B, Erdos G, Dosztanyi Z (2018) IUPred2A: context‐dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46: W329–W337 PubMed PMC

Mizianty MJ, Peng Z, Kurgan L (2013) MFDp2: accurate predictor of disorder in proteins by fusion of disorder probabilities, content and profiles. Intrinsically Disord Proteins 1: e24428 PubMed PMC

Monin L, Gaffen SL (2018) Interleukin 17 family cytokines: signaling mechanisms, biological activities, and therapeutic implications. Cold Spring Harb Perspect Biol 10: a028522 PubMed PMC

Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6: 1133–1141 PubMed PMC

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias‐aware quantification of transcript expression. Nat Methods 14: 417–419 PubMed PMC

Perry AK, Chow EK, Goodnough JB, Yeh WC, Cheng G (2004) Differential requirement for TANK‐binding kinase‐1 in type I interferon responses to toll‐like receptor activation and viral infection. J Exp Med 199: 1651–1658 PubMed PMC

Pomerantz JL, Baltimore D (1999) NF‐kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK‐related kinase. EMBO J 18: 6694–6704 PubMed PMC

Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israel L, Chrabieh M, Audry M et al (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin‐17 immunity. Science 332: 65–68 PubMed PMC

Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane‐Wit D, Xiao J, Lu Y, Giltiay N, Liu J et al (2007) The adaptor Act1 is required for interleukin 17‐dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 8: 247–256 PubMed

Qu F, Gao H, Zhu S, Shi P, Zhang Y, Liu Y, Jallal B, Yao Y, Shi Y, Qian Y (2012) TRAF6‐dependent Act1 phosphorylation by the IkappaB kinase‐related kinases suppresses interleukin‐17‐induced NF‐kappaB activation. Mol Cell Biol 32: 3925–3937 PubMed PMC

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR‐Cas9 system. Nat Protoc 8: 2281–2308 PubMed PMC

Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro‐purification, enrichment, pre‐fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2: 1896–1906 PubMed

Schwandner R, Yamaguchi K, Cao Z (2000) Requirement of tumor necrosis factor receptor‐associated factor (TRAF)6 in interleukin 17 signal transduction. J Exp Med 191: 1233–1240 PubMed PMC

Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473: 337–342 PubMed

Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J (2003) Triggering the interferon antiviral response through an IKK‐related pathway. Science 300: 1148–1151 PubMed

Shen RR, Zhou AY, Kim E, Lim E, Habelhah H, Hahn WC (2012) IkappaB kinase epsilon phosphorylates TRAF2 to promote mammary epithelial cell transformation. Mol Cell Biol 32: 4756–4768 PubMed PMC

Shi P, Zhu S, Lin Y, Liu Y, Liu Y, Chen Z, Shi Y, Qian Y (2011) Persistent stimulation with interleukin‐17 desensitizes cells through SCFbeta‐TrCP‐mediated degradation of Act1. Sci Signal 4: ra73 PubMed

Shimizu Y, Taraborrelli L, Walczak H (2015) Linear ubiquitination in immunity. Immunol Rev 266: 190–207 PubMed PMC

Somma D, Mastrovito P, Grieco M, Lavorgna A, Pignalosa A, Formisano L, Salzano AM, Scaloni A, Pacifico F, Siebenlist U et al (2015) CIKS/DDX3X interaction controls the stability of the Zc3h12a mRNA induced by IL‐17. J Immunol 194: 3286–3294 PubMed PMC

Sonder SU, Saret S, Tang W, Sturdevant DE, Porcella SF, Siebenlist U (2011) IL‐17‐induced NF‐kappaB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J Biol Chem 286: 12881–12890 PubMed PMC

Soneson C, Love MI, Robinson MD (2015) Differential analyses for RNA‐seq: transcript‐level estimates improve gene‐level inferences. F1000Res 4: 1521. PubMed PMC

Strickson S, Emmerich CH, Goh ET, Zhang J, Kelsall IR, Macartney T, Hastie CJ, Knebel A, Peggie M, Marchesi F et al (2017) Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A 114: E3481–E3489 PubMed PMC

Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T (2011) Treatment with IL‐17 prolongs the half‐life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing‐regulatory factor SF2 (ASF). Nat Immunol 12: 853–860 PubMed PMC

Swaidani S, Liu C, Zhao J, Bulek K, Li X (2019) TRAF regulation of IL‐17 cytokine signaling. Front Immunol 10: 1293 PubMed PMC

Tanaka H, Arima Y, Kamimura D, Tanaka Y, Takahashi N, Uehata T, Maeda K, Satoh T, Murakami M, Akira S (2019) Phosphorylation‐dependent Regnase‐1 release from endoplasmic reticulum is critical in IL‐17 response. J Exp Med 216: 1431–1449 PubMed PMC

Thurston TL, Boyle KB, Allen M, Ravenhill BJ, Karpiyevich M, Bloor S, Kaul A, Noad J, Foeglein A, Matthews SA et al (2016) Recruitment of TBK1 to cytosol‐invading Salmonella induces WIPI2‐dependent antibacterial autophagy. EMBO J 35: 1779–1792 PubMed PMC

Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S et al (2009) Involvement of linear polyubiquitylation of NEMO in NF‐kappaB activation. Nat Cell Biol 11: 123–132 PubMed

Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, Tanaka K, Nakano H, Iwai K (2011) SHARPIN is a component of the NF‐kappaB‐activating linear ubiquitin chain assembly complex. Nature 471: 633–636 PubMed

Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, Tocker J, Peschon J (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 177: 36–39 PubMed

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13: 731–740 PubMed

Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333: 228–233 PubMed PMC

Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD (2006) Sensing of Lys 63‐linked polyubiquitination by NEMO is a key event in NF‐kappaB activation [corrected]. Nat Cell Biol 8: 398–406 PubMed

Xu D, Jin T, Zhu H, Chen H, Ofengeim D, Zou C, Mifflin L, Pan L, Amin P, Li W et al (2018) TBK1 suppresses RIPK1‐driven apoptosis and inflammation during development and in aging. Cell 174: 1477–1491.e1419 PubMed PMC

Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M et al (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418: 443–447 PubMed

Zinngrebe J, Montinaro A, Peltzer N, Walczak H (2014) Ubiquitin in the immune system. EMBO Rep 15: 28–45 PubMed PMC

Zobrazit více v PubMed

RefSeq
PXD019020

GEO
GSE150410

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...