TBK1-associated adapters TANK and AZI2 protect mice against TNF-induced cell death and severe autoinflammatory diseases
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
21-25251S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
4420
European Molecular Biology Organization (EMBO)
PRIMUS/20/MED/003
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
406322
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
Cooperatio
Univerzita Karlova v Praze (Charles University)
UNCE/MED/016
Univerzita Karlova v Praze (Charles University)
SVV 260637
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2023036
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Programme EXCELES, LX22NPO5102
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
802878
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
Programme EXCELES, LX22NPO5103
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
RVO 68378050
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
SFB1403 (414786233)
Deutsche Forschungsgemeinschaft (German Research Foundation)
16LW0213
Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
PubMed
39562788
PubMed Central
PMC11576971
DOI
10.1038/s41467-024-54399-4
PII: 10.1038/s41467-024-54399-4
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční * metabolismus genetika MeSH
- buněčná smrt MeSH
- endopeptidasy MeSH
- intracelulární signální peptidy a proteiny metabolismus genetika MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši knockoutované * MeSH
- myši MeSH
- protein-serin-threoninkinasy * metabolismus genetika MeSH
- receptory TNF - typ I * metabolismus genetika MeSH
- serin-threoninkinasy interagující s receptory * metabolismus genetika MeSH
- signální transdukce MeSH
- TNF-alfa * metabolismus MeSH
- TNFAIP3 metabolismus genetika MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční * MeSH
- endopeptidasy MeSH
- gumby protein, mouse MeSH Prohlížeč
- intracelulární signální peptidy a proteiny MeSH
- NEMO protein, mouse MeSH Prohlížeč
- protein-serin-threoninkinasy * MeSH
- receptory TNF - typ I * MeSH
- Ripk1 protein, mouse MeSH Prohlížeč
- serin-threoninkinasy interagující s receptory * MeSH
- Tbk1 protein, mouse MeSH Prohlížeč
- TNF-alfa * MeSH
- Tnfaip3 protein, mouse MeSH Prohlížeč
- TNFAIP3 MeSH
- Tnfrsf1a protein, mouse MeSH Prohlížeč
- Tnip2 protein, mouse MeSH Prohlížeč
The cytokine TNF can trigger highly proinflammatory RIPK1-dependent cell death. Here, we show that the two adapter proteins, TANK and AZI2, suppress TNF-induced cell death by regulating the activation of TBK1 kinase. Mice lacking either TANK or AZI2 do not show an overt phenotype. Conversely, animals deficient in both adapters are born in a sub-Mendelian ratio and suffer from severe multi-organ inflammation, excessive antibody production, male sterility, and early mortality, which can be rescued by TNFR1 deficiency and significantly improved by expressing a kinase-dead form of RIPK1. Mechanistically, TANK and AZI2 both recruit TBK1 to the TNF receptor signaling complex, but with distinct kinetics due to interaction with different complex components. While TANK binds directly to the adapter NEMO, AZI2 is recruited later via deubiquitinase A20. In summary, our data show that TANK and AZI2 cooperatively sustain TBK1 activity during different stages of TNF receptor assembly to protect against autoinflammation.
Department of Immunobiology University of Lausanne Epalinges Switzerland
Institute for Genetics CECAD Cluster of Excellence University of Cologne Cologne Germany
Zobrazit více v PubMed
Kupka, S., Reichert, M., Draber, P. & Walczak, H. Formation and removal of poly-ubiquitin chains in the regulation of tumor necrosis factor-induced gene activation and cell death. PubMed DOI
Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. PubMed DOI
Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. PubMed DOI PMC
Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. PubMed DOI PMC
He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. PubMed DOI
Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. PubMed DOI
Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. PubMed DOI
Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. PubMed DOI PMC
Varfolomeev, E. & Vucic, D. RIP1 post-translational modifications. PubMed DOI
Dondelinger, Y. et al. NF-kappaB-Independent Role of IKKalpha/IKKbeta in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. PubMed DOI
Geng, J. et al. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. PubMed DOI PMC
Jaco, I. et al. MK2 Phosphorylates RIPK1 to Prevent TNF-Induced Cell Death. PubMed DOI PMC
Menon, M. B. et al. p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. PubMed DOI
Dondelinger, Y. et al. MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. PubMed DOI
Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. PubMed DOI PMC
Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. PubMed DOI
Kanayama, A. et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. PubMed DOI
Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. PubMed DOI
Draber, P. et al. LUBAC-Recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. PubMed DOI PMC
Xu, D. et al. TBK1 suppresses RIPK1-Driven apoptosis and inflammation during development and in aging. PubMed DOI PMC
Clark, K. et al. Novel cross-talk within the IKK family controls innate immunity. PubMed DOI
Lafont, E. et al. TBK1 and IKKepsilon prevent TNF-induced cell death by RIPK1 phosphorylation. PubMed DOI PMC
van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. PubMed DOI PMC
Bonnard, M. et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. PubMed DOI PMC
Eren, R. O., Kaya, G. G., Schwarzer, R. & Pasparakis, M. IKKepsilon and TBK1 prevent RIPK1 dependent and independent inflammation. PubMed DOI PMC
Marchlik, E. et al. Mice lacking Tbk1 activity exhibit immune cell infiltrates in multiple tissues and increased susceptibility to LPS-induced lethality. PubMed DOI
Taft, J. et al. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. PubMed DOI PMC
Sun, Y. et al. Targeting TBK1 to overcome resistance to cancer immunotherapy. PubMed PMC
Runde, A. P., Mack, R., S, J. P. & Zhang, J. The role of TBK1 in cancer pathogenesis and anticancer immunity. PubMed DOI PMC
Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. PubMed DOI PMC
Fang, R. et al. MAVS activates TBK1 and IKKepsilon through TRAFs in NEMO dependent and independent manner. PubMed DOI PMC
Zhang, C. et al. Structural basis of STING binding with and phosphorylation by TBK1. PubMed DOI PMC
Kawagoe, T. et al. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. PubMed DOI PMC
Fukasaka, M. et al. Critical role of AZI2 in GM-CSF-induced dendritic cell differentiation. PubMed DOI
Ma, X. et al. Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. PubMed DOI PMC
Kishore, N. et al. IKK-i and TBK-1 are enzymatically distinct from the homologous enzyme IKK-2: comparative analysis of recombinant human IKK-i, TBK-1, and IKK-2. PubMed DOI
Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-kappaB signaling in inflammation. PubMed DOI PMC
Ngo, K. A. et al. Dissecting the regulatory strategies of NF-kappaB RelA target genes in the inflammatory response reveals differential transactivation logics. PubMed DOI PMC
Karin, M. & Lin, A. NF-kappaB at the crossroads of life and death. PubMed DOI
Le Hir, M. et al. Differentiation of follicular dendritic cells and full antibody responses require tumor necrosis factor receptor-1 signaling. PubMed DOI PMC
Polykratis, A. et al. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. PubMed DOI PMC
Cicognani, C. et al. Serum lipid and lipoprotein patterns in patients with liver cirrhosis and chronic active hepatitis. PubMed DOI
Moustafa, T. et al. Alterations in lipid metabolism mediate inflammation, fibrosis, and proliferation in a mouse model of chronic cholestatic liver injury. PubMed DOI
Ryzhakov, G. & Randow, F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. PubMed DOI PMC
Chariot, A. et al. Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases. PubMed DOI
Clark, K., Takeuchi, O., Akira, S. & Cohen, P. The TRAF-associated protein TANK facilitates cross-talk within the IkappaB kinase family during Toll-like receptor signaling. PubMed DOI PMC
Bosanac, I. et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-kappaB signaling. PubMed DOI
Tokunaga, F. et al. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-kappaB regulation. PubMed DOI PMC
Draberova, H. et al. Systematic analysis of the IL-17 receptor signalosome reveals a robust regulatory feedback loop. PubMed DOI PMC
Chen, Y. G. et al. LUBAC enables tumor-promoting LTbeta receptor signaling by activating canonical NF-kappaB. PubMed DOI PMC
Schweizer, P., Kalhoff, H., Horneff, G., Wahn, V. & Diekmann, L. [Polysaccharide specific humoral immunodeficiency in ectodermal dysplasia. Case report of a boy with two affected brothers]. PubMed DOI
Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. PubMed DOI
Fujita, F. et al. Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling. PubMed DOI PMC
Nomura, F., Kawai, T., Nakanishi, K. & Akira, S. NF-kappaB activation through IKK-i-dependent I-TRAF/TANK phosphorylation. PubMed DOI
Goncalves, A. et al. Functional dissection of the TBK1 molecular network. PubMed DOI PMC
Hemmi, H. et al. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. PubMed DOI PMC
Jin, J. et al. The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF-kappaB signaling. PubMed DOI PMC
Li, D. et al. RIPK1-RIPK3-MLKL-dependent necrosis promotes the aging of mouse male reproductive system. PubMed DOI PMC
Zilberman-Rudenko, J. et al. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-kappaB activation and autoinflammatory disease. PubMed DOI PMC
Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. PubMed DOI
Pobezinskaya, Y. L. et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. PubMed DOI PMC
Ermolaeva, M. A. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. PubMed DOI
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. PubMed DOI PMC
Shimizu, Y., Taraborrelli, L. & Walczak, H. Linear ubiquitination in immunity. PubMed DOI PMC
Gitlin, A. D. et al. N4BP1 coordinates ubiquitin-dependent crosstalk within the IkappaB kinase family to limit Toll-like receptor signaling and inflammation. PubMed DOI PMC
Gao, T. et al. Myeloid cell TBK1 restricts inflammatory responses. PubMed DOI PMC
Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. PubMed DOI PMC
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. PubMed DOI PMC
Vorndran, M. R. H. & Roeck, B. F. Inconsistency Masks: Removing the Uncertainty from Input-Pseudo-Label Pairs. arXiv:2401.14387 https://ui.adsabs.harvard.edu/abs/2024arXiv240114387V (2024).
Vorndran, M. R. H. & Roeck, B. F. MichaelVorndran/CellLocator: CellLocator v0.9.2 (v0.9.2). Zenodo. 10.5281/zenodo.13774183 (2024).
Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. PubMed DOI PMC
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. PubMed DOI PMC
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. PubMed DOI PMC
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. PubMed DOI PMC
Jenickova, I. et al. Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. PubMed DOI
Kusari, F., Mihola, O., Schimenti, J. C. & Trachtulec, Z. Meiotic epigenetic factor PRDM9 impacts sperm quality of hybrid mice. PubMed DOI
SRA
PRJNA1095284