TBK1 Dotaz Zobrazit nápovědu
The linear-ubiquitin chain assembly complex (LUBAC) modulates signalling via various immune receptors. In tumour necrosis factor (TNF) signalling, linear (also known as M1) ubiquitin enables full gene activation and prevents cell death. However, the mechanisms underlying cell death prevention remain ill-defined. Here, we show that LUBAC activity enables TBK1 and IKKε recruitment to and activation at the TNF receptor 1 signalling complex (TNFR1-SC). While exerting only limited effects on TNF-induced gene activation, TBK1 and IKKε are essential to prevent TNF-induced cell death. Mechanistically, TBK1 and IKKε phosphorylate the kinase RIPK1 in the TNFR1-SC, thereby preventing RIPK1-dependent cell death. This activity is essential in vivo, as it prevents TNF-induced lethal shock. Strikingly, NEMO (also known as IKKγ), which mostly, but not exclusively, binds the TNFR1-SC via M1 ubiquitin, mediates the recruitment of the adaptors TANK and NAP1 (also known as AZI2). TANK is constitutively associated with both TBK1 and IKKε, while NAP1 is associated with TBK1. We discovered a previously unrecognized cell death checkpoint that is mediated by TBK1 and IKKε, and uncovered an essential survival function for NEMO, whereby it enables the recruitment and activation of these non-canonical IKKs to prevent TNF-induced cell death.
- MeSH
- buněčná smrt účinky léků MeSH
- buňky A549 MeSH
- fosforylace účinky léků MeSH
- HeLa buňky MeSH
- kinasa I-kappa B metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- myši knockoutované MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- receptory TNF - typ I metabolismus MeSH
- serin-threoninkinasy interagující s receptory metabolismus MeSH
- signální transdukce účinky léků MeSH
- TNF-alfa farmakologie MeSH
- ubikvitinace účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
TANK-binding kinase 1 (TBK1) loss-of-function (LoF) mutations are known to cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), often combined with memory deficits early in the disease course. We performed targeted resequencing of TBK1 in 1253 early onset Alzheimer's disease (EOAD) patients from 8 European countries to investigate whether pathogenic TBK1 mutations are enriched among patients with clinical diagnosis of EOAD. Variant frequencies were compared against 2117 origin-matched controls. We identified only 1 LoF mutation (p.Thr79del) in a patient clinically diagnosed with Alzheimer's disease and a positive family history of ALS. We did not observe enrichment of rare variants in EOAD patients compared to controls, nor of rare variants affecting NFκB induction. Of 3 common coding variants, rs7486100 showed evidence of association (OR 1.46 [95% CI 1.13-1.9]; p-value 0.01). Homozygous carriers of the risk allele showed reduced expression of TBK1 (p-value 0.03). Our findings are not indicative of a significant role for TBK1 mutations in EOAD. The association between common variants in TBK1, disease risk and reduced TBK1 expression warrants follow-up in FTD/ALS cohorts.
- MeSH
- alely MeSH
- Alzheimerova nemoc genetika MeSH
- amyotrofická laterální skleróza genetika MeSH
- frontotemporální demence genetika MeSH
- genetická variace genetika MeSH
- genetické asociační studie * MeSH
- heterozygot MeSH
- homozygot MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace ztráty funkce genetika MeSH
- protein-serin-threoninkinasy genetika MeSH
- riziko MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
We investigated the mutation spectrum of the TANK-Binding Kinase 1 (TBK1) gene and its associated phenotypic spectrum by exonic resequencing of TBK1 in a cohort of 2,538 patients with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), or FTD plus ALS, ascertained within the European Early-Onset Dementia Consortium. We assessed pathogenicity of predicted protein-truncating mutations by measuring loss of RNA expression. Functional effect of in-frame amino acid deletions and missense mutations was further explored in vivo on protein level and in vitro by an NFκB-induced luciferase reporter assay and measuring phosphorylated TBK1. The protein-truncating mutations led to the loss of transcript through nonsense-mediated mRNA decay. For the in-frame amino acid deletions, we demonstrated loss of TBK1 or phosphorylated TBK1 protein. An important fraction of the missense mutations compromised NFκB activation indicating that at least some functions of TBK1 are lost. Although missense mutations were also present in controls, over three times more mutations affecting TBK1 functioning were found in the mutation fraction observed in patients only, suggesting high-risk alleles (P = 0.03). Total mutation frequency for confirmed TBK1 LoF mutations in the European cohort was 0.7%, with frequencies in the clinical subgroups of 0.4% in FTD, 1.3% in ALS, and 3.6% in FTD-ALS.
- MeSH
- aktivace enzymů MeSH
- alely MeSH
- amyotrofická laterální skleróza diagnóza epidemiologie genetika MeSH
- běloši genetika MeSH
- fenotyp MeSH
- frontotemporální demence diagnóza epidemiologie genetika MeSH
- genetické asociační studie MeSH
- heterozygot MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace MeSH
- NF-kappa B metabolismus MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- sekvenční delece MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- substituce aminokyselin MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The aberrant recognition of self-nucleic acids by the innate immune system contributes to the pathology of several autoimmune diseases. Although microbial DNA and, in certain instances, self-DNA that is released from damaged cells are primarily recognized by Toll-like receptor 9 (TLR9), recent evidence suggests that other cytosolic sequence-nonspecific DNA sensors contribute to DNA recognition. In this study, we focused on the sensing of microbial and host DNA in type 1 diabetes (T1D) patients. METHODS: Peripheral blood mononuclear cells (PBMCs) and monocytes from pediatric patients with T1D and from healthy donors were stimulated with microbial DNA (CpG) or with self-DNA (DNA contained within neutrophil extracellular traps, NETs). The production of cytokines was measured by flow cytometry and multiplex bead assays. The internalization of microbial DNA and its colocalization with STING was detected by image cytometry. Furthermore, the involvement of the TBK1 kinase was investigated by detecting its phosphorylation with phospho-flow cytometry or by using a TBK1 inhibition assay. RESULTS: We observed a prominent proinflammatory response in T1D PBMCs, especially pDCs and monocytes, to microbial DNA in comparison to that in controls. We further confirmed that monocytes could bind and internalize DNA and respond by releasing proinflammatory cytokines in a more pronounced manner in T1D patients than those in controls. Surprisingly, this cytokine production was not affected by TLR9 blockade, suggesting the involvement of intracellular receptors in DNA recognition. We further identified TBK1 and STING as two crucial molecules in the DNA-sensing pathway that were involved in CpG-DNA sensing by T1D cells. A similar DNA-sensing pathway that was dependent on intracellular DNA sensors and the STING-TBK1 interaction was employed in response to NETs, which were used to model self-DNA. CONCLUSIONS: Here, we show that there were significant differences in DNA sensing in T1D patients compared to that in controls. We demonstrate that monocytes from T1D patients are able to sense microbial- and self-DNA, leading to proinflammatory cytokine secretion through the adaptor protein STING and the TBK1 kinase.
- MeSH
- CpG ostrůvky genetika MeSH
- cytokiny metabolismus MeSH
- diabetes mellitus 1. typu genetika metabolismus MeSH
- dítě MeSH
- DNA metabolismus MeSH
- leukocyty mononukleární metabolismus MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- mladiství MeSH
- monocyty metabolismus MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- signální transdukce fyziologie MeSH
- studie případů a kontrol MeSH
- toll-like receptor 9 metabolismus MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The cytokine TNF can trigger highly proinflammatory RIPK1-dependent cell death. Here, we show that the two adapter proteins, TANK and AZI2, suppress TNF-induced cell death by regulating the activation of TBK1 kinase. Mice lacking either TANK or AZI2 do not show an overt phenotype. Conversely, animals deficient in both adapters are born in a sub-Mendelian ratio and suffer from severe multi-organ inflammation, excessive antibody production, male sterility, and early mortality, which can be rescued by TNFR1 deficiency and significantly improved by expressing a kinase-dead form of RIPK1. Mechanistically, TANK and AZI2 both recruit TBK1 to the TNF receptor signaling complex, but with distinct kinetics due to interaction with different complex components. While TANK binds directly to the adapter NEMO, AZI2 is recruited later via deubiquitinase A20. In summary, our data show that TANK and AZI2 cooperatively sustain TBK1 activity during different stages of TNF receptor assembly to protect against autoinflammation.
- MeSH
- adaptorové proteiny signální transdukční * metabolismus genetika MeSH
- buněčná smrt MeSH
- endopeptidasy MeSH
- intracelulární signální peptidy a proteiny metabolismus genetika MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši knockoutované * MeSH
- myši MeSH
- protein-serin-threoninkinasy * metabolismus genetika MeSH
- receptory TNF - typ I * metabolismus genetika MeSH
- serin-threoninkinasy interagující s receptory * metabolismus genetika MeSH
- signální transdukce MeSH
- TNF-alfa * metabolismus MeSH
- TNFAIP3 metabolismus genetika MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: The TLR3/cGAS-STING-IFN signaling has recently been reported to be disturbed in colorectal cancer due to deregulated expression of the genes involved. Our study aimed to investigate the influence of potential regulatory variants in these genes on the risk of sporadic colorectal cancer (CRC) in a Czech cohort of 1424 CRC patients and 1114 healthy controls. METHODS: The variants in the TLR3, CGAS, TMEM173, IKBKE, and TBK1 genes were selected using various online bioinformatic tools, such as UCSC browser, HaploReg, Regulome DB, Gtex Portal, SIFT, PolyPhen2, and miRNA prediction tools. RESULTS: Logistic regression analysis adjusted for age and sex detected a nominal association between CRC risk and three variants, CGAS rs72960018 (OR: 1.68, 95% CI: 1.11-2.53, P-value = .01), CGAS rs9352000 (OR: 2.02, 95% CI: 1.07-3.84, P-value = .03) and TMEM173 rs13153461 (OR: 1.53, 95% CI: 1.03-2.27, P-value = .03). Their cumulative effect revealed a threefold increased CRC risk in carriers of 5-6 risk alleles compared to those with 0-2 risk alleles. Epistatic interactions between these genes and the previously genotyped IFNAR1, IFNAR2, IFNA, IFNB, IFNK, IFNW, IRF3, and IRF7 genes, were computed to test their effect on CRC risk. Overall, we obtained nine pair-wise interactions within and between the CGAS, TMEM173, IKBKE, and TBK1 genes. Two of them remained statistically significant after Bonferroni correction. Additional 52 interactions were observed when IFN variants were added to the analysis. CONCLUSIONS: Our data suggest that epistatic interactions and a high number of risk alleles may play an important role in CRC carcinogenesis, offering novel biological understanding for the CRC management.
- MeSH
- dospělí MeSH
- genetická epistáze * MeSH
- genotypizační techniky MeSH
- interferony genetika MeSH
- jednonukleotidový polymorfismus MeSH
- karcinogeneze genetika MeSH
- kinasa I-kappa B genetika MeSH
- kohortové studie MeSH
- kolon diagnostické zobrazování patologie MeSH
- kolonoskopie MeSH
- kolorektální nádory diagnóza genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nukleotidyltransferasy genetika MeSH
- protein-serin-threoninkinasy genetika MeSH
- regulace genové exprese u nádorů * MeSH
- rektum diagnostické zobrazování patologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- signální transdukce genetika MeSH
- studie případů a kontrol MeSH
- toll-like receptor 3 genetika MeSH
- výpočetní biologie MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- kinasa I-kappa B genetika metabolismus MeSH
- lidé MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- receptory interleukinu-17 genetika metabolismus MeSH
- signální transdukce * MeSH
- zpětná vazba fyziologická * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.
- MeSH
- GTP-fosfohydrolasy metabolismus genetika MeSH
- lidé MeSH
- lysin metabolismus MeSH
- membránové proteiny metabolismus genetika MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- neurofibromin 1 MeSH
- protein aktivující GTPasu p120 metabolismus genetika MeSH
- protein-serin-threoninkinasy metabolismus genetika MeSH
- protoonkogenní proteiny p21(ras) * metabolismus genetika MeSH
- Ras proteiny metabolismus genetika MeSH
- signální transdukce MeSH
- ubikvitinace * MeSH
- vazba proteinů * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal progressive degenerative disorder of motor neurons that overlaps with frontotemporal lobar degeneration (FTLD) clinically, morphologically, and genetically. Although many distinct mutations in various genes are known to cause amyotrophic lateral sclerosis, it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Many of the gene mutations are in proteins that share similar functions. They can be grouped into those associated with cell axon dynamics and those associated with cellular phagocytic machinery, namely protein aggregation and metabolism, apoptosis, and intracellular nucleic acid transport. Analysis of pathways implicated by mutant ALS genes has provided new insights into the pathogenesis of both familial forms of ALS (fALS) and sporadic forms (sALS), although, regrettably, this has not yet yielded definitive treatments. Many genes play an important role, with TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly, C9orf72 being critical genetic players in these neurological disorders. In this mini-review, we will focus on the molecular mechanisms of these two diseases.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH