Mechanism of enhanced conversion of 1,2,3-trichloropropane by mutant haloalkane dehalogenase revealed by molecular modeling
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- hydrolasy genetika metabolismus MeSH
- molekulární modely * MeSH
- mutace MeSH
- polymerázová řetězová reakce MeSH
- propan analogy a deriváty chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2,3-trichloropropane MeSH Prohlížeč
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- propan MeSH
1,2,3-Trichloropropane (TCP) is a highly toxic, recalcitrant byproduct of epichlorohydrin manufacture. Haloalkane dehalogenase (DhaA) from Rhodococcus sp. hydrolyses the carbon-halogen bond in various halogenated compounds including TCP, but with low efficiency (k (cat)/K (m )= 36 s(-1) M(-1)). A Cys176Tyr-DhaA mutant with a threefold higher catalytic efficiency for TCP dehalogenation has been previously obtained by error-prone PCR. We have used molecular simulations and quantum mechanical calculations to elucidate the molecular mechanisms involved in the improved catalysis of the mutant, and enantioselectivity of DhaA toward TCP. The Cys176Tyr mutation modifies the protein access and export routes. Substitution of the Cys residue by the bulkier Tyr narrows the upper tunnel, making the second tunnel "slot" the preferred route. TCP can adopt two major orientations in the DhaA enzyme, in one of which the halide-stabilizing residue Asn41 forms a hydrogen bond with the terminal halogen atom of the TCP molecule, while in the other it bonds with the central halogen atom. The differences in these binding patterns explain the preferential formation of the (R)- over the (S)-enantiomer of 2,3-dichloropropane-1-ol in the reaction catalyzed by the enzyme.
Zobrazit více v PubMed
Trends Biochem Sci. 2001 Jan;26(1):71-3 PubMed
Biochemistry. 2000 Nov 21;39(46):14082-6 PubMed
Biochemistry. 1999 Dec 7;38(49):16105-14 PubMed
Environ Sci Technol. 2001 Feb 1;35(3):455-61 PubMed
Biochemistry. 2003 Sep 2;42(34):10104-12 PubMed
J Mol Graph. 1990 Mar;8(1):52-6, 29 PubMed
J Biol Chem. 2003 Dec 26;278(52):52622-8 PubMed
Biochemistry. 2003 Jul 8;42(26):8047-53 PubMed
Curr Opin Chem Biol. 2004 Apr;8(2):150-9 PubMed
Nature. 1993 Jun 24;363(6431):693-8 PubMed
Curr Opin Biotechnol. 1999 Aug;10(4):365-9 PubMed
Appl Environ Microbiol. 2002 Jul;68(7):3582-7 PubMed
J Comput Aided Mol Des. 1990 Mar;4(1):1-105 PubMed
BMC Bioinformatics. 2006 Jun 22;7:316 PubMed
Biochemistry. 2002 Apr 16;41(15):4847-55 PubMed
Protein Eng. 1992 Apr;5(3):197-211 PubMed
Electrophoresis. 1997 Dec;18(15):2714-23 PubMed
Bioinformatics. 2000 Sep;16(9):845-6 PubMed
Protein Sci. 2002 May;11(5):1206-17 PubMed
J Med Chem. 1985 Jul;28(7):849-57 PubMed
Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate