Functionally relevant motions of haloalkane dehalogenases occur in the specificity-modulating cap domains
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11967377
PubMed Central
PMC2373552
DOI
10.1110/ps3830102
Knihovny.cz E-zdroje
- MeSH
- hydrolasy chemie metabolismus MeSH
- rozpouštědla MeSH
- sekundární struktura proteinů MeSH
- substrátová specifita MeSH
- teplota MeSH
- voda chemie MeSH
- Xanthobacter enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- rozpouštědla MeSH
- voda MeSH
One-nanosecond molecular dynamics trajectories of three haloalkane dehalogenases (DhlA, LinB, and DhaA) are compared. The main domain was rigid in all three dehalogenases, whereas the substrate specificity-modulating cap domains showed considerably higher mobility. The functionally relevant motions were spread over the entire cap domain in DhlA, whereas they were more localized in LinB and DhaA. The highest amplitude of essential motions of DhlA was noted in the alpha4'-helix-loop-alpha4-helix region, formerly proposed to participate in the large conformation change needed for product release. The highest amplitude of essential motions of LinB and DhaA was observed in the random coil before helix 4, linking two domains of these proteins. This flexibility is the consequence of the modular composition of haloalkane dehalogenases. Two members of the catalytic triad, that is, the nucleophile and the base, showed a very high level of rigidity in all three dehalogenases. This rigidity is essential for their function. One of the halide-stabilizing residues, important for the catalysis, shows significantly higher flexibility in DhlA compared with LinB and DhaA. Enhanced flexibility may be required for destabilization of the electrostatic interactions during the release of the halide ion from the deeply buried active site of DhlA. The exchange of water molecules between the enzyme active site and bulk solvent was very different among the three dehalogenases. The differences could be related to the flexibility of the cap domains and to the number of entrance tunnels.
Zobrazit více v PubMed
Amadei, A., Linssen, A.B.M., and Berenden, H.J.C. 1993. Essential dynamics of protein. Proteins: Struct. Funct. Gen. 17 412–425. PubMed
Arnold, G.E. and Ornstein, R.L. 1997. Molecular dynamics study of haloalkane dehalogenase; implications for solvent channel access to the active site. In Biomacromolecules: From 3-D to applications (ed. R.L. Ornstein), pp. 215–229. Battelle Press, Columbus, Ohio.
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R. 1984. Molecular-dynamics with coupling to an external bath. J. Comp. Phys. 81 3684–3690.
Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham III, T.E., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., et al. 1997. AMBER 5.0. University of California, San Francisco.
Copley, S.D. 1998. Microbial dehalogenases: Enzymes recruited to convert xenobiotic substrates. Curr. Opin. Chem. Biol. 2 613–617. PubMed
Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117 5179–5197.
Damborsky, J. and Koca, J. 1999. Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons. Protein Eng. 12 989–998. PubMed
Damborsky, J., Kuty, M., Nemec, M., and Koca, J. 1997a. A molecular modeling study of the catalytic mechanism of haloalkane dehalogenase: 1. Quantum chemical study of the first reaction step. J. Chem. Inf. Comp. Sci. 37 562–568.
Damborsky, J., Nyandoroh, M.G., Nemec, M., Holoubek, I., Bull, A.T., and Hardman, D.J. 1997b. Some biochemical properties and classification of a range of bacterial haloalkane dehalogenases. Biotech. Appl. Biochem. 26 19–25. PubMed
Damborsky, J., Rorije, E., Jesenska, A., Nagata, Y., Klopman, G., and Peijnenburg, W.J.G.M. 2001. Structure-specificity relationships for haloalkane dehalogenases. Environ. Toxicol. Chem. 20 2681–2689. PubMed
Essmann, U., Perera, L., Berkowitz, M.L., Darden, T.A., Lee, H., and Pedersen, L.G. 1995. A Smooth Particle Mesh Ewald method. J. Chem. Phys. 103 8577–8593.
Goodford, P.J. 1985. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28 849–857. PubMed
Hynkova, K., Nagata, Y., Takagi, M., and Damborsky, J. 1999. Identification of the catalytic triad in the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. FEBS Lett. 446 177–181. PubMed
Janssen, D.B., Pries, F., and Van der Ploeg, J.R. 1994. Genetics and biochemistry of dehalogenating enzymes. Annu. Rev. Microbiol. 48 163–191. PubMed
Janssen, D.B., Scheper, A., Dijkhuizen, L., and Witholt, B. 1985. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49 673–677. PubMed PMC
Kabsch, W. and Sander, C. 1983. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22 2577–2637. PubMed
Karplus, M. and McCammon, J.A. 1983. Dynamics of proteins: Elements and functions. Ann. Rev. Biochem. 53 263–300. PubMed
Kennes, C., Pries, F., Krooshof, G.H., Bokma, E., Kingma, J., and Janssen, D.B. 1995. Replacement of tryptophan residues in haloalkane dehalogenase reduces halide binding and catalytic activity. Eur. J. Biochem. 228 403–407. PubMed
Kmunicek, J., Luengo, S., Gago, F., Ortiz, A.R., Wade, R.C., and Damborsky, J. 2001. Comparative binding energy analysis of the substrate specificity of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. Biochemistry 40 8905–8917. PubMed
Koradi, R., Billeter, M., and Wurthrich, K. 1996. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graphics 14 51–55. PubMed
Krooshof, G.H., Floris, R., Tepper, A., and Janssen, D.B. 1999. Thermodynamic analysis of halide binding to haloalkane dehalogenase suggests the occurrence of large conformational changes. Protein Sci. 8 355–360. PubMed PMC
Krooshof, G.H., Kwant, E.M., Damborsky, J., Koca, J., and Janssen, D.B. 1997. Repositioning the catalytic triad acid of haloalkane dehalogenase: Effects on activity and kinetics. Biochemistry 36 9571–9580. PubMed
Laaksonen, L. 2001. gOpenMol 2.1. Espoo, Finland.
Lee, B. and Richards, F.M. 1971. The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55 379–400. PubMed
Lightstone, F.C., Zheng, Y.J., and Bruice, T.C. 1998. Molecular dynamics simulations of ground and transition states for the S(N)2 displacement of Cl- from 1,2-dichloroethane at the active site of Xanthobacter autotrophicus haloalkane dehalogenase. J. Am. Chem. Soc. 120 5611–5621.
Lightstone, F.C., Zheng, Y.-J., Maulitz, A.H., and Bruice, T.C. 1997. Non-enzymatic and enzymatic hydrolysis of alkyl halides: A haloalkane dehalogenation enzyme evolved to stabilize the gas-phase transition state of an SN2 displacement reaction. Proc. Natl. Acad. Sci. 94 8417–8420. PubMed PMC
Marek, J., Vevodova, J., Kuta-Smatanova, I., Nagata, Y., Svensson, L.A., Newman, J., Takagi, M., and Damborsky, J. 2000. Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry 39 14082–14086. PubMed
Nagata, Y., Miyauchi, K., Damborsky, J., Manova, K., Ansorgova, A., and Takagi, M. 1997. Purification and characterization of haloalkane dehalogenase of a new substrate class from a γ-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl. Environ. Microbiol. 63 3707–3710. PubMed PMC
Nagata, Y., Miyauchi, K., and Takagi, M. 1999. Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J. Ind. Microbiol. Biotech. 23 380–390. PubMed
Nardini, M. and Dijsktra, B.W. 1999. α/β Hydrolase fold enzymes: The family keeps growing. Curr. Opin. Struct. Biol. 9 732–737. PubMed
Newman, J., Peat, T.S., Richard, R., Kan, L., Swanson, P.E., Affholter, J.A., Holmes, I.H., Schindler, J.F., Unkefer, C.J., and Terwilliger, T.C. 1999. Haloalkane dehalogenase: Structure of a Rhodococcus enzyme. Biochemistry 38 16105–16114. PubMed
Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Silman, I., Schrag, J., et al. 1992. The α/β hydrolase fold. Protein Eng. 5 197–211. PubMed
Poelarends, G., Zandstra, M., Bosma, T., Kulakov, L.A., Larkin, M.J., Marchesi, J.R., Weightman, A.J., and Janssen, D.B. 2000. Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism. J. Bacteriol. 182 2725–2731. PubMed PMC
Pries, F., Kingma, J., and Janssen, D.B. 1995a. Activation of an Asp-124–Asn mutant of haloalkane dehalogenase by hydrolytic deamidation of asparagine. FEBS Lett. 358 171–174. PubMed
Pries, F., Kingma, J., Krooshof, G.H., Jeronimus-Stratingh, C.M., Bruins, A.P., and Janssen, D.B. 1995b. Histidine 289 is essential for hydrolysis of the alkyl-enzyme intermediate of haloalkane dehalogenase. J. Biol. Chem. 270 10405–10411. PubMed
Pries, F., Van den Wijngaard, A.J., Bos, R., Pentenga, M., and Janssen, D.B. 1994. The role of spontaneous cap domain mutations in haloalkane dehalogenase specificity and evolution. J. Biol. Chem. 269 17490–17494. PubMed
Resat, H. and Mezei, M. 1996. Grand Canonical Ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate. Biophys. J. 71 1179–1190. PubMed PMC
Russell, R.B. and Sternberg, M.J.E. 1997. Two new examples of protein structural similarities within the structure-function twilight zone. Protein Eng. 10 333–338. PubMed
Ryckaert, J.P., Ciccotti, G., and Berendsen, H.C. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comp. Phys. 23 327–341.
Schanstra, J.P. and Janssen, D.B. 1996. Kinetics of halide release of haloalkane dehalogenase: Evidence for a slow conformational change. Biochemistry 35 5624–5632. PubMed
Schindler, J.F., Naranjo, P.A., Honaberger, D.A., Chang, C.-H., Brainard, J.R., Vanderberg, L.A., and Unkefer, C.J. 1999. Haloalkane dehalogenases: Steady-state kinetics and halide inhibition. Biochemistry 38 5772–5778. PubMed
Schrag, J.D., Winkler, F.K., and Cygler, M. 1992. Pancreatic lipases: Evolutionary intermediates in a positional change of catalytic carboxylates? J. Biol. Chem. 267 4300–4303. PubMed
Slater, J.H., Bull, A.T., and Hardman, D.J. 1995. Microbial dehalogenation. Biodegradation 6 181–189.
van der Spoel, D., van Buuren, A.R., Apol, E., Maulenhoff, P.J., Tieleman, P.D., Sijbers, A.L.T.M., Hess, B., Feenstra, K.A., Lindhal, E., Drunen, R.V., et al. 1999. Gromacs user manual version 2.0. Groningen, The Netherlands.
Verschueren, K.H.G., Franken, S.M., Rozeboom, H.J., Kalk, K.H., and Dijkstra, B.W. 1993a. Non-covalent binding of the heavy atom compound [Au(CN)2]- at the halide binding site of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. FEBS Lett. 323 267–270. PubMed
———. 1993b. Refined X-ray structures of haloalkane dehalogenase at pH 6.2 and pH 8.2 and implications for the reaction mechanism. J. Mol. Biol. 232 856–872. PubMed
Vriend, G. 1990. WHAT IF: A molecular modeling and drug design program. J. Mol. Graphics 8 52–56. PubMed
CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures
Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate
CAVER: a new tool to explore routes from protein clefts, pockets and cavities