Deciphering the Structural Basis of High Thermostability of Dehalogenase from Psychrophilic Bacterium Marinobacter sp. ELB17

. 2019 Oct 28 ; 7 (11) : . [epub] 20191028

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31661858

Grantová podpora
17-24321S Grantová Agentura České Republiky
LO1214, LO1304, LQ1605, LM2015051, LM2015043, LM2015047, LM2015055 Ministry of Education, Youth, and Sports of the Czech Republic

Odkazy

PubMed 31661858
PubMed Central PMC6920932
DOI 10.3390/microorganisms7110498
PII: microorganisms7110498
Knihovny.cz E-zdroje

Haloalkane dehalogenases are enzymes with a broad application potential in biocatalysis, bioremediation, biosensing and cell imaging. The new haloalkane dehalogenase DmxA originating from the psychrophilic bacterium Marinobacter sp. ELB17 surprisingly possesses the highest thermal stability (apparent melting temperature Tm,app = 65.9 °C) of all biochemically characterized wild type haloalkane dehalogenases belonging to subfamily II. The enzyme was successfully expressed and its crystal structure was solved at 1.45 Å resolution. DmxA structure contains several features distinct from known members of haloalkane dehalogenase family: (i) a unique composition of catalytic residues; (ii) a dimeric state mediated by a disulfide bridge; and (iii) narrow tunnels connecting the enzyme active site with the surrounding solvent. The importance of narrow tunnels in such paradoxically high stability of DmxA enzyme was confirmed by computational protein design and mutagenesis experiments.

Zobrazit více v PubMed

Janssen D.B. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol. 2004;8:150–159. doi: 10.1016/j.cbpa.2004.02.012. PubMed DOI

Damborsky J., Chaloupkova R., Pavlova M., Chovancova E., Brezovsky J. Structure–Function Relationships and Engineering of Haloalkane Dehalogenases. In: Timmins K.N., editor. Handbook of Hydrocarbon and Lipid Microbiology. Springer; New York, NY, USA: 2010. pp. 1081–1098.

Ollis D.L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S.M., Harel M., Remington S.J., Silman I., Schrag J., et al. Verschueren KHG & Goldman A the Alpha/Beta-Hydrolase Fold. Protein Eng. 1992;5:197–211. PubMed

Vévodová J., Kutá-Smatanová I., Svensson L.A., Marek J., Nagata Y., Newman J., Takagi M., Damborsky J. Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry. 2000;39:14082–14086. PubMed

Kmunicek J., Hynková K., Jedlicka T., Nagata Y., Negri A., Gago F., Wade R.C., Damborsky J. Quantitative Analysis of Substrate Specificity of Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26. Biochemistry. 2005;44:3390–3401. doi: 10.1021/bi047912o. PubMed DOI

Otyepka M., Damborsky J. Functionally relevant motions of haloalkane dehalogenases occur in the specificity-modulating cap domains. Protein Sci. 2002;11:1206–1217. doi: 10.1110/ps.ps3830102. PubMed DOI PMC

Sýkora J., Brezovský J., Koudelakova T., Lahoda M., Fortova A., Chernovets T., Chaloupkova R., Stepankova V., Prokop Z., Smatanová I.K., et al. Dynamics and hydration explain failed functional transformation in dehalogenase design. Nat. Methods. 2014;10:428–430. doi: 10.1038/nchembio.1502. PubMed DOI

Chovancová E., Kosinski J., Bujnicki J.M., Damborský J. Phylogenetic analysis of haloalkane dehalogenases. Proteins Struct. Funct. Bioinform. 2007;67:305–316. doi: 10.1002/prot.21313. PubMed DOI

Hasan K., Fortova A., Koudelakova T., Chaloupkova R., Ishitsuka M., Nagata Y., Damborsky J., Prokop Z. Biochemical Characteristics of the Novel Haloalkane Dehalogenase DatA, Isolated from the Plant Pathogen Agrobacterium tumefaciens C58. Appl. Environ. Microb. 2011;77:1881–1884. doi: 10.1128/AEM.02109-10. PubMed DOI PMC

Koudelakova T., Chovancová E., Brezovský J., Monincová M., Fortova A., Jarkovsky J., Damborsky J. Substrate specificity of haloalkane dehalogenases. Biochem. J. 2011;435:345–354. doi: 10.1042/BJ20101405. PubMed DOI

Koudelakova T., Bidmanova S., Dvorak P., Pavelka A., Chaloupkova R., Prokop Z., Damborsky J. Haloalkane dehalogenases: Biotechnological applications. Biotechnol. J. 2013;8:32–45. doi: 10.1002/biot.201100486. PubMed DOI

Nagata Y., Ohtsubo Y., Tsuda M. Properties and biotechnological applications of natural and engineered haloalkane dehalogenases. Appl. Microbiol. Biotechnol. 2015;99:9865–9881. doi: 10.1007/s00253-015-6954-x. PubMed DOI

Gomes J., Steiner W. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotech. 2004;42:223–235.

Hough D.W., Danson M.J. Extremozymes. Curr. Opin. Chem. Biol. 1999;3:39–46. doi: 10.1016/S1367-5931(99)80008-8. PubMed DOI

Pace C.N., Fu H., Fryar K.L., Landua J., Trevino S.R., Shirley B.A., Hendricks M.M., Iimura S., Gajiwala K., Scholtz J.M., et al. Contribution of hydrophobic interactions to protein stability. J. Mol. Boil. 2011;408:514–528. doi: 10.1016/j.jmb.2011.02.053. PubMed DOI PMC

Feller G. Protein stability and enzyme activity at extreme biological temperatures. J. Phys. Condens. Matter. 2010;22:323101. doi: 10.1088/0953-8984/22/32/323101. PubMed DOI

Chiuri R., Maiorano G., Rizzello A., Del Mercato L.L., Cingolani R., Rinaldi R., Maffia M., Pompa P. Exploring Local Flexibility/Rigidity in Psychrophilic and Mesophilic Carbonic Anhydrases. Biophys. J. 2009;96:1586–1596. doi: 10.1016/j.bpj.2008.11.017. PubMed DOI PMC

Kumar S., Nussinov R. How do thermophilic proteins deal with heat? Cell Mol. Life Sci. 2001;58:1216–1233. doi: 10.1007/PL00000935. PubMed DOI PMC

Lam S.Y., Yeung R.C.Y., Yu T.-H., Sze K.-H., Wong K.-B. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. PLoS Biol. 2011;9:e1001027. doi: 10.1371/journal.pbio.1001027. PubMed DOI PMC

Ding Y.R., Cai Y.J., Han Y.G., Zhao B.Q. Comparison of the structural basis for thermal stability between archaeal and bacterial proteins. Extremophiles. 2012;16:67–78. doi: 10.1007/s00792-011-0406-z. PubMed DOI

Yamanaka Y., Kazuoka T., Yoshida M., Yamanaka K., Oikawa T., Soda K. Thermostable aldehyde dehydrogenase from psychrophile, Cytophaga sp. KUC-1: Enzymological characteristics and functional properties. Biochem. Biophys. Res. Commun. 2002;298:632–637. doi: 10.1016/S0006-291X(02)02523-8. PubMed DOI

Kazuoka T., Masuda Y., Oikawa T., Soda K. Thermostable aspartase from a marine psychrophile, Cytophaga sp. KUC-1: Molecular characterization and primary structure. J. Biochem. 2003;133:51–58. doi: 10.1093/jb/mvg012. PubMed DOI

Kazuoka T., Oikawa T., Muraoka I., Kuroda S., Soda K. A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1. Extremophiles. 2007;11:257–267. doi: 10.1007/s00792-006-0034-1. PubMed DOI

Liu S.Y., Duan X.Y., Lu X.M., Gao P.J. A novel thermophilic endoglucanase from a mesophilic fungus Fusarium oxysporum. Chin. Sci. Bull. 2006;51:191–197. doi: 10.1007/s11434-005-1343-y. DOI

Fedøy A.-E., Yang N., Martinez A., Leiros H.-K.S., Steen I.H. Structural and Functional Properties of Isocitrate Dehydrogenase from the Psychrophilic Bacterium Desulfotalea psychrophila Reveal a Cold-active Enzyme with an Unusual High Thermal Stability. J. Mol. Boil. 2007;372:130–149. doi: 10.1016/j.jmb.2007.06.040. PubMed DOI

Novak H.R., Sayer C., Panning J., Littlechild J.A. Characterisation of an l-Haloacid Dehalogenase from the Marine Psychrophile Psychromonas ingrahamii with Potential Industrial Application. Mar. Biotechnol. 2013;15:695–705. doi: 10.1007/s10126-013-9522-3. PubMed DOI

Lennox E.S. Transduction of Linked Genetic Characters of the Host by Bacteriophage-Pl. Virology. 1955;1:190–206. doi: 10.1016/0042-6822(55)90016-7. PubMed DOI

Bradford M.M. Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Iwasaki I., Utsumi S., Ozawa T. New Colorimetric Determination of Chloride using Mercuric Thiocyanate and Ferric Ion. Bull. Chem. Soc. Jpn. 1952;25:226. doi: 10.1246/bcsj.25.226. DOI

Tratsiak K., Degtjarik O., Drienovska I., Chrast L., Řezáčová P., Kuty M., Chaloupkova R., Damborsky J., Smatanova I.K. Crystallographic analysis of new psychrophilic haloalkane dehalogenases: DpcA from Psychrobacter cryohalolentis K5 and DmxA from Marinobacter sp. ELB17. Acta Crystallogr. Sect. F Struct. Boil. Cryst. Commun. 2013;69:683–688. doi: 10.1107/S1744309113012979. PubMed DOI PMC

De Sanctis D., Beteva A., Caserotto H., Dobias F., Gabadinho J., Giraud T., Gobbo A., Guijarro M., Lentini M., Lavault B., et al. ID29: A high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering. J. Synchrotron Radiat. 2012;19:455–461. doi: 10.1107/S0909049512009715. PubMed DOI

Kabsch W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 1993;26:795–800. doi: 10.1107/S0021889893005588. DOI

Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. Sect. D Boil. Crystallogr. 2010;66:133–144. doi: 10.1107/S0907444909047374. PubMed DOI PMC

Kabsch W. Xds. Acta Crystallogr. D. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC

Vagin A., Teplyakov A. MOLREP: An automated program for molecular replacement. J. Appl. Crystallogr. 1997;30:1022–1025. doi: 10.1107/S0021889897006766. DOI

Stepankova V., Khabiri M., Brezovský J., Pavelka A., Sýkora J., Amaro M., Minofar B., Prokop Z., Hof M., Ettrich R., et al. Expansion of Access Tunnels and Active-Site Cavities Influence Activity of Haloalkane Dehalogenases in Organic Cosolvents. ChemBioChem. 2013;14:890–897. doi: 10.1002/cbic.201200733. PubMed DOI

Painter J., Merritt E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D. 2006;62:439–450. doi: 10.1107/S0907444906005270. PubMed DOI

Painter J., Merritt E.A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 2006;39:109–111. doi: 10.1107/S0021889805038987. DOI

Winn M., Isupov M., Murshudov G. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. Sect. D Boil. Crystallogr. 2001;57:122–133. doi: 10.1107/S0907444900014736. PubMed DOI

Winn M.D., Murshudov G.N., Papiz M.Z. Macromolecular TLS Refinement in REFMAC at Moderate Resolutions. Methods Enzymol. 2003;374:300–321. PubMed

Murshudov G.N., Vagin A.A., Dodson E.J. Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallogr. Sect. D Boil. Crystallogr. 1997;53:240–255. doi: 10.1107/S0907444996012255. PubMed DOI

Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. D. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Joosten R.P., Long F., Murshudov G.N., Perrakis A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ. 2014;1:213–220. doi: 10.1107/S2052252514009324. PubMed DOI PMC

Chen V.B., Arendall W.B., Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC

Vaguine A.A., Richelle J., Wodak S.J. SFCHECK: A unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. Sect. D Boil. Crystallogr. 1999;55:191–205. doi: 10.1107/S0907444998006684. PubMed DOI

Berman H., Henrick K., Nakamura H. Announcing the worldwide Protein Data Bank. Nat. Struct. Mol. Boil. 2003;10:980. doi: 10.1038/nsb1203-980. PubMed DOI

Kabsch W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976;32:922–923. doi: 10.1107/S0567739476001873. DOI

Krissinel E., Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007;372:774–797. doi: 10.1016/j.jmb.2007.05.022. PubMed DOI

Gordon J.C., Myers J.B., Folta T., Shoja V., Heath L.S., Onufriev A. H++: A server for estimating pK(a)s and adding missing hydrogens to macromolecules. Nucleic Acids Res. 2005;33:W368–W371. doi: 10.1093/nar/gki464. PubMed DOI PMC

Chandrasekhar J., Impey R.W., Jorgensen W.L., Madura J.D., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.

Doerr S., Harvey M.J., Noé F., De Fabritiis G. HTMD: High-Trhoughput Molecular Dynamics for Molecular Discovery. J. Chem. Theory Comput. 2016;12:1845–1852. doi: 10.1021/acs.jctc.6b00049. PubMed DOI

Darden T., York D., Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Ryckaert J.-P., Ciccotti G., Berendsen H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI

Roe D.R., Cheatham T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013;9:3084–3095. doi: 10.1021/ct400341p. PubMed DOI

Le Grand S., Gotz A.W., Walker R.C. SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013;184:374–380. doi: 10.1016/j.cpc.2012.09.022. DOI

Gotz A.W., Williamson M.J., Xu D., Poole D., Le Grand S., Walker R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012;8:1542–1555. doi: 10.1021/ct200909j. PubMed DOI PMC

Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinform. 2006;65:712–725. doi: 10.1002/prot.21123. PubMed DOI PMC

Joung I.S., Cheatham T.E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC

Joung I.S., Cheatham T.E. Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters. J. Phys. Chem. B. 2009;113:13279–13290. doi: 10.1021/jp902584c. PubMed DOI PMC

Harvey M.J., De Fabritiis G. An implementation of the smooth particle mesh Ewald method on GPU hardware. J. Chem. Theory Comput. 2009;5:2371–2377. doi: 10.1021/ct900275y. PubMed DOI

Harvey M.J., Giupponi G., De Fabritiis G., Harvey M. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. J. Chem. Theory Comput. 2009;5:1632–1639. doi: 10.1021/ct9000685. PubMed DOI

Feenstra K.A., Hess B., Berendsen H.J.C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 1999;20:786–798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI

Hopkins C.W., Le Grand S., Walker R.C., Roitberg A.E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI

The PyMOL Molecular Graphic System. Schroedinger LLC; New York, NY, USA: 2009. Version 1.2r2.

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. Model. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlíková B., Gora A., Sustr V., Klvana M., Medek P., et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLoS Comput. Boil. 2012;8:e1002708. doi: 10.1371/journal.pcbi.1002708. PubMed DOI PMC

Kellogg E.H., Leaver-Fay A., Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins. 2011;79:830–838. doi: 10.1002/prot.22921. PubMed DOI PMC

Sanchis J., Fernández L., Carballeira J.D., Drone J., Gumulya Y., Höbenreich H., Kahakeaw D., Kille S., Lohmer R., Peyralans J.J.-P., et al. Improved PCR method for the creation of saturation mutagenesis libraries in directed evolution: Application to difficult-to-amplify templates. Appl. Microbiol. Biotechnol. 2008;81:387–397. doi: 10.1007/s00253-008-1678-9. PubMed DOI PMC

Ward B.B., Priscu J.C. Detection and characterization of denitrifying bacteria from a permanently ice-covered Antarctic lake. Hydrobiologia. 1997;347:57–68. doi: 10.1023/A:1003087532137. DOI

Fasman G.D. Circular Dichroism and the Conformational Analysis of Biomolecules. Plenum Press; New York, NY, USA: 1996.

Prokop Z., Sato Y., Brezovský J., Mozga T., Chaloupkova R., Koudelakova T., Jeřabek P., Stepankova V., Natsume R., Van Leeuwen J.G.E., et al. Enantioselectivity of Haloalkane Dehalogenases and its Modulation by Surface Loop Engineering. Angew. Chem. 2010;122:6247–6251. doi: 10.1002/ange.201001753. PubMed DOI

Holm L., Rosenstrom P. Dali server: Conservation mapping in 3D. Nucleic Acids Res. 2010;38:545–549. doi: 10.1093/nar/gkq366. PubMed DOI PMC

Brünger A.T. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature. 1992;355:472–475. doi: 10.1038/355472a0. PubMed DOI

Klvana M., Pavlová M., Koudelakova T., Chaloupkova R., Dvorak P., Prokop Z., Stsiapanava A., Kuty M., Kuta-Smatanova I., Dohnalek J., et al. Pathways and Mechanisms for Product Release in the Engineered Haloalkane Dehalogenases Explored Using Classical and Random Acceleration Molecular Dynamics Simulations. J. Mol. Boil. 2009;392:1339–1356. doi: 10.1016/j.jmb.2009.06.076. PubMed DOI

Chaloupkova R., Prokop Z., Sato Y., Nagata Y., Damborsky J. Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: The effect of pH and temperature. FEBS J. 2011;278:2728–2738. doi: 10.1111/j.1742-4658.2011.08203.x. PubMed DOI

Vanacek P., Sebestova E., Babkova P., Bidmanova S., Daniel L., Dvořák P., Stepankova V., Chaloupkova R., Brezovsky J., Prokop Z., et al. Exploration of Enzyme Diversity by Integrating Bioinformatics with Expression Analysis and Biochemical Characterization. ACS Catal. 2018;8:2402–2412. doi: 10.1021/acscatal.7b03523. DOI

Oikawa T., Kazuoka T., Soda K. Paradoxical thermostable enzymes from psychrophile: Molecular characterization and potentiality for biotechnological application. J. Mol. Catal. B: Enzym. 2003;23:65–70. doi: 10.1016/S1381-1177(03)00073-0. DOI

Chaloupkova R., Prudnikova T., Řezáčová P., Prokop Z., Koudelakova T., Daniel L., Brezovský J., Ikeda-Ohtsubo W., Sato Y., Kuty M., et al. Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Acta Crystallogr. Sect. D Boil. Crystallogr. 2014;70:1884–1897. doi: 10.1107/S1399004714009018. PubMed DOI

Hasan K., Gora A., Brezovský J., Chaloupkova R., Moskalíková H., Fortova A., Nagata Y., Damborsky J., Prokop Z. The effect of a unique halide-stabilizing residue on the catalytic properties of haloalkane dehalogenase DatA fromAgrobacterium tumefaciensC58. FEBS J. 2013;280:3149–3159. doi: 10.1111/febs.12238. PubMed DOI

Brezovsky J., Babkova P., Degtjarik O., Fortova A., Gora A., Iermak I., Rezacova P., Dvorak P., Smatanova I.K., Prokop Z., et al. Engineering a de Novo Transport Tunnel. ACS Catal. 2016;6:7597–7610. doi: 10.1021/acscatal.6b02081. DOI

Koudelakova T., Chaloupkova R., Brezovský J., Prokop Z., Sebestova E., Hesseler M., Khabiri M., Plevaka M., Kulik D., Smatanova I.K., et al. Engineering Enzyme Stability and Resistance to an Organic Cosolvent by Modification of Residues in the Access Tunnel. Angew. Chem. Int. Ed. 2013;52:1959–1963. doi: 10.1002/anie.201206708. PubMed DOI

Lišková V., Bednar D., Prudnikova T., Řezáčová P., Koudelakova T., Sebestova E., Smatanová I.K., Brezovský J., Chaloupkova R., Damborsky J. Balancing the Stability-Activity Trade-Off by Fine-Tuning Dehalogenase Access Tunnels. ChemCatChem. 2015;7:648–659. doi: 10.1002/cctc.201402792. DOI

Xie Y., An J., Yang G., Wu G., Zhang Y., Cui L., Feng Y. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site. J. Boil. Chem. 2014;289:7994–8006. doi: 10.1074/jbc.M113.536045. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...