Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational dynamics
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32637047
PubMed Central
PMC7327271
DOI
10.1016/j.csbj.2020.06.021
PII: S2001-0370(20)30310-X
Knihovny.cz E-zdroje
- Klíčová slova
- Ancestral sequence reconstruction, Conformational flexibility, Enzyme, Haloalkane dehalogenase, Protein design, Protein simulations, Thermostability, X-ray crystallography,
- Publikační typ
- časopisecké články MeSH
Ancestral sequence reconstruction is a powerful method for inferring ancestors of modern enzymes and for studying structure-function relationships of enzymes. We have previously applied this approach to haloalkane dehalogenases (HLDs) from the subfamily HLD-II and obtained thermodynamically highly stabilized enzymes (ΔT m up to 24 °C), showing improved catalytic properties. Here we combined crystallographic structural analysis and computational molecular dynamics simulations to gain insight into the mechanisms by which ancestral HLDs became more robust enzymes with novel catalytic properties. Reconstructed ancestors exhibited similar structure topology as their descendants with the exception of a few loop deviations. Strikingly, molecular dynamics simulations revealed restricted conformational dynamics of ancestral enzymes, which prefer a single state, in contrast to modern enzymes adopting two different conformational states. The restricted dynamics can potentially be linked to their exceptional stabilization. The study provides molecular insights into protein stabilization due to ancestral sequence reconstruction, which is becoming a widely used approach for obtaining robust protein catalysts.
Zobrazit více v PubMed
Harms M.J. Biophysical mechanisms for large-effect mutations in the evolution of steroid hormone receptors. Proc Natl Acad Sci. 2013;110:11475–11480. PubMed PMC
Harms M.J., Thornton J.W. Analyzing protein structure and function using ancestral gene reconstruction. Curr Opin Struct Biol. 2010;20:360–366. PubMed PMC
Skovgaard M. Using evolutionary information and ancestral sequences to understand the sequence-function relationship in GLP-1 agonists. J Mol Biol. 2006;363:977–988. PubMed
Perez-Jimenez R. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol. 2011;18:592–596. PubMed PMC
Romero-Romero M.L., Risso V.A., Martinez-Rodriguez S., Ibarra-Molero B., Sanchez-Ruiz J.M. Engineering ancestral protein hyperstability. Biochem J. 2016;473:3611–3620. PubMed
Hobbs J.K. On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus. Mol Biol Evol. 2012;29:825–835. PubMed
Trudeau D.L., Kaltenbach M., Tawfik D.S. On the potential origins of the high stability of reconstructed ancestral proteins. Mol Biol Evol. 2016;33:2633–2641. PubMed
Takenaka Y. Computational analysis and functional expression of ancestral copepod luciferase. Gene. 2013;528:201–205. PubMed
McLean R. Functional analyses of resurrected and contemporary enzymes illuminate an evolutionary path for the emergence of exolysis in polysaccharide lyase family 2. J Biol Chem. 2015;290:21231–21243. PubMed PMC
Risso V.A., Gavira J.A., Mejia-Carmona D.F., Gaucher E.A., Sanchez-Ruiz J.M. Hyperstability and substrate promiscuity in laboratory resurrections of precambrian β-lactamases. J Am Chem Soc. 2013;135:2899–2902. PubMed
Boucher, J. I., Jacobowitz, J. R., Beckett, B. C., Classen, S. & Theobald, D. L. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases. eLife 3, e02304 (2014). PubMed PMC
Janssen D.B. Evolving haloalkane dehalogenases. Curr Opin Chem Biol. 2004;8:150–159. PubMed
Koudelakova T. Haloalkane dehalogenases: biotechnological applications. Biotechnol J. 2013;8:32–45. PubMed
Chovancová E., Kosinski J., Bujnicki J.M., Damborský J. Phylogenetic analysis of haloalkane dehalogenases. Proteins Struct Funct Bioinf. 2007;67:305–316. PubMed
Nardini M., Dijkstra B.W. α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol. 1999;9:732–737. PubMed
Verschueren K.H.G., Seljée F., Rozeboom H.J., Kalk K.H., Dijkstra B.W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993;363:693–698. PubMed
Klvana M. Pathways and mechanisms for product release in the engineered haloalkane dehalogenases explored using classical and random acceleration molecular dynamics simulations. J Mol Biol. 2009;392:1339–1356. PubMed
Babkova P., Sebestova E., Brezovsky J., Chaloupkova R., Damborsky J. Ancestral haloalkane dehalogenases show robustness and unique substrate specificity. ChemBioChem. 2017;18:1448–1456. PubMed
Sato Y. Crystallization and preliminary crystallographic analysis of a haloalkane dehalogenase, DbjA, from Bradyrhizobium japonicum USDA110. Acta Crystallogr, Sect F: Struct Biol Cryst Commun. 2007;63:294–296. PubMed PMC
Chaloupkova R. Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Acta Crystallographica Section D. 2014;70:1884–1897. PubMed
Newman J. Haloalkane dehalogenases: a structure of a Rhodococcus enzyme. Biochemistry. 1999;38:16105–16114. PubMed
Gehret J.J. Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Sci. 2012;21:239–248. PubMed PMC
Chrast L. Deciphering the structural basis of high thermostability of dehalogenase from psychrophilic bacterium Marinobacter sp. ELB17. Microorganisms. 2019;7:498. PubMed PMC
Holm L., Rosenstrom P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 2010;38:W545–W549. PubMed PMC
Doerr S., De Fabritiis G. On-the-fly learning and sampling ligand of ligand binding by high-throughput molecular simulations. J Chem Theory Comput. 2014;10:2064–2069. PubMed
Damborsky, J., Chaloupkova, R., Pavlova, M., Chovancova, E. & Brezovsky, J. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N.) 1081-1098 (Springer, Berlin, Heidelberg, 2010).
Ingles-Prieto A. Conservation of protein structure over four billion years. Structure. 2013;21:1690–1697. PubMed PMC
Pikkemaat M.G., Linssen A.B.M., Berendsen H.J.C., Janssen D.B. Molecular dynamics simulations as a tool for improving protein stability. Protein Eng Des Sel. 2002;15:185–192. PubMed
Monincova M., Prokop Z., Vevodova J., Nagata Y., Damborsky J. Weak activity of haloalkane dehalogenase LinB with 1,2,3-trichloropropane revealed by X-ray crystallography and microcalorimetry. Appl Environ Microbiol. 2007;73:2005–2008. PubMed PMC
Guan L., Yabuki H., Okai M., Ohtsuka J., Tanokura M. Crystal structure of the novel haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58 reveals a special halide-stabilizing pair and enantioselectivity mechanism. Appl Microbiol Biotechnol. 2014;98:8573–8582. PubMed
Beerens K. Evolutionary analysis as a powerful complement to energy calculations for protein stabilization. ACS Catal. 2018;8:9420–9428.
Harvey R.B. Enzymes of thermal algae. Science. 1924;60:481–482. PubMed
Goldsmith M., Tawfik D.S. Potential role of phenotypic mutations in the evolution of protein expression and stability. Proc Natl Acad Sci. 2009;106:6197–6202. PubMed PMC
Akanuma S. Experimental evidence for the thermophilicity of ancestral life. PNAS. 2013;110:11067–11072. PubMed PMC
Williams P.D., Pollock D.D., Blackburne B.P., Goldstein R.A. Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. 2006;2 e69 e69. PubMed PMC
Vieille C., Zeikus G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65:1–43. PubMed PMC
Okafor C.D. Structural and dynamics comparison of thermostability in ancient, modern, and consensus elongation factor Tus. Structure. 2018;26:118–129. PubMed PMC
Karshikoff A., Nilsson L., Ladenstein R. Rigidity versus flexibility: the dilemma of understanding protein thermal stability. The FEBS Journal. 2015;282:3899–3917. PubMed
Tsuboyama K. A widespread family of heat-resistant obscure (Hero) proteins protect against protein instability and aggregation. PLoS Biol. 2020;18 PubMed PMC
Swulius M.T., Waxham M.N. Ca2+/calmodulin-dependent protein kinases. Cell Mol Life Sci. 2008;65:2637–2657. PubMed PMC
Kamerzell T.J., Middaugh C.R. The complex inter-relationships between protein flexibility and stability. J Pharm Sci. 2008;97:3494–3517. PubMed
Risso V.A. De novo active sites for resurrected Precambrian enzymes. Nat Commun. 2017;8:16113. PubMed PMC
Whitney D.S., Volkman B.F., Prehoda K.E. Evolution of a protein Iinteraction domain family by tuning conformational flexibility. J Am Chem Soc. 2016;138:15150–15156. PubMed PMC
Kabsch W. XDS. Acta Crystallographica Section D. 2010;66:125–132. PubMed PMC
Winn M.D. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67:235–242. PubMed PMC
Winter G. xia2: an expert system for macromolecular crystallography data reduction. J Appl Crystallogr. 2010;43:186–190.
McCoy A.J. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–674. PubMed PMC
Adams P.D. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D. 2010;66:213–221. PubMed PMC
Long F., Vagin A.A., Young P., Murshudov G.N. BALBES: a molecular-replacement pipeline. Acta Crystallogr D Biol Crystallogr. 2008;64:125–132. PubMed PMC
Prokop Z. Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angew Chem Int Ed. 2010;49:6111–6115. PubMed
Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. PubMed PMC
Williams C.J. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC
Doerr S., Harvey M.J., Noé F., De Fabritiis G. HTMD: high-throughput molecular dynamics for molecular discovery. J Chem Theory Comput. 2016;12:1845–1852. PubMed
Harvey M.J., Giupponi G., De Fabritiis G. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput. 2009;5:1632–1639. PubMed
Feenstra K.A., Hess B., Berendsen H.J.C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J Comput Chem. 1999;20:786–798. PubMed
Hopkins C.W., Le Grand S., Walker R.C., Roitberg A.E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput. 2015;11:1864–1874. PubMed
Prinz J.H. Markov models of molecular kinetics: generation and validation. J Chem Phys. 2011;134 PubMed
Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012;8 e1002708 e1002708. PubMed PMC
Structural Analysis of the Ancestral Haloalkane Dehalogenase AncLinB-DmbA