Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational dynamics

. 2020 ; 18 () : 1497-1508. [epub] 20200619

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32637047
Odkazy

PubMed 32637047
PubMed Central PMC7327271
DOI 10.1016/j.csbj.2020.06.021
PII: S2001-0370(20)30310-X
Knihovny.cz E-zdroje

Ancestral sequence reconstruction is a powerful method for inferring ancestors of modern enzymes and for studying structure-function relationships of enzymes. We have previously applied this approach to haloalkane dehalogenases (HLDs) from the subfamily HLD-II and obtained thermodynamically highly stabilized enzymes (ΔT m up to 24 °C), showing improved catalytic properties. Here we combined crystallographic structural analysis and computational molecular dynamics simulations to gain insight into the mechanisms by which ancestral HLDs became more robust enzymes with novel catalytic properties. Reconstructed ancestors exhibited similar structure topology as their descendants with the exception of a few loop deviations. Strikingly, molecular dynamics simulations revealed restricted conformational dynamics of ancestral enzymes, which prefer a single state, in contrast to modern enzymes adopting two different conformational states. The restricted dynamics can potentially be linked to their exceptional stabilization. The study provides molecular insights into protein stabilization due to ancestral sequence reconstruction, which is becoming a widely used approach for obtaining robust protein catalysts.

Zobrazit více v PubMed

Harms M.J. Biophysical mechanisms for large-effect mutations in the evolution of steroid hormone receptors. Proc Natl Acad Sci. 2013;110:11475–11480. PubMed PMC

Harms M.J., Thornton J.W. Analyzing protein structure and function using ancestral gene reconstruction. Curr Opin Struct Biol. 2010;20:360–366. PubMed PMC

Skovgaard M. Using evolutionary information and ancestral sequences to understand the sequence-function relationship in GLP-1 agonists. J Mol Biol. 2006;363:977–988. PubMed

Perez-Jimenez R. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol. 2011;18:592–596. PubMed PMC

Romero-Romero M.L., Risso V.A., Martinez-Rodriguez S., Ibarra-Molero B., Sanchez-Ruiz J.M. Engineering ancestral protein hyperstability. Biochem J. 2016;473:3611–3620. PubMed

Hobbs J.K. On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus. Mol Biol Evol. 2012;29:825–835. PubMed

Trudeau D.L., Kaltenbach M., Tawfik D.S. On the potential origins of the high stability of reconstructed ancestral proteins. Mol Biol Evol. 2016;33:2633–2641. PubMed

Takenaka Y. Computational analysis and functional expression of ancestral copepod luciferase. Gene. 2013;528:201–205. PubMed

McLean R. Functional analyses of resurrected and contemporary enzymes illuminate an evolutionary path for the emergence of exolysis in polysaccharide lyase family 2. J Biol Chem. 2015;290:21231–21243. PubMed PMC

Risso V.A., Gavira J.A., Mejia-Carmona D.F., Gaucher E.A., Sanchez-Ruiz J.M. Hyperstability and substrate promiscuity in laboratory resurrections of precambrian β-lactamases. J Am Chem Soc. 2013;135:2899–2902. PubMed

Boucher, J. I., Jacobowitz, J. R., Beckett, B. C., Classen, S. & Theobald, D. L. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases. eLife 3, e02304 (2014). PubMed PMC

Janssen D.B. Evolving haloalkane dehalogenases. Curr Opin Chem Biol. 2004;8:150–159. PubMed

Koudelakova T. Haloalkane dehalogenases: biotechnological applications. Biotechnol J. 2013;8:32–45. PubMed

Chovancová E., Kosinski J., Bujnicki J.M., Damborský J. Phylogenetic analysis of haloalkane dehalogenases. Proteins Struct Funct Bioinf. 2007;67:305–316. PubMed

Nardini M., Dijkstra B.W. α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol. 1999;9:732–737. PubMed

Verschueren K.H.G., Seljée F., Rozeboom H.J., Kalk K.H., Dijkstra B.W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993;363:693–698. PubMed

Klvana M. Pathways and mechanisms for product release in the engineered haloalkane dehalogenases explored using classical and random acceleration molecular dynamics simulations. J Mol Biol. 2009;392:1339–1356. PubMed

Babkova P., Sebestova E., Brezovsky J., Chaloupkova R., Damborsky J. Ancestral haloalkane dehalogenases show robustness and unique substrate specificity. ChemBioChem. 2017;18:1448–1456. PubMed

Sato Y. Crystallization and preliminary crystallographic analysis of a haloalkane dehalogenase, DbjA, from Bradyrhizobium japonicum USDA110. Acta Crystallogr, Sect F: Struct Biol Cryst Commun. 2007;63:294–296. PubMed PMC

Chaloupkova R. Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Acta Crystallographica Section D. 2014;70:1884–1897. PubMed

Newman J. Haloalkane dehalogenases: a structure of a Rhodococcus enzyme. Biochemistry. 1999;38:16105–16114. PubMed

Gehret J.J. Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Sci. 2012;21:239–248. PubMed PMC

Chrast L. Deciphering the structural basis of high thermostability of dehalogenase from psychrophilic bacterium Marinobacter sp. ELB17. Microorganisms. 2019;7:498. PubMed PMC

Holm L., Rosenstrom P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 2010;38:W545–W549. PubMed PMC

Doerr S., De Fabritiis G. On-the-fly learning and sampling ligand of ligand binding by high-throughput molecular simulations. J Chem Theory Comput. 2014;10:2064–2069. PubMed

Damborsky, J., Chaloupkova, R., Pavlova, M., Chovancova, E. & Brezovsky, J. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N.) 1081-1098 (Springer, Berlin, Heidelberg, 2010).

Ingles-Prieto A. Conservation of protein structure over four billion years. Structure. 2013;21:1690–1697. PubMed PMC

Pikkemaat M.G., Linssen A.B.M., Berendsen H.J.C., Janssen D.B. Molecular dynamics simulations as a tool for improving protein stability. Protein Eng Des Sel. 2002;15:185–192. PubMed

Monincova M., Prokop Z., Vevodova J., Nagata Y., Damborsky J. Weak activity of haloalkane dehalogenase LinB with 1,2,3-trichloropropane revealed by X-ray crystallography and microcalorimetry. Appl Environ Microbiol. 2007;73:2005–2008. PubMed PMC

Guan L., Yabuki H., Okai M., Ohtsuka J., Tanokura M. Crystal structure of the novel haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58 reveals a special halide-stabilizing pair and enantioselectivity mechanism. Appl Microbiol Biotechnol. 2014;98:8573–8582. PubMed

Beerens K. Evolutionary analysis as a powerful complement to energy calculations for protein stabilization. ACS Catal. 2018;8:9420–9428.

Harvey R.B. Enzymes of thermal algae. Science. 1924;60:481–482. PubMed

Goldsmith M., Tawfik D.S. Potential role of phenotypic mutations in the evolution of protein expression and stability. Proc Natl Acad Sci. 2009;106:6197–6202. PubMed PMC

Akanuma S. Experimental evidence for the thermophilicity of ancestral life. PNAS. 2013;110:11067–11072. PubMed PMC

Williams P.D., Pollock D.D., Blackburne B.P., Goldstein R.A. Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. 2006;2 e69 e69. PubMed PMC

Vieille C., Zeikus G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65:1–43. PubMed PMC

Okafor C.D. Structural and dynamics comparison of thermostability in ancient, modern, and consensus elongation factor Tus. Structure. 2018;26:118–129. PubMed PMC

Karshikoff A., Nilsson L., Ladenstein R. Rigidity versus flexibility: the dilemma of understanding protein thermal stability. The FEBS Journal. 2015;282:3899–3917. PubMed

Tsuboyama K. A widespread family of heat-resistant obscure (Hero) proteins protect against protein instability and aggregation. PLoS Biol. 2020;18 PubMed PMC

Swulius M.T., Waxham M.N. Ca2+/calmodulin-dependent protein kinases. Cell Mol Life Sci. 2008;65:2637–2657. PubMed PMC

Kamerzell T.J., Middaugh C.R. The complex inter-relationships between protein flexibility and stability. J Pharm Sci. 2008;97:3494–3517. PubMed

Risso V.A. De novo active sites for resurrected Precambrian enzymes. Nat Commun. 2017;8:16113. PubMed PMC

Whitney D.S., Volkman B.F., Prehoda K.E. Evolution of a protein Iinteraction domain family by tuning conformational flexibility. J Am Chem Soc. 2016;138:15150–15156. PubMed PMC

Kabsch W. XDS. Acta Crystallographica Section D. 2010;66:125–132. PubMed PMC

Winn M.D. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67:235–242. PubMed PMC

Winter G. xia2: an expert system for macromolecular crystallography data reduction. J Appl Crystallogr. 2010;43:186–190.

McCoy A.J. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–674. PubMed PMC

Adams P.D. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D. 2010;66:213–221. PubMed PMC

Long F., Vagin A.A., Young P., Murshudov G.N. BALBES: a molecular-replacement pipeline. Acta Crystallogr D Biol Crystallogr. 2008;64:125–132. PubMed PMC

Prokop Z. Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angew Chem Int Ed. 2010;49:6111–6115. PubMed

Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. PubMed PMC

Williams C.J. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC

Doerr S., Harvey M.J., Noé F., De Fabritiis G. HTMD: high-throughput molecular dynamics for molecular discovery. J Chem Theory Comput. 2016;12:1845–1852. PubMed

Harvey M.J., Giupponi G., De Fabritiis G. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput. 2009;5:1632–1639. PubMed

Feenstra K.A., Hess B., Berendsen H.J.C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J Comput Chem. 1999;20:786–798. PubMed

Hopkins C.W., Le Grand S., Walker R.C., Roitberg A.E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput. 2015;11:1864–1874. PubMed

Prinz J.H. Markov models of molecular kinetics: generation and validation. J Chem Phys. 2011;134 PubMed

Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012;8 e1002708 e1002708. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...