Structural Analysis of the Ancestral Haloalkane Dehalogenase AncLinB-DmbA
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000441
ERDF
17/2019/P
GAJU
CZ.02.1.01/0.0/0.0/16_026/0008451
Czech Ministry of Education
LM2018121
Czech Ministry of Education
PubMed
34769421
PubMed Central
PMC8584953
DOI
10.3390/ijms222111992
PII: ijms222111992
Knihovny.cz E-zdroje
- Klíčová slova
- ancestral sequence reconstruction, haloalkane dehalogenase, halogenated pollutants, structural analysis,
- MeSH
- hydrolasy chemie metabolismus MeSH
- hydrolýza MeSH
- katalytická doména MeSH
- krystalografie rentgenová metody MeSH
- molekulární evoluce MeSH
- molekulární modely MeSH
- Mycobacterium bovis enzymologie MeSH
- proteinové inženýrství metody MeSH
- sekvenční analýza proteinů metody MeSH
- Sphingomonadaceae enzymologie MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
Haloalkane dehalogenases (EC 3.8.1.5) play an important role in hydrolytic degradation of halogenated compounds, resulting in a halide ion, a proton, and an alcohol. They are used in biocatalysis, bioremediation, and biosensing of environmental pollutants and also for molecular tagging in cell biology. The method of ancestral sequence reconstruction leads to prediction of sequences of ancestral enzymes allowing their experimental characterization. Based on the sequences of modern haloalkane dehalogenases from the subfamily II, the most common ancestor of thoroughly characterized enzymes LinB from Sphingobium japonicum UT26 and DmbA from Mycobacterium bovis 5033/66 was in silico predicted, recombinantly produced and structurally characterized. The ancestral enzyme AncLinB-DmbA was crystallized using the sitting-drop vapor-diffusion method, yielding rod-like crystals that diffracted X-rays to 1.5 Å resolution. Structural comparison of AncLinB-DmbA with their closely related descendants LinB and DmbA revealed some differences in overall structure and tunnel architecture. Newly prepared AncLinB-DmbA has the highest active site cavity volume and the biggest entrance radius on the main tunnel in comparison to descendant enzymes. Ancestral sequence reconstruction is a powerful technique to study molecular evolution and design robust proteins for enzyme technologies.
Zobrazit více v PubMed
Gerba C.P. Environmental Toxicology. In: Brusseau M.L., Pepper I.L., Gerba C.P., editors. Environmental and Pollution Science. 3rd ed. Academic Press; New York, NY, USA: 2019. pp. 511–540.
Ollis D.L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S.M., Harel M., Remington S.J., Silman I., Schrag J., et al. The alpha/beta hydrolase fold. Protein Eng. 1992;5:197–211. doi: 10.1093/protein/5.3.197. PubMed DOI
de Jong R.M., Tiesinga J.J., Rozeboom H.J., Kalk K.H., Tang L., Janssen D.B., Dijkstra B.W. Structure and mechanism of a bacterial haloalcohol dehalogenase: A new variation of the short-chain dehydrogenase/reductase fold without an NAD(P)H binding site. EMBO J. 2003;22:4933–4944. doi: 10.1093/emboj/cdg479. PubMed DOI PMC
Verschueren K.H., Seljée F., Rozeboom H.J., Kalk K.H., Dijkstra B.W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993;363:693–698. doi: 10.1038/363693a0. PubMed DOI
Koudelakova T., Bidmanova S., Dvorak P., Pavelka A., Chaloupkova R., Prokop Z., Damborsky J. Haloalkane dehalogenases: Biotechnological applications. Biotechnol. J. 2013;8:32–45. doi: 10.1002/biot.201100486. PubMed DOI
Janssen D.B., Dinkla I.J., Poelarends G.J., Terpstra P. Bacterial degradation of xenobiotic compounds: Evolution and distribution of novel enzyme activities. Environ. Microbiol. 2005;7:1868–1882. doi: 10.1111/j.1462-2920.2005.00966.x. PubMed DOI
Fung H.K., Gadd M.S., Drury T.A., Cheung S., Guss J.M., Coleman N.V., Matthews J.M. Biochemical and biophysical characterisation of haloalkane dehalogenases DmrA and DmrB in Mycobacterium strain JS60 and their role in growth on haloalkanes. Mol. Microbiol. 2015;97:439–453. doi: 10.1111/mmi.13039. PubMed DOI
Holmquist M. Alpha/Beta-hydrolase fold enzymes: Structures, functions and mechanisms. Curr. Protein Pept. Sci. 2000;1:209–235. doi: 10.2174/1389203003381405. PubMed DOI
Chaloupkova R., Prudnikova T., Rezacova P., Prokop Z., Koudelakova T., Daniel L., Brezovsky J., Ikeda-Ohtsubo W., Sato Y., Kuty M., et al. Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014;70:1884–1897. doi: 10.1107/S1399004714009018. PubMed DOI
Chovancova E., Kosinski J., Bujnicki J.M., Damborsky J. Phylogenetic analysis of haloalkane dehalogenases. Proteins. 2007;67:305–316. doi: 10.1002/prot.21313. PubMed DOI
Ang T.F., Maiangwa J., Salleh A.B., Normi Y.M., Leow T.C. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications. Molecules. 2018;23:1100. doi: 10.3390/molecules23051100. PubMed DOI PMC
Marek J., Vevodova J., Smatanova I.K., Nagata Y., Svensson L.A., Newman J., Takagi M., Damborsky J. Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry. 2000;39:14082–14086. doi: 10.1021/bi001539c. PubMed DOI
Nagata Y., Miyauchi K., Takagi M. Complete analysis of genes and enzymes for gamma-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J. Ind. Microbiol. Biotechnol. 1999;23:380–390. doi: 10.1038/sj.jim.2900736. PubMed DOI
Mazumdar P.A., Hulecki J.C., Cherney M.M., Garen C.R., James M.N. X-ray crystal structure of Mycobacterium tuberculosis haloalkane dehalogenase Rv2579. Biochim. Biophys. Acta. 2008;1784:351–362. doi: 10.1016/j.bbapap.2007.10.014. PubMed DOI
Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J., Damborsky J. Substrate specificity of haloalkane dehalogenases. Biochem. J. 2011;435:345–354. doi: 10.1042/BJ20101405. PubMed DOI
Nagata Y., Miyauchi K., Damborsky J., Manova K., Ansorgova A., Takagi M. Purification and characterization of a haloalkane dehalogenase of a new substrate class from a gamma-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl. Environ. Microbiol. 1997;63:3707–3710. doi: 10.1128/aem.63.9.3707-3710.1997. PubMed DOI PMC
Kmunicek J., Hynkova K., Jedlicka T., Nagata Y., Negri A., Gago F., Wade R.C., Damborsky J. Quantitative analysis of substrate specificity of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Biochemistry. 2005;44:3390–3401. doi: 10.1021/bi047912o. PubMed DOI
Jesenska A., Pavlova M., Strouhal M., Chaloupkova R., Tesinska I., Monincova M., Prokop Z., Bartos M., Pavlik I., Rychlik I., et al. Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases. Appl. Environ. Microbiol. 2005;71:6736–6745. doi: 10.1128/AEM.71.11.6736-6745.2005. PubMed DOI PMC
Degtjarik O., Chaloupkova R., Rezacova P., Kuty M., Damborsky J., Kuta Smatanova I. Differences in crystallization of two LinB variants from Sphingobium japonicum UT26. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013;69:284–287. doi: 10.1107/S1744309113002467. PubMed DOI PMC
Okai M., Ohtsuka J., Imai L.F., Mase T., Moriuchi R., Tsuda M., Nagata K., Nagata Y., Tanokura M. Crystal structure and site-directed mutagenesis analyses of haloalkane dehalogenase LinB from Sphingobium sp. strain MI1205. J. Bacteriol. 2013;195:2642–2651. doi: 10.1128/JB.02020-12. PubMed DOI PMC
Iermak I., Degtjarik O., Havlickova P., Kuty M., Chaloupkova R., Damborsky J., Prudnikova T., Kuta Smatanova I. Description of Transport Tunnel in Haloalkane Dehalogenase Variant LinB D147C+L177C from Sphingobium japonicum. Catalysts. 2021;11:5. doi: 10.3390/catal11010005. DOI
Brezovsky J., Babkova P., Degtjarik O., Fortova A., Gora A., Iermak I., Rezacova P., Dvorak P., Smatanova I.K., Prokop Z., et al. Engineering a de Novo Transport Tunnel. ACS Catal. 2016;6:7597–7610. doi: 10.1021/acscatal.6b02081. DOI
Kokkonen P., Slanska M., Dockalova V., Pinto G.P., Sanchez-Carnerero E.M., Damborsky J., Klan P., Prokop Z., Bednar D. The impact of tunnel mutations on enzymatic catalysis depends on the tunnel-substrate complementarity and the rate-limiting step. Comput. Struct. Biotechnol. J. 2020;18:805–813. doi: 10.1016/j.csbj.2020.03.017. PubMed DOI PMC
Kokkonen P., Bednar D., Pinto G., Prokop Z., Damborsky J. Engineering enzyme access tunnels. Biotechnol. Adv. 2019;37:107386. doi: 10.1016/j.biotechadv.2019.04.008. PubMed DOI
Li A., Shao Z. Biochemical characterization of a haloalkane dehalogenase DadB from Alcanivorax dieselolei B-5. PLoS ONE. 2014;9:e89144. doi: 10.1371/journal.pone.0089144. PubMed DOI PMC
Harms M.J., Thornton J.W. Analyzing protein structure and function using ancestral gene reconstruction. Curr. Opin. Struct. Biol. 2010;20:360–366. doi: 10.1016/j.sbi.2010.03.005. PubMed DOI PMC
Evans P. Scaling and assessment of data quality. Acta Crystallogr. Sect. D Biol. Crystallogr. 2006;62:72–82. doi: 10.1107/s0907444905036693. PubMed DOI
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A., et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Prokop Z., Monincová M., Chaloupková R., Klvana M., Nagata Y., Janssen D.B., Damborský J. Catalytic mechanism of the maloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. J. Biol. Chem. 2003;278:45094–45100. doi: 10.1074/jbc.M307056200. PubMed DOI
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Soding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Robert X., Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–W324. doi: 10.1093/nar/gku316. PubMed DOI PMC
Brezovsky J., Kozlikova B., Damborsky J. Computational Analysis of Protein Tunnels and Channels. Methods Mol. Biol. 2018;1685:25–42. doi: 10.1007/978-1-4939-7366-8_3. PubMed DOI
Stourac J., Vavra O., Kokkonen P., Filipovic J., Pinto G., Brezovsky J., Damborsky J., Bednar D. Caver Web 1.0: Identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res. 2019;47:W414–W422. doi: 10.1093/nar/gkz378. PubMed DOI PMC
Damborsky J., Chaloupkova R., Pavlova M., Chovancova E., Brezovsky J. Structure–Function Relationships and Engineering of Haloalkane Dehalogenases. In: Timmis K.N., editor. Handbook of Hydrocarbon and Lipid Microbiology. Springer; Berlin, Germany: 2010. pp. 1081–1098.
Liang J., Edelsbrunner H., Woodward C. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 1998;7:1884–1897. doi: 10.1002/pro.5560070905. PubMed DOI PMC
Kunka A., Damborsky J., Prokop Z. Haloalkane Dehalogenases From Marine Organisms. Methods Enzymol. 2018;605:203–251. doi: 10.1016/bs.mie.2018.03.005. PubMed DOI
Buryska T., Babkova P., Vavra O., Damborsky J., Prokop Z. A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity. Appl. Environ. Microbiol. 2018;84 doi: 10.1128/AEM.01684-17. PubMed DOI PMC
Babkova P., Sebestova E., Brezovsky J., Chaloupkova R., Damborsky J. Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity. ChemBioChem. 2017;18:1448–1456. doi: 10.1002/cbic.201700197. PubMed DOI
Chaloupkova R., Liskova V., Toul M., Markova K., Sebestova E., Hernychova L., Marek M., Pinto G.P., Pluskal D., Waterman J., et al. Light-Emitting Dehalogenases: Reconstruction of Multifunctional Biocatalysts. ACS Catal. 2019;9:4810–4823. doi: 10.1021/acscatal.9b01031. DOI
Babkova P., Dunajova Z., Chaloupkova R., Damborsky J., Bednar D., Marek M. Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational dynamics. Comput. Struct. Biotechnol. J. 2020;18:1497–1508. doi: 10.1016/j.csbj.2020.06.021. PubMed DOI PMC
McPherson A., Gavira J.A. Introduction to protein crystallization. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2014;70:2–20. doi: 10.1107/S2053230X13033141. PubMed DOI PMC
Mueller U., Förster R., Hellmig M., Huschmann F.U., Kastner A., Malecki P., Pühringer S., Röwer M., Sparta K., Steffien M., et al. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. Eur. Phys. J. Plus. 2015;130:141. doi: 10.1140/epjp/i2015-15141-2. DOI
Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Vagin A., Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 2010;66:22–25. doi: 10.1107/S0907444909042589. PubMed DOI
Murshudov G.N., Skubak P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., Winn M.D., Long F., Vagin A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
The PyMOL Molecular Graphics System. Schrödinger, LLC; New York, NY, USA: 2020. Version 2.4.