• This record comes from PubMed

Heme pathway evolution in kinetoplastid protists

. 2016 May 18 ; 16 (1) : 109. [epub] 20160518

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
MOP-115141 CIHR - Canada

Links

PubMed 27193376
PubMed Central PMC4870792
DOI 10.1186/s12862-016-0664-6
PII: 10.1186/s12862-016-0664-6
Knihovny.cz E-resources

BACKGROUND: Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway-a core metabolic pathway in a wide range of organisms-is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. RESULTS: Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. CONCLUSION: We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba.

See more in PubMed

Porcel BM, Denoeud F, Opperdoes F, Noel B, Madoui M-A, Hammarton TC, Field MC, Da Silva C, Couloux A, Poulain J, Katinka M, Jabbari K, Aury J-M, Campbell DA, Cintron R, Dickens NJ, Docampo R, Sturm NR, Koumandou VL, Fabre S, Flegontov P, Lukeš J, Michaeli S, Mottram JC, Szöőr B, Zilberstein D, Bringaud F, Wincker P, Dollet M. The streamlined genome of Phytomonas spp. Relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet. 2014;10:e1004007. doi: 10.1371/journal.pgen.1004007. PubMed DOI PMC

Motta MC, Martins AC, De Souza SS, Catta-Preta CM, Silva R, Klein CC, De Almeida LGP, de Lima Cunha O, Ciapina LP, Brocchi M, et al. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLoS One. 2013;8:e60209. doi:10.1371/journal.pone.0060209. PubMed PMC

Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream M-A, Adlem E, Aert R, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309:436–42. PubMed PMC

Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–22. PubMed

Jackson AP, Quail MA, Berriman M. Insights into the genome sequence of a free-living Kinetoplastid: Bodo saltans (Kinetoplastida: Euglenozoa) BMC Genomics. 2008;9:594. doi: 10.1186/1471-2164-9-594. PubMed DOI PMC

von der Heyden S, Cavalier-Smith T. Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. Int J Syst Evol Microbiol. 2005;55:2605–2621. doi: 10.1099/ijs.0.63606-0. PubMed DOI

Moreira D, López-García P, Vickerman K. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. Int J Syst Evol Microbiol. 2004;54:1861–75. PubMed

von der Heyden S, Chao EE, Vickerman K, Cavalier-Smith T. Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J Eukaryot Microbiol. 2004;51:402–416. doi: 10.1111/j.1550-7408.2004.tb00387.x. PubMed DOI

Simpson AGB, Stevens JR, Lukeš J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22:168–174. doi: 10.1016/j.pt.2006.02.006. PubMed DOI

Deschamps P, Lara E, Marande W, López-García P, Ekelund F, Moreira D. Phylogenomic analysis of Kinetoplastids supports that Trypanosomatids Arose from within Bodonids. Mol Biol Evol. 2011;28:53–8. PubMed

Jackson AP. Genome evolution in trypanosomatid parasites. Parasitology. 2015;142:S40–S56. doi: 10.1017/S0031182014000894. PubMed DOI PMC

Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI

Dyková I, Fiala I, Lom J, Lukeš J. Perkinsiella amoebae-like endosymbionts of Neoparamoeba spp., relatives of the kinetoplastid Ichthyobodo. Eur J Protistol. 2003;39:37–52. doi: 10.1078/0932-4739-00901. DOI

Dykova I, Fiala I, Pecková H. Neoparamoeba spp. and their eukaryotic endosymbionts similar to Perkinsela amoebae (Hollande, 1980): Coevolution demonstrated by SSU rRNA gene phylogenies. Eur J Protistol. 2008;44:269–277. doi: 10.1016/j.ejop.2008.01.004. PubMed DOI

Kudryavtsev A, Pawlowski J, Hausmann K. Description of Paramoeba atlantica n. sp.(Amoebozoa, Dactylopodida)—a marine amoeba from the eastern atlantic, with emendation of the dactylopodid families. Acta Protozool. 2011;50:239.

Feehan C, Johnson-Mackinnon J, Scheibling R, Lauzon-Guay J, Simpson A. Validating the identity of Paramoeba invadens, the causative agent of recurrent mass mortality of sea urchins in Nova Scotia, Canada. Dis Aquat Organ. 2013;103:209–227. doi: 10.3354/dao02577. PubMed DOI

Young ND, Dyková I, Crosbie PBB, Wolf M, Morrison RN, Bridle AR, Nowak BF. Support for the coevolution of Neoparamoeba and their endosymbionts, Perkinsela amoebae-like organisms. Eur J Protistol. 2014;50:509–523. doi: 10.1016/j.ejop.2014.07.004. PubMed DOI

Tanifuji G, Kim E, Onodera NT, Gibeault R, Dlutek M, Cawthorn RJ, Fiala I, Lukeš J, Greenwood SJ, Archibald JM. Genomic Characterization of Neoparamoeba pemaquidensis (Amoebozoa) and Its Kinetoplastid Endosymbiont. Eukaryot Cell. 2011;10:1143–6. PubMed PMC

Beck J, Ullman B. Nutritional requirements of wild-type and folate transport-deficient Leishmania donovani for pterins and folates. Mol Biochem Parasitol. 1990;43:221–230. doi: 10.1016/0166-6851(90)90147-E. PubMed DOI

Ouellette M, Drummelsmith J, El Fadili A, Kündig C, Richard D, Roy G. Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. Int J Parasitol. 2002;32:385–398. doi: 10.1016/S0020-7519(01)00346-0. PubMed DOI

Gutteridge W, Gaborak MA. re-examination of purine and pyrimidine synthesis in the three main forms of Trypanosoma cruzi. Int J Biochem. 1979;10:415–422. doi: 10.1016/0020-711X(79)90065-X. PubMed DOI

Kořený L, Lukeš J, Oborník M. Evolution of the haem synthetic pathway in kinetoplastid flagellates: An essential pathway that is not essential after all? Int J Parasitol. 2010;40:149–156. doi: 10.1016/j.ijpara.2009.11.007. PubMed DOI

Basu S, Horáková E, Lukeš J. Iron-associated biology of Trypanosoma brucei. Biochim Biophys Acta BBA Gen Subj. 2015;1860(2):363–370. doi: 10.1016/j.bbagen.2015.10.027. PubMed DOI

Alves JMP, Voegtly L, Matveyev AV, Lara AM, da Silva FM, Serrano MG, Buck GA, Teixeira MMG, Camargo EP. Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts. PLoS One. 2011;6:e23518. doi: 10.1371/journal.pone.0023518. PubMed DOI PMC

Kořenỳ L, Oborník M, Lukeš J. Make it, take it, or leave it: heme metabolism of parasites. PLoS Pathog. 2013;9:e1003088. doi: 10.1371/journal.ppat.1003088. PubMed DOI PMC

Renberg RL, Yuan X, Samuel TK, Miguel DC, Hamza I, Andrews NW, Flannery AR. The heme transport capacity of LHR1 determines the extent of Virulence in Leishmania amazonensis. PLoS Negl Trop Dis. 2015;9:e0003804. doi: 10.1371/journal.pntd.0003804. PubMed DOI PMC

Vanhollebeke B, De Muylder G, Nielsen MJ, Pays A, Tebabi P, Dieu M, Raes M, Moestrup SK, Pays E. A Haptoglobin-Hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science. 2008;320:677–681. doi: 10.1126/science.1156296. PubMed DOI

Kořený L, Sobotka R, Kovářová J, Gnipová A, Flegontov P, Horváth A, Oborník M, Ayala FJ, Lukeš J. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc Natl Acad Sci. 2012;109:3808–13. PubMed PMC

Jirků M, Yurchenko VY, Lukeš J, Maslov DA. New species of insect Trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol. 2012;59:537–547. doi: 10.1111/j.1550-7408.2012.00636.x. PubMed DOI

Hunter GA, Ferreira GC. Molecular enzymology of 5-Aminolevulinate synthase, the gatekeeper of heme biosynthesis. Biochim Biophys Acta BBA Proteins Proteomics. 1814;2011:1467–1473. PubMed PMC

Brzezowski P, Richter AS, Grimm B. Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim Biophys Acta BBA Bioenerg. 1847;2015:968–985. PubMed

Panek H, O’Brian MR. A whole genome view of prokaryotic haem biosynthesis. Microbiology. 2002;148:2273–2282. doi: 10.1099/00221287-148-8-2273. PubMed DOI

Layer G, Reichelt J, Jahn D, Heinz DW. Structure and function of enzymes in heme biosynthesis. Protein Sci. 2010;19:1137–1161. doi: 10.1002/pro.405. PubMed DOI PMC

Senior N, Brocklehurst K, Cooper J, Wood S, Erskine P, Shoolingin-Jordan P, Thomas P, Warren M. Comparative studies on the 5-aminolaevulinic acid dehydratases from Pisum sativum, Escherichia coli and Saccharomyces cerevisiae. Biochem J. 1996;320:401–412. doi: 10.1042/bj3200401. PubMed DOI PMC

Kim E-J, Oh EK, Lee JK. Role of HemF and HemN in the heme biosynthesis of V ibrio vulnificus under S-adenosylmethionine-limiting conditions: V. vulnificus HemF and HemN activities. Mol Microbiol. 2015;96:497–512. doi: 10.1111/mmi.12951. PubMed DOI

Boynton TO, Daugherty LE, Dailey TA, Dailey HA. Identification of Escherichia coli HemG as a Novel, Menadione-Dependent Flavodoxin with Protoporphyrinogen Oxidase Activity. Biochemistry (Mosc) 2009;48:6705–6711. doi: 10.1021/bi900850y. PubMed DOI PMC

Camadro J-M, Labbe P. Cloning and characterization of the yeast HEM14 gene coding for protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. J Biol Chem. 1996;271:9120–9128. doi: 10.1074/jbc.271.15.9120. PubMed DOI

Kobayashi K, Masuda T, Tajima N, Wada H, Sato N. Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX. Genome Biol Evol. 2014;6:2141–2155. doi: 10.1093/gbe/evu170. PubMed DOI PMC

Dailey HA, Dailey TA, Wu C-K, Medlock AE, Rose JP, Wang K-F. Ferrochelatase at the millennium: structures, mechanisms and [2Fe-2S] clusters. Cell Mol Life Sci CMLS. 2000;57:1909–1926. doi: 10.1007/PL00000672. PubMed DOI PMC

Hamza I, Dailey HA. One ring to rule them all: Trafficking of heme and heme synthesis intermediates in the metazoans. Biochim Biophys Acta BBA - Mol Cell Res. 1823;2012:1617–1632. PubMed PMC

Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009;23:205–211. PubMed

Keeling P, Burki F, Wilcox J, Allam B, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12, e1001889. doi:10.1371/journal.pbio.1001889. PubMed PMC

Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database):D457–62. doi:10.1093/nar/gkp851. PubMed PMC

Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez R, Hunter S. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

Mitchell A, Chang H-Y, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong S-Y, Bateman A, Punta M, Attwood TK, Sigrist CJA, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 2015;43:D213–D221. doi: 10.1093/nar/gku1243. PubMed DOI PMC

Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: signalP 3.0. J Mol Biol. 2004;340:783–795. doi: 10.1016/j.jmb.2004.05.028. PubMed DOI

Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300:1005–1016. doi: 10.1006/jmbi.2000.3903. PubMed DOI

Petsalaki EI, Bagos PG, Litou ZL, Hamodrakas SJ. PredSL: A tool for the N-terminal sequence-based prediction protein subcellular localization. Genomics Proteomics Bioinformatics. 2006;4:48–55. doi: 10.1016/S1672-0229(06)60016-8. PubMed DOI PMC

Small I, Peeters N, Legeai F, Lurin C. Predotar: A tool for rapidly screening proteomes forN-terminal targeting sequences. PROTEOMICS. 2004;4:1581–1590. doi: 10.1002/pmic.200300776. PubMed DOI

Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI

Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier U-G. Protein targeting into secondary plastids. J Eukaryot Microbiol. 2009;56:9–15. doi: 10.1111/j.1550-7408.2008.00370.x. PubMed DOI

Patron NJ, Waller RF. Transit peptide diversity and divergence: A global analysis of plastid targeting signals. BioEssays. 2007;29:1048–1058. doi: 10.1002/bies.20638. PubMed DOI

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210. doi: 10.1186/1471-2148-10-210. PubMed DOI PMC

Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–2288. doi: 10.1093/bioinformatics/btp368. PubMed DOI

Le S, Gascuel O, Lartillot N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics. 2008;24:2317–2323. doi: 10.1093/bioinformatics/btn445. PubMed DOI

Le SQ, Dang CC, Gascuel O. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol Biol Evol. 2012;29:2921–2936. doi: 10.1093/molbev/mss112. PubMed DOI

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Kishino H, Miyata T, Hasegawa M. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol. 1990;31:151–160. doi: 10.1007/BF02109483. DOI

Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol. 1989;29:170–179. doi: 10.1007/BF02100115. PubMed DOI

Shimodaira H, Hasegawa M. Multiple comparisons of Log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999;16:1114. doi: 10.1093/oxfordjournals.molbev.a026201. DOI

Strimmer K, Rambaut A. Inferring confidence sets of possibly misspecified gene trees. Proc R Soc B Biol Sci. 2002;269:137–142. doi: 10.1098/rspb.2001.1862. PubMed DOI PMC

Katoh K, Standley DM. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Price MN, Dehal PS, Arkin AP, et al. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. PubMed PMC

Maruyama S, Eveleigh RJ, Archibald JM. Treetrimmer: a method for phylogenetic dataset size reduction. BMC Res Notes. 2013;6:145. doi: 10.1186/1756-0500-6-145. PubMed DOI PMC

Kořený L, Oborník M. Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol Evol. 2011;3:359–64. PubMed PMC

Alsmark C, Foster PG, Sicheritz-Ponten T, Nakjang S, Embley TM, Hirt RP. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol. 2013;14:R19. doi: 10.1186/gb-2013-14-2-r19. PubMed DOI PMC

Flegontov P, Votýpka J, Skalický T, Logacheva MD, Penin AA, Tanifuji G, Onodera NT, Kondrashov AS, Volf P, Archibald JM, Lukeš J. Paratrypanosoma Is a novel early-branching Trypanosomatid. Curr Biol. 2013;23:1787–1793. doi: 10.1016/j.cub.2013.07.045. PubMed DOI

Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AGB, Roger AJ. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc R Soc B Biol Sci. 2013;280:20131755. doi: 10.1098/rspb.2013.1755. PubMed DOI PMC

Lartillot N, Brinkmann H, Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 2007;7(Suppl 1):S4. doi: 10.1186/1471-2148-7-S1-S4. PubMed DOI PMC

Wang H-C, Susko E, Roger AJ. An amino acid substitution-selection model adjusts residue fitness to improve phylogenetic estimation. Mol Biol Evol. 2014;31:779–792. doi: 10.1093/molbev/msu044. PubMed DOI

Gile GH, Faktorová D, Castlejohn CA, Burger G, Lang BF, Farmer MA, Lukeš J, Keeling PJ. Distribution and phylogeny of EFL and EF-1α in euglenozoa suggest ancestral Co-occurrence followed by differential loss. PLoS One. 2009;4:e5162. doi: 10.1371/journal.pone.0005162. PubMed DOI PMC

Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–514. doi: 10.1111/j.1550-7408.2012.00644.x. PubMed DOI PMC

Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the web of life. Nat Rev Genet. 2015;16:472–482. doi: 10.1038/nrg3962. PubMed DOI

Gawryluk RMR, Eme L, Roger AJ. Gene fusion, fission, lateral transfer, and loss: Not-so-rare events in the evolution of eukaryotic ATP citrate lyase. Mol Phylogenet Evol. 2015;91:12–16. doi: 10.1016/j.ympev.2015.05.010. PubMed DOI

He D, Fu C-J, Baldauf SL: Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA. Mol Biol Evol 2015:msv201. doi: 10.1093/molbev/msv201. PubMed

Corradi N. Microsporidia: eukaryotic intracellular parasites shaped by gene loss and horizontal gene transfers. Annu Rev Microbiol. 2015;69:167–183. doi: 10.1146/annurev-micro-091014-104136. PubMed DOI

He D, Fiz-Palacios O, Fu C-J, Fehling J, Tsai C-C, Baldauf SL. An alternative root for the eukaryote tree of life. Curr Biol. 2014;24:465–470. doi: 10.1016/j.cub.2014.01.036. PubMed DOI

Lasek-Nesselquist E, Gogarten JP. The effects of model choice and mitigating bias on the ribosomal tree of life. Mol Phylogenet Evol. 2013;69:17–38. doi: 10.1016/j.ympev.2013.05.006. PubMed DOI

Cavalier-Smith T. The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life. Cold Spring Harb Perspect Biol. 2014;6:a016006. doi: 10.1101/cshperspect.a016006. PubMed DOI PMC

Ku C, Nelson-Sathi S, Roettger M, Garg S, Hazkani-Covo E, Martin WF. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes. Proc Natl Acad Sci. 2015;112:10139–10146. doi: 10.1073/pnas.1421385112. PubMed DOI PMC

Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, McInerney JO, Landan G, Martin WF. Endosymbiotic origin and differential loss of eukaryotic genes. Nature. 2015;524:427–432. doi: 10.1038/nature14963. PubMed DOI

Huynh C, Yuan X, Miguel DC, Renberg RL, Protchenko O, Philpott CC, Hamza I, Andrews NW. Heme Uptake by Leishmania amazonensis Is mediated by the transmembrane protein LHR1. PLoS Pathog. 2012;8:e1002795. doi: 10.1371/journal.ppat.1002795. PubMed DOI PMC

Stødkilde K, Torvund-Jensen M, Moestrup SK, Andersen CBF. Structural basis for trypanosomal haem acquisition and susceptibility to the host innate immune system. Nat Commun. 2014;5:5487. doi: 10.1038/ncomms6487. PubMed DOI

Rao AU, Carta LK, Lesuisse E, Hamza I. Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci U S A. 2005;102:4270–4275. doi: 10.1073/pnas.0500877102. PubMed DOI PMC

Cavalier-Smith T. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot. 2005;95:147–175. doi: 10.1093/aob/mci010. PubMed DOI PMC

McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2011;10:13–26. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...