Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis

. 2017 Sep 15 ; 7 (1) : 11688. [epub] 20170915

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28916813

Grantová podpora
Wellcome Trust - United Kingdom

Odkazy

PubMed 28916813
PubMed Central PMC5601477
DOI 10.1038/s41598-017-11866-x
PII: 10.1038/s41598-017-11866-x
Knihovny.cz E-zdroje

Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive 'cross-talk' between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.

Zobrazit více v PubMed

Grell KG, Benwitz G. Ultrastruktur mariner Amöben I. Paramoeba eilhardi Schaudinn. Archiv für Protistenkunde. 1970;112:119–137.

Perkins FO, Castagna M. Ultrastructure of the Nebenkörper or ‘secondary nucleus’ of the parasitic amoeba Paramoeba perniciosa (Amoebida, Paramoebidae) Journal of Invertebrate Pathology. 1971;17:186–193. doi: 10.1016/0022-2011(71)90089-9. PubMed DOI

Page FC. Paramoeba: a common marine genus. Hydrobiologia. 1973;41:183–188. doi: 10.1007/BF00016444. DOI

Hollande A. Identification du parasome (Nebenkern) de Janickina pigmentifera à un symbionte (Perkinsiella amoebae nov gen - nov sp.) apparenté aux flagellés Kinetoplastidiés. Protistologica. 1980;16:613–625.

Dyková I, Fiala I, Lom J, Lukeš J. Perkinsiella amoebae-like endosymbionts of Neoparamoeba spp., relatives of the kinetoplastid Ichthyobodo. European Journal of Protistology. 2003;39:37–52. doi: 10.1078/0932-4739-00901. DOI

Lukeš J, et al. Kinetoplast DNA network: evolution of an improbable structure. Eukaryotic Cell. 2002;1:495–502. doi: 10.1128/EC.1.4.495-502.2002. PubMed DOI PMC

Simpson AG, Stevens JR, Lukeš J. The evolution and diversity of kinetoplastid flagellates. Trends in Parasitology. 2006;22:168–174. doi: 10.1016/j.pt.2006.02.006. PubMed DOI

Barrett MP, et al. The trypanosomiases. Lancet. 2003;362:1469–1480. doi: 10.1016/S0140-6736(03)14694-6. PubMed DOI

El-Sayed NM, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309:404–409. doi: 10.1126/science.1112181. PubMed DOI

Callahan HA, Litaker RW, Noga EJ. Molecular taxonomy of the suborder Bodonina (Order Kinetoplastida), including the important fish parasite, Ichthyobodo necator. Journal of Eukaryotic Microbiology. 2002;49:119–128. doi: 10.1111/j.1550-7408.2002.tb00354.x. PubMed DOI

Lukes J, Skalicky T, Tyc J, Votypka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Molecular and Biochemical Parasitology. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI

Moreira D, Lopez-Garcia P, Vickerman K. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. International Journal of Systematic and Evolutionary Microbiology. 2004;54:1861–1875. doi: 10.1099/ijs.0.63081-0. PubMed DOI

Todal JA, et al. Ichthyobodo necator (Kinetoplastida)–a complex of sibling species. Diseases of Aquatic Organisms. 2004;58:9–16. doi: 10.3354/dao058009. PubMed DOI

Stuart K, Allen TE, Heidmann S, Seiwert SD. RNA editing in kinetoplastid protozoa. Microbiology and Molecular Biology Reviews. 1997;61:105–120. PubMed PMC

Caraguel CG, et al. Microheterogeneity and coevolution: an examination of rDNA sequence characteristics in Neoparamoeba pemaquidensis and its prokinetoplastid endosymbiont. Journal of Eukaryotic Microbiology. 2007;54:418–426. doi: 10.1111/j.1550-7408.2007.00281.x. PubMed DOI

Dykova I, Fiala I, Peckova H. Neoparamoeba spp. and their eukaryotic endosymbionts similar to Perkinsela amoebae (Hollande, 1980): coevolution demonstrated by SSU rRNA gene phylogenies. European Journal of Protistology. 2008;44:269–277. doi: 10.1016/j.ejop.2008.01.004. PubMed DOI

Sibbald SJ, et al. Diversity and evolution of Paramoeba spp. and their kinetoplastid endosymbionts. Journal of Eukaryotic Microbiology. 2017 PubMed

Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annual Review of Plant Biology. 2013;64:583–607. doi: 10.1146/annurev-arplant-050312-120144. PubMed DOI

Lee LE, et al. High yield and rapid growth of Neoparamoeba pemaquidensis in co-culture with a rainbow trout gill-derived cell line RTgill-W1. Journal of Fish Diseases. 2006;29:467–480. doi: 10.1111/j.1365-2761.2006.00740.x. PubMed DOI

Mitchell SO, Rodger HD. A review of infectious gill disease in marine salmonid fish. Journal of Fish Diseases. 2011;34:411–432. doi: 10.1111/j.1365-2761.2011.01251.x. PubMed DOI

Young ND, Dykova I, Snekvik K, Nowak BF, Morrison RN. Neoparamoeba perurans is a cosmopolitan aetiological agent of amoebic gill disease. Diseases of Aquatic Organisms. 2008;78:217–223. doi: 10.3354/dao01869. PubMed DOI

Crosbie PBB, Bridle AR, Cadoret K, Nowak B. In vitro cultured Neoparamoeba perurans causes amoebic gill disease in Atlantic salmon and fulfils Koch’s postulates. International Journal of Parasitology. 2012;42:511–515. doi: 10.1016/j.ijpara.2012.04.002. PubMed DOI

Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444. doi: 10.1186/1471-2164-12-444. PubMed DOI PMC

David V, et al. Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. mBio. 2015;6:e01498–01415. PubMed PMC

Jackson AP, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Current Biology. 2016;26:161–172. doi: 10.1016/j.cub.2015.11.055. PubMed DOI PMC

Porcel BM, et al. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genetics. 2014;10:e1004007. doi: 10.1371/journal.pgen.1004007. PubMed DOI PMC

Berriman M, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–422. doi: 10.1126/science.1112642. PubMed DOI

Ivens AC, et al. The genome of the kinetoplastid parasite. Leishmania major. Science. 2005;309:436–442. PubMed PMC

Koonin EV, et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology. 2004;5:R7. doi: 10.1186/gb-2004-5-2-r7. PubMed DOI PMC

Stuart, K. D. & Myler, P. J. in Genomics and evolution of microbial eukaryotes (eds Katz, L. A. & Bhattacharya, D.) Ch. 10, 155–168 (Oxford University Press., 2006).

Gawryluk RM, et al. Morphological identification and single-cell genomics of marine diplonemids. Current Biology. 2016;26:3053–3059. doi: 10.1016/j.cub.2016.09.013. PubMed DOI

Field MC, Carrington M. The trypanosome flagellar pocket. Nature Reviews Microbiology. 2009;7:775–786. doi: 10.1038/nrmicro2221. PubMed DOI

Gluenz E, et al. Beyond 9 + 0: noncanonical axoneme structures characterize sensory cilia from protists to humans. FASEB Journal. 2010;24:3117–3121. doi: 10.1096/fj.09-151381. PubMed DOI PMC

Langousis G, Hill KL. Motility and more: the flagellum of Trypanosoma brucei. Nature Reviews Microbiology. 2014;12:505–518. doi: 10.1038/nrmicro3274. PubMed DOI PMC

Molla-Herman A, et al. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. Journal of Cell Science. 2010;123:1785–1795. doi: 10.1242/jcs.059519. PubMed DOI

Broadhead R, et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature. 2006;440:224–227. doi: 10.1038/nature04541. PubMed DOI

Dean S, Moreira-Leite F, Varga V, Gull K. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proceedings of the National Academy of Sciences USA. 2016;113:E5135–E5143. doi: 10.1073/pnas.1604258113. PubMed DOI PMC

Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K. Reconstructing the evolutionary history of the centriole from protein components. Journal of Cell Science. 2010;123:1407–1413. doi: 10.1242/jcs.064873. PubMed DOI PMC

Szoor B, Haanstra JR, Gualdron-Lopez M, Michels PA. Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Current Opinion in Microbiology. 2014;22:79–87. doi: 10.1016/j.mib.2014.09.006. PubMed DOI

Page FC. Two new species of Paramoeba from Maine. Journal of Protozoology. 1970;17:421–427. doi: 10.1111/j.1550-7408.1970.tb04706.x. DOI

Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Reviews Genetics. 2004;5:123–135. doi: 10.1038/nrg1271. PubMed DOI

Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annual Review of Microbiology. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. PubMed DOI

Cenci U, et al. Heme pathway evolution in kinetoplastid protists. BMC Evolutionary Biology. 2016;16:109. doi: 10.1186/s12862-016-0664-6. PubMed DOI PMC

Peacock L, et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proceedings of the National Academy of Sciences USA. 2011;108:3671–3676. doi: 10.1073/pnas.1019423108. PubMed DOI PMC

Dean AD, et al. Host control and nutrient trading in a photosynthetic symbiosis. Journal of Theoretical Biology. 2016;405:82–93. doi: 10.1016/j.jtbi.2016.02.021. PubMed DOI

Kodama Y, Fujishima M. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host’s nutritional conditions during early infection process. Environmental Microbiology. 2012;14:2800–2811. doi: 10.1111/j.1462-2920.2012.02793.x. PubMed DOI

Lowe CD, Minter EJ, Cameron DD, Brockhurst MA. Shining a light on exploitative host control in a photosynthetic endosymbiosis. Current Biology. 2016;26:207–211. doi: 10.1016/j.cub.2015.11.052. PubMed DOI

Stevens JR. Kinetoplastid phylogenetics, with special reference to the evolution of parasitic trypanosomes. Parasite. 2008;15:226–232. doi: 10.1051/parasite/2008153226. PubMed DOI

Bennett GM, Moran NA. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proceedings of the National Academy of Sciences USA. 2015;112:10169–10176. doi: 10.1073/pnas.1421388112. PubMed DOI PMC

McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nature Reviews Microbiology. 2011;10:13–26. PubMed

Dyková, I. et al. Neoparamoeba branchiphila n. sp., and related species of the genus Neoparamoeba Page, 1987: morphological and molecular characterization of selected strains. Journal of Fish Diseases 28, 49–64 (2005). PubMed

Lane CE, Archibald JM. Novel nucleomorph genome architecture in the cryptomonad genus Hemiselmis. Journal of Eukaryotic Microbiology. 2006;53:515–521. doi: 10.1111/j.1550-7408.2006.00135.x. PubMed DOI

Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biology. 2012;13:R122. doi: 10.1186/gb-2012-13-12-r122. PubMed DOI PMC

Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014;30:31–37. doi: 10.1093/bioinformatics/btt310. PubMed DOI

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2010;27:578–579. doi: 10.1093/bioinformatics/btq683. PubMed DOI

Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC

Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC

Tanifuji G, et al. Genomic characterization of Neoparamoeba pemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont. Eukaryotic Cell. 2011;10:1143–1146. doi: 10.1128/EC.05027-11. PubMed DOI PMC

Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19(Suppl 2):ii215–225. doi: 10.1093/bioinformatics/btg1080. PubMed DOI

Haas BJ, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Research. 2003;31:5654–5666. doi: 10.1093/nar/gkg770. PubMed DOI PMC

Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology. 2015;16:157. doi: 10.1186/s13059-015-0721-2. PubMed DOI PMC

Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Research. 2008;18:1979–1990. doi: 10.1101/gr.081612.108. PubMed DOI PMC

Abeel T, Van Parys T, Saeys Y, Galagan J, Van de Peer Y. GenomeView: a next-generation genome browser. Nucleic Acids Research. 2012;40:e12. doi: 10.1093/nar/gkr995. PubMed DOI PMC

Aslett M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Research. 2010;38:D457–462. doi: 10.1093/nar/gkp851. PubMed DOI PMC

Fiebig M, Gluenz E, Carrington M, Kelly S. SLaP mapper: a webserver for identifying and quantifying spliced-leader addition and polyadenylation site usage in kinetoplastid genomes. Molecular and Biochemical Parasitology. 2014;196:71–74. doi: 10.1016/j.molbiopara.2014.07.012. PubMed DOI PMC

Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC

Maruyama S, Eveleigh RJ, Archibald JM. Treetrimmer: a method for phylogenetic dataset size reduction. BMC Research Notes. 2013;6:145. doi: 10.1186/1756-0500-6-145. PubMed DOI PMC

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI

Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution. 2004;21:1095–1109. doi: 10.1093/molbev/msh112. PubMed DOI

Butter F, et al. Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite’s host adaptation machinery. Molecular and Cellular. Proteomics. 2013;12:172–179. doi: 10.1021/pr3010056. PubMed DOI PMC

Gunasekera K, Wuthrich D, Braga-Lagache S, Heller M, Ochsenreiter T. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genomics. 2012;13:556. doi: 10.1186/1471-2164-13-556. PubMed DOI PMC

Niemann M, et al. Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Molecular and Cellular Proteomics. 2013;12:515–528. doi: 10.1074/mcp.M112.023093. PubMed DOI PMC

Urbaniak MD, Guther ML, Ferguson MA. Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One. 2012;7:e36619. doi: 10.1371/journal.pone.0036619. PubMed DOI PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 2010;11:431. doi: 10.1186/1471-2105-11-431. PubMed DOI PMC

Guther ML, Urbaniak MD, Tavendale A, Prescott A, Ferguson MA. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. Journal of Proteome Research. 2014;13:2796–2806. doi: 10.1021/pr401209w. PubMed DOI PMC

Jamdhade MD, et al. Comprehensive proteomics analysis of glycosomes from Leishmania donovani. OMICS. 2015;19:157–170. doi: 10.1089/omi.2014.0163. PubMed DOI PMC

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC

Sant’Anna C, et al. Subcellular proteomics of Trypanosoma cruzi reservosomes. Proteomics. 2009;9:1782–1794. doi: 10.1002/pmic.200800730. PubMed DOI PMC

Huang G, et al. Proteomic analysis of the acidocalcisome, an organelle conserved from bacteria to human cells. PLoS Pathogens. 2014;10:e1004555. doi: 10.1371/journal.ppat.1004555. PubMed DOI PMC

Herman M, Gillies S, Michels PA, Rigden DJ. Autophagy and related processes in trypanosomatids: insights from genomic and bioinformatic analyses. Autophagy. 2006;2:107–118. doi: 10.4161/auto.2.2.2369. PubMed DOI

Thiery JP. Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. Journal de Microscopie. 1967;6:987–1018.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace