Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Wellcome Trust - United Kingdom
PubMed
28916813
PubMed Central
PMC5601477
DOI
10.1038/s41598-017-11866-x
PII: 10.1038/s41598-017-11866-x
Knihovny.cz E-resources
- MeSH
- Amoebozoa genetics growth & development metabolism MeSH
- Genome, Protozoan MeSH
- Kinetoplastida genetics growth & development metabolism MeSH
- Sequence Analysis, DNA MeSH
- Symbiosis * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive 'cross-talk' between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.
Canadian Institute for Advanced Research Program in Integrated Microbial Biodiversity Toronto Canada
Center for Computational Sciences University of Tsukuba Tsukuba Japan
Department of Biochemistry and Molecular Biology Dalhousie University Halifax Nova Scotia Canada
Department of Plant Sciences University of Oxford Oxford United Kingdom
Department of Zoology National Museum of Nature and Science Tsukuba Japan
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
Graduate School of Life Sciences Tohoku University Tohoku Japan
Institute for Marine and Antarctic Sciences University of Tasmania Launceston Australia
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Laboratory for Cell Biology Philipps University Marburg Germany
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
National Institute of Advanced Industrial Science and Technology Tsukuba Japan
Sir William Dunn School of Pathology University of Oxford Oxford United Kingdom
See more in PubMed
Grell KG, Benwitz G. Ultrastruktur mariner Amöben I. Paramoeba eilhardi Schaudinn. Archiv für Protistenkunde. 1970;112:119–137.
Perkins FO, Castagna M. Ultrastructure of the Nebenkörper or ‘secondary nucleus’ of the parasitic amoeba Paramoeba perniciosa (Amoebida, Paramoebidae) Journal of Invertebrate Pathology. 1971;17:186–193. doi: 10.1016/0022-2011(71)90089-9. PubMed DOI
Page FC. Paramoeba: a common marine genus. Hydrobiologia. 1973;41:183–188. doi: 10.1007/BF00016444. DOI
Hollande A. Identification du parasome (Nebenkern) de Janickina pigmentifera à un symbionte (Perkinsiella amoebae nov gen - nov sp.) apparenté aux flagellés Kinetoplastidiés. Protistologica. 1980;16:613–625.
Dyková I, Fiala I, Lom J, Lukeš J. Perkinsiella amoebae-like endosymbionts of Neoparamoeba spp., relatives of the kinetoplastid Ichthyobodo. European Journal of Protistology. 2003;39:37–52. doi: 10.1078/0932-4739-00901. DOI
Lukeš J, et al. Kinetoplast DNA network: evolution of an improbable structure. Eukaryotic Cell. 2002;1:495–502. doi: 10.1128/EC.1.4.495-502.2002. PubMed DOI PMC
Simpson AG, Stevens JR, Lukeš J. The evolution and diversity of kinetoplastid flagellates. Trends in Parasitology. 2006;22:168–174. doi: 10.1016/j.pt.2006.02.006. PubMed DOI
Barrett MP, et al. The trypanosomiases. Lancet. 2003;362:1469–1480. doi: 10.1016/S0140-6736(03)14694-6. PubMed DOI
El-Sayed NM, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309:404–409. doi: 10.1126/science.1112181. PubMed DOI
Callahan HA, Litaker RW, Noga EJ. Molecular taxonomy of the suborder Bodonina (Order Kinetoplastida), including the important fish parasite, Ichthyobodo necator. Journal of Eukaryotic Microbiology. 2002;49:119–128. doi: 10.1111/j.1550-7408.2002.tb00354.x. PubMed DOI
Lukes J, Skalicky T, Tyc J, Votypka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Molecular and Biochemical Parasitology. 2014;195:115–122. doi: 10.1016/j.molbiopara.2014.05.007. PubMed DOI
Moreira D, Lopez-Garcia P, Vickerman K. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. International Journal of Systematic and Evolutionary Microbiology. 2004;54:1861–1875. doi: 10.1099/ijs.0.63081-0. PubMed DOI
Todal JA, et al. Ichthyobodo necator (Kinetoplastida)–a complex of sibling species. Diseases of Aquatic Organisms. 2004;58:9–16. doi: 10.3354/dao058009. PubMed DOI
Stuart K, Allen TE, Heidmann S, Seiwert SD. RNA editing in kinetoplastid protozoa. Microbiology and Molecular Biology Reviews. 1997;61:105–120. PubMed PMC
Caraguel CG, et al. Microheterogeneity and coevolution: an examination of rDNA sequence characteristics in Neoparamoeba pemaquidensis and its prokinetoplastid endosymbiont. Journal of Eukaryotic Microbiology. 2007;54:418–426. doi: 10.1111/j.1550-7408.2007.00281.x. PubMed DOI
Dykova I, Fiala I, Peckova H. Neoparamoeba spp. and their eukaryotic endosymbionts similar to Perkinsela amoebae (Hollande, 1980): coevolution demonstrated by SSU rRNA gene phylogenies. European Journal of Protistology. 2008;44:269–277. doi: 10.1016/j.ejop.2008.01.004. PubMed DOI
Sibbald SJ, et al. Diversity and evolution of Paramoeba spp. and their kinetoplastid endosymbionts. Journal of Eukaryotic Microbiology. 2017 PubMed
Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annual Review of Plant Biology. 2013;64:583–607. doi: 10.1146/annurev-arplant-050312-120144. PubMed DOI
Lee LE, et al. High yield and rapid growth of Neoparamoeba pemaquidensis in co-culture with a rainbow trout gill-derived cell line RTgill-W1. Journal of Fish Diseases. 2006;29:467–480. doi: 10.1111/j.1365-2761.2006.00740.x. PubMed DOI
Mitchell SO, Rodger HD. A review of infectious gill disease in marine salmonid fish. Journal of Fish Diseases. 2011;34:411–432. doi: 10.1111/j.1365-2761.2011.01251.x. PubMed DOI
Young ND, Dykova I, Snekvik K, Nowak BF, Morrison RN. Neoparamoeba perurans is a cosmopolitan aetiological agent of amoebic gill disease. Diseases of Aquatic Organisms. 2008;78:217–223. doi: 10.3354/dao01869. PubMed DOI
Crosbie PBB, Bridle AR, Cadoret K, Nowak B. In vitro cultured Neoparamoeba perurans causes amoebic gill disease in Atlantic salmon and fulfils Koch’s postulates. International Journal of Parasitology. 2012;42:511–515. doi: 10.1016/j.ijpara.2012.04.002. PubMed DOI
Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444. doi: 10.1186/1471-2164-12-444. PubMed DOI PMC
David V, et al. Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. mBio. 2015;6:e01498–01415. PubMed PMC
Jackson AP, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Current Biology. 2016;26:161–172. doi: 10.1016/j.cub.2015.11.055. PubMed DOI PMC
Porcel BM, et al. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genetics. 2014;10:e1004007. doi: 10.1371/journal.pgen.1004007. PubMed DOI PMC
Berriman M, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–422. doi: 10.1126/science.1112642. PubMed DOI
Ivens AC, et al. The genome of the kinetoplastid parasite. Leishmania major. Science. 2005;309:436–442. PubMed PMC
Koonin EV, et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology. 2004;5:R7. doi: 10.1186/gb-2004-5-2-r7. PubMed DOI PMC
Stuart, K. D. & Myler, P. J. in Genomics and evolution of microbial eukaryotes (eds Katz, L. A. & Bhattacharya, D.) Ch. 10, 155–168 (Oxford University Press., 2006).
Gawryluk RM, et al. Morphological identification and single-cell genomics of marine diplonemids. Current Biology. 2016;26:3053–3059. doi: 10.1016/j.cub.2016.09.013. PubMed DOI
Field MC, Carrington M. The trypanosome flagellar pocket. Nature Reviews Microbiology. 2009;7:775–786. doi: 10.1038/nrmicro2221. PubMed DOI
Gluenz E, et al. Beyond 9 + 0: noncanonical axoneme structures characterize sensory cilia from protists to humans. FASEB Journal. 2010;24:3117–3121. doi: 10.1096/fj.09-151381. PubMed DOI PMC
Langousis G, Hill KL. Motility and more: the flagellum of Trypanosoma brucei. Nature Reviews Microbiology. 2014;12:505–518. doi: 10.1038/nrmicro3274. PubMed DOI PMC
Molla-Herman A, et al. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. Journal of Cell Science. 2010;123:1785–1795. doi: 10.1242/jcs.059519. PubMed DOI
Broadhead R, et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature. 2006;440:224–227. doi: 10.1038/nature04541. PubMed DOI
Dean S, Moreira-Leite F, Varga V, Gull K. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proceedings of the National Academy of Sciences USA. 2016;113:E5135–E5143. doi: 10.1073/pnas.1604258113. PubMed DOI PMC
Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K. Reconstructing the evolutionary history of the centriole from protein components. Journal of Cell Science. 2010;123:1407–1413. doi: 10.1242/jcs.064873. PubMed DOI PMC
Szoor B, Haanstra JR, Gualdron-Lopez M, Michels PA. Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Current Opinion in Microbiology. 2014;22:79–87. doi: 10.1016/j.mib.2014.09.006. PubMed DOI
Page FC. Two new species of Paramoeba from Maine. Journal of Protozoology. 1970;17:421–427. doi: 10.1111/j.1550-7408.1970.tb04706.x. DOI
Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Reviews Genetics. 2004;5:123–135. doi: 10.1038/nrg1271. PubMed DOI
Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annual Review of Microbiology. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. PubMed DOI
Cenci U, et al. Heme pathway evolution in kinetoplastid protists. BMC Evolutionary Biology. 2016;16:109. doi: 10.1186/s12862-016-0664-6. PubMed DOI PMC
Peacock L, et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proceedings of the National Academy of Sciences USA. 2011;108:3671–3676. doi: 10.1073/pnas.1019423108. PubMed DOI PMC
Dean AD, et al. Host control and nutrient trading in a photosynthetic symbiosis. Journal of Theoretical Biology. 2016;405:82–93. doi: 10.1016/j.jtbi.2016.02.021. PubMed DOI
Kodama Y, Fujishima M. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host’s nutritional conditions during early infection process. Environmental Microbiology. 2012;14:2800–2811. doi: 10.1111/j.1462-2920.2012.02793.x. PubMed DOI
Lowe CD, Minter EJ, Cameron DD, Brockhurst MA. Shining a light on exploitative host control in a photosynthetic endosymbiosis. Current Biology. 2016;26:207–211. doi: 10.1016/j.cub.2015.11.052. PubMed DOI
Stevens JR. Kinetoplastid phylogenetics, with special reference to the evolution of parasitic trypanosomes. Parasite. 2008;15:226–232. doi: 10.1051/parasite/2008153226. PubMed DOI
Bennett GM, Moran NA. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proceedings of the National Academy of Sciences USA. 2015;112:10169–10176. doi: 10.1073/pnas.1421388112. PubMed DOI PMC
McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nature Reviews Microbiology. 2011;10:13–26. PubMed
Dyková, I. et al. Neoparamoeba branchiphila n. sp., and related species of the genus Neoparamoeba Page, 1987: morphological and molecular characterization of selected strains. Journal of Fish Diseases 28, 49–64 (2005). PubMed
Lane CE, Archibald JM. Novel nucleomorph genome architecture in the cryptomonad genus Hemiselmis. Journal of Eukaryotic Microbiology. 2006;53:515–521. doi: 10.1111/j.1550-7408.2006.00135.x. PubMed DOI
Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biology. 2012;13:R122. doi: 10.1186/gb-2012-13-12-r122. PubMed DOI PMC
Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014;30:31–37. doi: 10.1093/bioinformatics/btt310. PubMed DOI
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2010;27:578–579. doi: 10.1093/bioinformatics/btq683. PubMed DOI
Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC
Tanifuji G, et al. Genomic characterization of Neoparamoeba pemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont. Eukaryotic Cell. 2011;10:1143–1146. doi: 10.1128/EC.05027-11. PubMed DOI PMC
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19(Suppl 2):ii215–225. doi: 10.1093/bioinformatics/btg1080. PubMed DOI
Haas BJ, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Research. 2003;31:5654–5666. doi: 10.1093/nar/gkg770. PubMed DOI PMC
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology. 2015;16:157. doi: 10.1186/s13059-015-0721-2. PubMed DOI PMC
Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Research. 2008;18:1979–1990. doi: 10.1101/gr.081612.108. PubMed DOI PMC
Abeel T, Van Parys T, Saeys Y, Galagan J, Van de Peer Y. GenomeView: a next-generation genome browser. Nucleic Acids Research. 2012;40:e12. doi: 10.1093/nar/gkr995. PubMed DOI PMC
Aslett M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Research. 2010;38:D457–462. doi: 10.1093/nar/gkp851. PubMed DOI PMC
Fiebig M, Gluenz E, Carrington M, Kelly S. SLaP mapper: a webserver for identifying and quantifying spliced-leader addition and polyadenylation site usage in kinetoplastid genomes. Molecular and Biochemical Parasitology. 2014;196:71–74. doi: 10.1016/j.molbiopara.2014.07.012. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Maruyama S, Eveleigh RJ, Archibald JM. Treetrimmer: a method for phylogenetic dataset size reduction. BMC Research Notes. 2013;6:145. doi: 10.1186/1756-0500-6-145. PubMed DOI PMC
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution. 2004;21:1095–1109. doi: 10.1093/molbev/msh112. PubMed DOI
Butter F, et al. Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite’s host adaptation machinery. Molecular and Cellular. Proteomics. 2013;12:172–179. doi: 10.1021/pr3010056. PubMed DOI PMC
Gunasekera K, Wuthrich D, Braga-Lagache S, Heller M, Ochsenreiter T. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genomics. 2012;13:556. doi: 10.1186/1471-2164-13-556. PubMed DOI PMC
Niemann M, et al. Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Molecular and Cellular Proteomics. 2013;12:515–528. doi: 10.1074/mcp.M112.023093. PubMed DOI PMC
Urbaniak MD, Guther ML, Ferguson MA. Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One. 2012;7:e36619. doi: 10.1371/journal.pone.0036619. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 2010;11:431. doi: 10.1186/1471-2105-11-431. PubMed DOI PMC
Guther ML, Urbaniak MD, Tavendale A, Prescott A, Ferguson MA. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. Journal of Proteome Research. 2014;13:2796–2806. doi: 10.1021/pr401209w. PubMed DOI PMC
Jamdhade MD, et al. Comprehensive proteomics analysis of glycosomes from Leishmania donovani. OMICS. 2015;19:157–170. doi: 10.1089/omi.2014.0163. PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC
Sant’Anna C, et al. Subcellular proteomics of Trypanosoma cruzi reservosomes. Proteomics. 2009;9:1782–1794. doi: 10.1002/pmic.200800730. PubMed DOI PMC
Huang G, et al. Proteomic analysis of the acidocalcisome, an organelle conserved from bacteria to human cells. PLoS Pathogens. 2014;10:e1004555. doi: 10.1371/journal.ppat.1004555. PubMed DOI PMC
Herman M, Gillies S, Michels PA, Rigden DJ. Autophagy and related processes in trypanosomatids: insights from genomic and bioinformatic analyses. Autophagy. 2006;2:107–118. doi: 10.4161/auto.2.2.2369. PubMed DOI
Thiery JP. Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. Journal de Microscopie. 1967;6:987–1018.
A lineage-specific protein network at the trypanosome nuclear envelope
Distribution of Merlin in eukaryotes and first report of DNA transposons in kinetoplastid protists
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
Inventory and Evolution of Mitochondrion-localized Family A DNA Polymerases in Euglenozoa
Massive mitochondrial DNA content in diplonemid and kinetoplastid protists